Co-Catalyzed Synthesis of N-Sulfonylcarboxamides from Carboxylic

38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58 ... 3. Scheme 1. Drugs containing N-sulfonylcarboxamides. In the pa...
2 downloads 0 Views 441KB Size
Subscriber access provided by UNIVERSITY OF TOLEDO LIBRARIES

Article

Co-Catalyzed Synthesis of N-Sulfonylcarboxamides from Carboxylic acids and Sulfonyl Azides Yue Fang, Zheng-Yang Gu, Shun-Yi Wang, Jin-Ming Yang, and Shun-Jun Ji J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 29 Jun 2018 Downloaded from http://pubs.acs.org on June 29, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Co-Catalyzed Synthesis of N-Sulfonylcarboxamides from Carboxylic acids and Sulfonyl Azides Yue Fang,1,2,3 Zheng-Yang Gu,2 Shun-Yi Wang,2 Jin-Ming Yang*,1 and Shun-Jun Ji*,2 1

School of Pharmacy, Yancheng Teachers University, Yancheng, 224051, China

2

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical

Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology,

Soochow

University,

Suzhou,

215123,

China;

E-mail:

[email protected];

[email protected] 3

College of Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China

ABSTRACT: A Co-catalyzed effective synthesis of N-sulfonylcarboxamides from the reaction of carboxylic acids and organic azides in the presence of isocyanide has been developed. The protocol has the advantages of short time, low temperature and oxidants-free, which provids a new and simple approach for the synthesis of N-sulfonylcarboxamides in good to excellent yields with a broad substrate scope.

KEYWORDS: cobalt; carboxylic acids; organic azides; N-sulfonylcarboxamides; isocyanide ACS Paragon Plus Environment

1

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 13

INTRODUCTION N-sulfonylcarboxamides and their dervatives are an important class of organic active small molecules, which are widely used in organic synthesis.1 At the same time, their natural activities have aroused great concerns of chemical workers. For example, I, II and III (LY573636·Na) are effective antitumor agents and are widely used in the treatment of colon cancer, lung cancer, breast cancer, ovarian cancer and prostate cancer.2 SZ4TA2 IV is an inhibitor of Bcl-XL (Scheme 1).3

Scheme 1. Drugs containing N-sulfonylcarboxamides. In the past few decades, with the increasing demands of N-sulfonylcarboxamides, a series of strategies to construct these compounds have been developed (Scheme 2).4-5 Conventionally, synthesis of N-sulfonyl formamide and its derivatives involve typical methodologies using sulfonamide to react with carboxylic acid,6 ester,7 acyl chloride,8 and aldehyde.9 However, these protocols suffer from certain disadvantages such as use of coupling agents/bases, harsh reaction conditions and low yields. In addition, Manas and co-works reported a new strategy by breaking the C(O)-CHNO2 bond of αnitroketone with TsNBr2 to form a new C-N bond under the condition of potassium carbonate.10 Unfortunately, this method also has the drawbacks of using stoichiometric bases and low yields. Chang’s group reported the first chemoselective ruthenium(II) porphyrin catalyzed amidation of a wide range of aldehydes with PhI=NTs as the nitrogen source.11 Apart from these, Ashfeld’s team reported the method for the synthesis of N-sulfonyl formamide and its derivatives from carboxylic acid and azide ACS Paragon Plus Environment

2

Page 3 of 13

in the presence of chlorophosphite and triethylamine.12 However, the chlorophosphite was air- and moisture-sensitive and a high reaction temperature was required. Recently, our group devoted to developing the insertion reactions of isocyanides to construct nitrogen-containing organic molecules.13 During the coupling reaction of carboxylic acid, azide compound and tert-butyl isocyanide, accidentally, we found that benzoic acid and TsN3 formed N-tosylbenzamide in the presence of tertbutyl isocyanide and cobalt catalyst. Herein, we report a Co-catalyzed effective synthesis of Nsulfonylcarboxamides through the reaction of carboxylic acids and organic azides in the presence of isocyanide. ref 12 1

R2SO2N3

R COOH +

O O

O R1

O O

2

2

H

2N

Cl ref 8

R2 SO

1

R

CIP(OET)2 Et3N

R2 SO

2N

H

R1 H ref 9a

2

O

2

2

R1

R1

N H

O

2

SO2R2

R1

2N

H

2

Ph I

NTs This work

R1COOH ref 6

NO2 ref 10

ref 7a

R2 SO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

R1COOH +

[Co] t

Bu-NC R2SO2N3

O 1

R

H ref 11

Scheme 2. Methods for the synthesis of N-sulfonylcarboxamides. RESULTS AND DISCUSSION Initially, we chose the modle reaction of benzoic acid 1a with TsN3 2a and tert-butyl isocyanide catalyzed by 5 mol % Co2(CO)8 in MeCN at 80 °C for 4 h. Gratifyingly, the desired product 3aa was observed in 96% isolated yield (Table 1, entry 1). The structure of 3aa was confirmed by NMR, IR and HRMS. As we expected, no desired product could be detected in the absence of cobalt catalyst or tertACS Paragon Plus Environment

3

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 13

butyl isocyanide (Table 1, entry 2). Then, we screened different cobalt catalysts, such as CoC2O4, CoCl2·6H2O, Co(acac)2, Co(OAc)2 and CoBr2·H2O, but the yield is not higher than the model reaction (Table 1, entries 3-7). The reaction efficiency decreased when other isonitrile was applied instead of tert-butyl isocyanide (Table 1, entries 8-12). Decreasing the temperature did not have a benefical effect on the reaction (Table 1, entries 13-15). Table 1. Optimization of the reaction conditionsa

entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 a

variations from the standard conditions standard condition without catalyst/ligand CoC2O4, instead of Co2(CO)8 CoCl2·6H2O, instead of Co2(CO)8 Co(acac)2, instead of Co2(CO)8 Co(OAc)2, instead of Co2(CO)8 CoBr2·H2O, instead of Co2(CO)8 2-isocyano-1,3-dimethylbenzene, instead of tert-butyl isocyanide ethyl 4-isocyanobenzoate, instead of tert-butyl isocyanide 2-isocyano-2,4,4-trimethylpentane, instead of tert-butyl isocyanide cyclohexyl isocyanide, instead of tert-butyl isocyanide n-butylisocyanide, instead of tert-butyl isocyanide 20 ℃ instead of 80 ℃ 40 ℃ instead of 80 ℃ 60 ℃ instead of 80 ℃

yield (%)b 96 trace 62 68 74 87 35 77 55 trace 75 93 48 63 85

Reaction conditions: 1a (0.5 mmol), 2a (0.75 mmol), catalyst (5 mol %), solvent (4 mL), 4 h. bIsolated yield.

With the optimized reaction conditions in hand, we first investigated the scope of various carboxylic acids (Table 2). The reactions of benzoic acids bearing electron-donating groups (-Me, -OMe) proceeded smoothly to furnish 3ba-3ea in 71-98% yields. The halogen substituted benzoic acids (-F, Cl, -Br, -I) also showed good reactivities, and the desired products 3fa-ma could be obtained in 76-85% yields. Notably, 3na could be isolated in 70% yield when 4-(trifluoromethyl)benzoic acid was subjected to the reaction with 2a. To our delight, both cinnamic acid and cyclobutanecarboxylic acid were also

ACS Paragon Plus Environment

4

Page 5 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

well tolerated during this transformation to generate the products 3oa and 3pa in good yields. The reactions of heteroaromatic carboxylic acids such as furan-3-carboxylic acid and thiophene-2-carboxylic acid with 2a also resulted in the corresponding products 3qa and 3ra in 91% and 93% yields, respectively. Unfortunately, some biologically active amino acids such as D-homoserine and L-proline failed to give the targeted products. Table 2. Substrate scope of carboxylic acidsa,b

a

Reaction conditions: 1 (0.5 mmol), 2a (0.75 mmol), Co2(CO)8 (5 mol %), MeCN (4 mL), 4 h. bIsolated yield.

ACS Paragon Plus Environment

5

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 13

We next investigated the scope of various sulfonyl azides (Table 3). It was gratifying to observe that para-substituted benzenesulfonyl azides bearing electron-donating groups (-H, -OMe) exhibited an excellent reactivity under the reaction conditions to afford the desired products 3ab-ac in 89-93% yields.

When halide substituted 4-bromobenzenesulfonyl azide and 4-iodobenzenesulfonyl azide

reacted with 1a, the desired products 3ae-af could be formed in 80-94% yields. Electron-withdrawing group (-CN) was well tolerated in the reaction (3ad). Besides, the naphthalene-2-sulfonyl azide was also proven to be a good candidate for the reaction, the corresponding product 3ag was afforded in 93% yield. In particular, acceptable yields were obtained when alkylsulfonyl azides, such as butane-1sulfonyl azide, propane-1-sulfonyl azide and ethanesulfonyl azide, were subjected to the reaction (3ahaj). Table 3. Substrate scope of azidesa,b

a

Reaction conditions: 1 (0.5 mmol), 2a (0.75 mmol), Co2(CO)8 (5 mol %), MeCN (4 mL), 4 h. bIsolated yield.

ACS Paragon Plus Environment

6

Page 7 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

In addition, our procedure could also be applied in the preparation of LY573636 (3sk; Scheme 3), which was a marketing drug and used as antitumor agent. The gram scale reaction of 1s and 2k afforded LY573636 in 60% yield under the optimized conditions.

Scheme 3. Synthesis of LY573636.

According to the literatures and our previous work, a plausible mechanism was proposed in Scheme 4.14 First, Co2(CO)8 reacts with MeCN to give intermediate A via ligand exchange. Subsequently, A reacts with isocyanide molecules to furnish Co complex B. The reaction of B and sulfonyl azide leads to intermediate C. The dissociation of N2 from the intermediate C generates the Co(I)-nitrene intermediate D, which undergoes coupling reaction between the nitrene moiety with the coordinated isocyanide ligand to produce intermediate F. Carboxylic acid attacks F to result in the intermediate G. Then, G is further transformed to intermediate H. Subsequently sulfonylcarboxamide 3 is formed by releasing tertbutyl isocyanate 3’ which could be detected by LC-MS.

ACS Paragon Plus Environment

7

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 13

Scheme 4. A plausible mechanism. In summary, we have developed a Co-catalyzed facile synthesis of sulfonyl azides with carboxylic acids to form N-sulfonylcarboxamides. This protocol is easy to handle and has no use for bases and oxidants. A wide range of N-sulfonylcarboxamides can be obtained in good to excellent yields with good compatibility of functional groups. EXPERIMENTAL SECTION General Experimental Information. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. All reactions were carried out in oil bath and using undistilled solvent, without the need of precautions to exclude air and moisture unless otherwise noted. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a BRUKER 400 MHz (1H NMR) or 300 MHz (1H NMR) and 101 MHz (13C NMR) or 75 MHz (13C NMR) spectrometer using CDCl3 or DMSO-d6 as solvent. High resolution mass spectra were obtained using BRUKER micrOTOF-Q III instrument with ESI source. General procedure for N-Sulfonylcarboxamides 3 A mixture of carboxylic acids 1 (0.5 mmol), sulfonyl azides 2 (0.75 mmol), and Co2(CO)8 (5 mol%) were added into a flask and stirred at 80 oC in 4 mL of MeCN. Then, the tert-butyl isocyanide (100 µL) was added into. Then the mixture was vigorously stirred under reflux conditions monitored by TLC analysis (about 4h). After removing the solvents in vacuo, the residue was directly purified by flash column chromatography by using ethyl acetate (EA) and petroleum ether (PE) ( EA/PE = 10 : 1 ~ 2 : 1) as eluents to afford pure product 3. N-tosylbenzamide (3aa). White solid (132 mg, 96%). IR 3306, 1699, 1450, 1419, 1163, 1158, 839, 707, 658 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 165.1, 145.1, 135.7, 133.4, 131.3, 129.6, 128.8, 128.6, 128.1, 21.7. HRMS (ESI) m/z: calcd. for C14H13NO3NaS [M+Na]+ 298.0514, found: 298.0518.

ACS Paragon Plus Environment

8

Page 9 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

4-methyl-N-tosylbenzamide (3ba). White solid (139 mg, 96%). IR 3296, 1696, 1392, 1153, 841, 657 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 7.85 (dt, J = 48.7, 9.9 Hz, 4H), 7.53 – 7.18 (m, 4H), 2.40 (s, 6H).13C NMR (101 MHz, DMSO-d6) δ 165.2, 144.1, 143.6, 136.7, 129.5, 129.1, 128.8, 128.4, 127.7, 21.1. HRMS (ESI) m/z: calcd. for C15H16NO3S [M+H]+ 290.0851, found: 290.0861. 3-methyl-N-tosylbenzamide (3ca). White solid (142 mg, 98%). IR 3292, 1696, 1394, 1151, 1078, 872, 661 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 9.79 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.69 – 7.56 (m, 2H), 7.42 – 7.25 (m, 4H), 2.40 (s, 3H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.1, 145.1, 138.6, 135.6, 134.1, 131.1, 129.6, 128.6, 128.5, 126.3, 125.1, 21.64, 21.13 ppm. HRMS (ESI) m/z: calcd. for C15H16NO3S [M+H]+ 290.0851, found: 290.0856. 2-methyl-N-tosylbenzamid (3da). White solid (140 mg, 97%). IR 3260, 1710, 1595, 1407, 1291, 1164, 1068, 840, 737, 665 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 7.98 (d, J = 7.9 Hz, 2H), 7.36 (dd, J = 27.4, 7.8 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), 2.32 (s, 3H). 13 C NMR (101 MHz, Chloroform-d) δ 166.8, 145.1, 138.0, 135.7, 132.3, 131.7, 131.6, 129.6, 128.5, 127.5, 125.9, 21.8, 20.1. HRMS (ESI) m/z: calcd. for C15H16NO3S [M+H]+ 290.0851, found: 290.0854. 4-methoxy-N-tosylbenzamide (3ea). White solid (108 mg, 71%). IR 3227, 1667, 1436, 1254, 1162, 1022, 837, 763 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.28 (s, 1H), 7.89 (t, J = 8.6 Hz, 4H), 7.44 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.6, 163.2, 144.1, 136.8, 130.6, 129.5, 127.7, 123.5, 113.9, 55.6, 38.9, 21.1. HRMS (ESI) m/z: calcd. for C15H16NO4S [M+H]+ 306.0800, found: 306.0809. 4-chloro-N-tosylbenzamide (3fa). White solid (124 mg, 80%). IR 3354, 1701, 1590, 1336, 1131, 1076, 810, 755, 662 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 7.8 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 2.36 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.3, 142.1, 139.6, 136.6, 133.9, 130.3, 128.9, 128.1, 127.4, 21.0. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M+H]+ 310.0305, found: 310.0311. 4-bromo-N-tosylbenzamide (3ga). White solid (135 mg, 76%). IR 3211, 1699, 1586, 1435, 1330, 1162, 1071, 829, 751, 660 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H), 7.90 (d, 2H), 7.81 (d, 2H), 7.70 (d, 2H), 7.44 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.7, 144.2, 136.7, 131.6, 130.9, 130.4, 129.5, 127.8, 127.2, 21.1. HRMS (ESI) m/z: calcd. for C14H13BrNO3S [M+H]+ 353.9800, found: 353.9797. 2-fluoro-N-tosylbenzamide (3ha). White solid (125 mg, 85%). IR 3321, 1702, 1613, 1426, 1346, 1164, 1080, 804, 751, 660 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.34 – 7.27 (m, 2H), 2.41 (s, 3H).13C NMR (101 MHz, DMSO-d6) δ 163.0, 159.4 (d, J = 337.3 Hz), 144.4, 136.5, 134.2 (d, J = 11.1 Hz), 130.3 (d, J = 2.0 Hz), 129.6, 127.7, 124.6 (d, J = 4.1 Hz), 121.8 (d, J = 18.2 Hz), 116.4 (d, J = 28.3 Hz), 21.1 ppm. HRMS (ESI) m/z: calcd. for C14H13FNO3S [M+H]+ 294.0600, found: 294.0606. 3-chloro-N-tosylbenzamide (3ia). White solid (125 mg, 81%). IR 3290, 1698, 1511, 1363, 1128, 916, 809, 743, 669 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 7.99 – 7.65 (m, 4H), 7.54 – 7.34 (m, 2H), 7.25 (d, J = 7.9 Hz, 2H), 2.34 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.9, 141.3, 140.9, 139.4, 132.6, 130.6, 129.8, 128.5, 128.1, 127.1, 126.9, 21.0. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M+H]+ 310.0305, found: 310.0300. 3-bromo-N-tosylbenzamide (3ja). White solid (147 mg, 83%). IR 3417, 1590, 1556, 1510, 1342, 1222, 1070, 911, 740, 663 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 8.04 (s, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 2H), 2.31 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 167.9, 143.0, 141.7, 139.7, 132.6 131.1, 129.9, 128.2, 127.2, 126.9, 121.0, 20.9. HRMS (ESI) m/z: calcd. for C14H12BrNO3NaS [M+Na]+ 375.9619, found: 375.9626. 3-iodo-N-tosylbenzamide (3ka). White solid (171 mg, 85%). IR 3266, 1705, 1677, 1430, 1233, 1159, 1072, 841, 810, 659 cm-1. 1H NMR (300 MHz, DMSO-d6) δ 12.60 (s, 1H), 8.23 (s, 1H), 7.87 (s, 4H), 7.41 (s, 2H), 7.27 (s, 1H), 2.38 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 164.6, 143.5, 141.0, 137.5, 136.7, 134.8, 130.5, 129.3, 127.7, 127.6, 94.5, 21.0. HRMS (ESI) m/z: calcd. for C14H12INO3NaS [M+Na]+ 423.9480, found: 423.9491. 2-chloro-N-tosylbenzamide (3la). White solid (124 mg, 80%). IR 3247, 1670, 1595, 1418, 1339, 1173, 1086, 892, 753, 659 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.72 (s, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.55 – 7.37 (m, 6H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.9, 144.4, 136.3, 133.9, 132.2, 129.9, 129.9, 129.6, 129.0, 127.7, 127.3, 21.1. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M+H]+ 310.0305, found: 310.0313. 2-bromo-N-tosylbenzamide (3ma). White solid (140 mg, 79%). IR 3248, 1697, 1590, 1415, 1339, 1171, 890, 659 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.69 (s, 1H), 7.89 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 7.4 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 7.1 Hz, 3H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.6, 144.5, 136.2, 136.0, 133.0, 132.2, 129.6, 129.0, 127.8, 127.7 118.6, 21.1. HRMS (ESI) m/z: calcd. for C14H12BrNO3NaS [M+Na]+ 375.9619, found: 375.9607. N-tosyl-4-(trifluoromethyl)benzamide (3na). White solid (120 mg, 70%). IR 3229, 2960, 1702, 1438, 1321, 1159, 1068, 887, 834, 660 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.96 (s, 1H), 7.63 (s, 2H), 7.33 (s, 2H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.6 , 144.3, 136.6, 135.6, 132.8, 132.4, 129.6, 129.3, 127.8, 125.5, 21.1. HRMS (ESI) m/z: calcd. for C15H13F3NO3S [M+H]+ 344.0568, found: 344.0575. N-tosylcinnamamide (3oa). White solid (130 mg, 86%). IR 3236, 3065, 2928, 1692, 1627, 1425, 1083, 989, 863, 660 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 7.88 (d, J = 8.2 Hz, 2H), 7.65 – 7.52 (m, 3H), 7.49 – 7.37 (m, 5H), 6.62 (d, J = 15.9 Hz, 1H), 2.40 (s, 3H). 13C NMR

ACS Paragon Plus Environment

9

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 13

(101 MHz, DMSO-d6) δ 163.5, 144.1, 143.6, 136.7, 133.9, 130.6 , 129.5, 129.0, 128.1 , 127.7, 119.2, 21.1. HRMS (ESI) m/z: calcd. for C16H15NO3NaS [M+Na]+ 324.0670, found: 324.0664. N-tosylcyclobutanecarboxamide (3pa). White solid (94 mg, 74%). IR 3250, 1724, 1595, 1433, 1322, 1171, 1132, 1044, 865, 658 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 11.87 (s, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 3.08 (t, J = 8.4 Hz, 1H), 2.40 (s, 3H), 2.04 – 1.95 (m, 4H), 1.85 (q, J = 9.2, 8.8 Hz, 1H), 1.68 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ 172.9, 144.1, 136.6, 129.5, 127.5, 38.5, 23.9, 21.1, 17.4. HRMS (ESI) m/z: calcd. for C12H16NO3S [M+H]+ 254.0851, found: 254.0858. N-tosylfuran-3-carboxamide (3qa). White solid (120 mg, 91%). IR 3267, 2963, 1701, 1569, 1419, 1339, 1163, 1121, 1019, 962, 869, 660 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 8.11 (s, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.41 – 7.38 (m, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.76 (dd, J = 1.9, 0.8 Hz, 1H), 2.44 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 159.9, 147.3, 145.5, 144.5, 135.5, 129.8, 128.6, 120.6, 108.9, 21.8. HRMS (ESI) m/z: calcd. for C12H16NO3S [M+ Na]+ 288.0306, found: 288.0307. N-tosylthiophene-2-carboxamide (3ra). White solid (131 mg, 93%). IR 3246, 1680, 1594, 1430, 1323, 1254, 1162, 1070, 1025, 863, 725, 656 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 3.8 Hz, 1H), 7.57 (d, J = 4.9 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.08 – 6.99 (m, 1H), 2.43 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 159.3, 145.4, 136.2, 135.6, 133.8, 131.4, 129.8, 128.7, 128.4, 21.8. HRMS (ESI) m/z: calcd. for C12H16NO3S [M+ Na]+ 304.0078, found: 304.0077. N-(phenylsulfonyl)benzamide (3ab). White solid (122 mg, 93%). IR 3280, 1697, 1451, 1420, 1335, 1175, 1063, 1027, 897, 834 cm-1. 1H NMR (300 MHz, DMSO-d6) δ 12.58 (s, 1H), 8.03 (d, J = 7.1 Hz, 2H), 7.88 (d, J = 7.3 Hz, 2H), 7.76 – 7.71 (m, 1H), 7.70 – 7.62 (m, 3H), 7.61 (s, 1H), 7.50 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 165.5, 139.5, 133.7, 133.3, 131.5, 129., 128.6, 128.4, 127.7. HRMS (ESI) m/z: calcd. for C13H12NO3S [M+H]+ 262.0538, found: 262.0536. N-((4-methoxyphenyl)sulfonyl)benzamide (3ac). White solid (130 mg, 89%).IR 3269, 1701, 1686, 1579, 1411, 1335, 1243, 1151, 890, 832, 660 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.44 (s, 1H), 7.99 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 7.7 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 3.86 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.3, 163.1, 133.2, 131.6, 130.9, 130.2, 128.6, 128.4 , 114.2, 55.7. HRMS (ESI) m/z: calcd. for C14H14NO4S [M+H]+ 292.0644, found: 292.0647. N-((4-cyanophenyl)sulfonyl)benzamide (3ad). White solid (102 mg, 71%). IR 3263, 2231, 1697, 1416, 1351, 1165, 1058, 1028, 890, 704, 628 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 8.16 (q, J = 8.2 Hz, 4H), 7.88 (d, J = 7.8 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.59 – 7.43 (m, 2H). 13 C NMR (101 MHz, DMSO-d6) δ 165.8, 143.5, 133.5, 133.3, 131.3, 128.6, 128.6, 128.4, 117.6, 116.0. HRMS (ESI) m/z: calcd. for C14H11N2O3S [M+H]+ 287.0490, found: 287.0487. N-((4-bromophenyl)sulfonyl)benzamide (3ae). White solid (136 mg, 80%). IR 3286, 1692, 1571, 1412, 1340, 1156, 1058, 833, 737, 700cm -1 1 . H NMR (400 MHz, DMSO-d6) δ 12.63 (s, 1H), 8.11 (dd, J = 8.6, 5.1 Hz, 2H), 7.89 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 4H). 13C NMR (75 MHz, DMSO-d6) δ 165.6, 138.7, 133.4, 132.3, 131.3, 129.7, 128.6, 128.5, 127.7. HRMS (ESI) m/z: calcd. f or C13H10BrNNaO3S [M+Na]+ 361.9462, found: 361.9458. N-((4-iodophenyl)sulfonyl)benzamide (3af). White solid (182 mg, 94%). IR 3291, 1693, 1566, 1451, 1346, 1163, 1062, 884, 685 cm-1. 1H NMR (400 MHz, Chloroform-d) δ 9.60 (s, 1H), 7.84 (dt, J = 15.2, 7.9 Hz, 6H), 7.54 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.7, 138.4, 138.1, 133.8, 130.9, 130.0, 129.0, 128.1, 102.3. HRMS (ESI) m/z: calcd. for C13H11INO3S [M+H]+ 387.9504, found: 387.9511. N-(naphthalen-2-ylsulfonyl)benzamide (3ag). White solid (145 mg, 93%). IR 3246, 2959, 2922, 2852, 1689, 1451, 1411, 1344, 1254, 1156, 892, 793, 747, 652 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.66 (s, 1H), 8.71 (s, 1H), 8.26 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 8. 07 (d, J = 8.0 Hz, 1H), 7.99 (dd, J = 8.7, 1.8 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.79 – 7.67 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 165.7, 136.7, 134.6, 133.2, 131.8, 131.5, 129.5, 129.3, 129.3, 129.2, 128.6, 128.4, 127.9, 127.7, 1 22.6. HRMS (ESI) m/z: calcd. for C17H14NO3S [M+H]+ 312.0694, found: 312.0701. N-(ethylsulfonyl)benzamide (3ah). White solid (89 mg, 83%). IR 3226, 3072, 2980, 2939, 1682, 1431, 1342, 1153, 894, 720 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.04 (s, 1H), 7.94 (d, J = 7.3 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 3.52 (q, J = 7.4 Hz, 2H), 1.26 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 166.5, 133.3, 131.6, 128.6, 128.5, 47.0, 7.8. HRMS (ESI) m/z: calcd. for C9H11NO3NaS [M+Na]+ 236.0357, found: 236.0370. N-(propylsulfonyl)benzamide (3ai). White solid (78 mg, 69%). IR 3158, 2969, 2879, 1657, 1454, 1347, 1263, 1150, 982, 797, 715, 688, 631 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 12.07 (s, 1H), 7.99 – 7.89 (m, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 3.55 – 3.46 (m, 2H), 1.74 (h, J = 7.5 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 166.5, 133.2, 131.7, 128.6, 128.5, 54.0, 16.8, 12.5. HRMS (ESI) m/z: calcd. for C10H13NO3NaS [M+Na]+ 250.0514, found: 250.0530. N-(butylsulfonyl)benzamide (3aj). White solid (87 mg, 72%). IR 3054, 2966, 2872, 1503, 1385, 1213, 1088, 909, 853, 715, 684 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 8.01 – 7.93 (m, 2H), 7.46 – 7.30 (m, 3H), 3.12 – 3.04 (m, 2H), 1.68 – 1.53 (m, 2H), 1.35 (q, J = 7.4 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.4, 138.7, 130.3, 128.4, 127.5, 51.6, 25.8, 21.3, 13.8. HRMS (ESI) m/z: calcd. for C11H16NO3S [M+H]+ 242.0851, found: 242.0854. N-((5-bromothiophen-2-yl)sulfonyl)-2,4-dichlorobenzamide (3sk). White solid (158 mg, 76%). IR 3311, 3097, 1687, 1395, 1165, 1085, 971, 812, 755, 671 cm-1. 1H NMR (400 MHz, DMSO-d6) δ 7.73 (dd, J = 9.3, 2.9 Hz, 2H), 7.58 (d, J = 8.3 Hz, 1H), 7.52 (dd, J = 8.3, 1.9 Hz, 1H), 7.43 (d, J = 4.1 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 164.4, 139.9, 136.3, 135.1, 132.3, 131.4, 131.3, 130.7, 129.6, 127.6, 121.2. HRMS (ESI) m/z: calcd. for C11H7BrCl2NO3S2 [M+H]+ 413.8428, found: 413.8449.

ACS Paragon Plus Environment

10

Page 11 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

ACKNOWLEDGMENT We gratefully acknowledge the National Natural Science Foundation of China (21672157, 21772137, and 21542015), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), PAPD, the project of scientific and technologic infrastructure of Suzhou (SZS201708), and Soochow University for financial support, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials. ASSOCIATED CONTENT Supporting Information Available. The copies of 1H and 13C NMR spectra of the products. This material is available free of charge via the Internet at http://pubs.acs.org. REFERENCES (1)

Ji, W.-W.; Lin, E.; Li, Q.-J.; Wang, H.-G. Heteroannulation enabled by a bimetallic Rh(III)/Ag(I) relay catalysis:

application in the total synthesis of aristolactam BII. Chem. Commun. 2017, 53, 5665-5668. (2)

Lobb, K. L.; Hipskind, P. A.; Aikins, J. A.; Alvarez, E.; Cheung, Y.; Considine, E. L.; De Dios, A.; Durst, G. L.;

Ferritto, R.; Grossman, C. S.; Giera, D. D.; Hollister, B. A.; Huang, Z.; Iversen, P. W.; Law, K. L.; Li, T.; Lin, H.; L opez, B.; Lopez, J. E.; Cabrejas, L. M. M.; McCann, D. J.; Molero, V.; Reilly, J. E.; Richett, M. E.; Shih, C.; Teiche -r, B.; Wikel, J. H.; White, W. T.; Mader, M. Acyl Sulfonamide Anti-Proliferatives: Benzene Substituent StructureActivity Relationships for a Novel Class of Antitumor Agents. J. Med. Chem. 2004, 47, 5367-5380. (3)

Hu, X.; Sun, J.; Wang, H.-G.; Manetsch, R. Bcl-XL-Templated Assembly of Its Own Protein-Protein Interaction Modulator from Fragments Decorated with Thio Acids and Sulfonyl Azides. J. Am. Chem. Soc. 2008, 130, 13820-1 3821.

(4)

(a) Yan, S.; Appleby, T.; Larson, G.; Wu, J. Z.; Hamatake, R. K.;Hong, Z.; Yao, N. Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crysta -llographic study. Bioorg. Med. Chem. Lett. 2007, 17, 1991-1995. (b) Koroniak, L.; Ciustea, M.; Gutierrez, J. A.; Ri -chards, N. G. Synthesis and Characterization of an N-Acylsulfonamide Inhibitor of Human Asparagine Synthetase. J. Org. Lett. 2003, 5, 2033-2036. (c) Pinto, I. L.; Boyd, H. F.; Hickey, D. M. B. Natural Product Derived Inhibitors of Lipoprotein Associated Phospholipase A2, Synthesis and Activity of Analogues of SB-253514. Bioorg. Med. Che -m. Lett. 2000, 10, 2015-2017. (d) Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. Pestalazines and Pesta

ACS Paragon Plus Environment

11

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 13

-lamides, Bioactive Metabolites from the Plant Pathogenic Fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 186 1-1865. (e) Lavrard, H.; Rodriguez, F.; Delfourne, E. Design of granulatimide and isogranulatimide analogues as po -tential Chk1 inhibitors: Study of amino-platforms for their synthesis. Bioorg. Med. Chem. 2014, 22, 4961-4967. (5)

(a) De Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029-12122. (b) Wu, X.-H.; Hu, L.-Q. Efficient Amidation from Carboxylic Acids and Azides vi

a Selenocarboxylates: Application to the Coupling of Amino Acids and Peptides with Azides. J. Org. Chem. 2007, 72, 765-774. (6)

Yates, M. H.; Kallman, N. J.; Ley, C. P.; Wei, J. N. Development of an Acyl Sulfonamide Anti-Proliferative Agent, LY573636 · Na. Org. Process Res. Dev. 2009, 13, 255-262.

(7)

(a) Massah A. R.; Dabagh M.; Shahidi S.; Javaherian Naghash H.; Momeni A.R.; Aliyan H. P2O5/SiO2 as an Effic -ient and Recyclable Catalyst for N-Acylation of Sulfonamides under Heterogeneous and Solvent-free Conditions. J . Iran. Chem. Soc. 2009, 6, 405-411. (b) Fu, S.-M.; Lian, X.-Y.; Ma, T. -W.; Chen, W. H.;Zeng W. TiCl4-promoted direct N-acylation of sulfonamide with carboxylic ester. Tetrahedron Lett. 2010, 51, 5834-5837.

(8)

Wakeham, R. J.; Taylor, J. E.; Bull, S. D.; Morris, J. a.; Williams, J. M. Iodide as an Activating Agent for Acid Chlorides in Acylation Reactions. J. Org. Lett. 2013, 15, 702-705.

(9)

(a) Zheng, C.-G.; Liu, X.; Ma, C. Organocatalytic Direct N‑Acylation of Amides with Aldehydes under Oxidativ e

Conditions. J. Org. Chem. 2017, 82, 6940-6945. (b) Vora, H. U.; Rovis, T. Nucleophilic Carbene and HOAt Relay Catalysis in an Amide Bond Coupling: An Orthogonal Peptide Bond Forming Reaction. J. Am. Chem. Soc. 2007, 129, 13796-13797. (10)

Manas J.; Prodeep P. Unexpected C-C bond cleavage of α-nitroketone in the presence of TsNBr2: A new pathwa

-y for C-N bond formation. Syn. Commu. 2016, 46, 257-262. (11)

Chang J. W. W.; Chan P. W. H. Highly Efficient Ruthenium(II) Porphyrin Catalyzed Amidation of Aldehydes.

Angew. Chem. Int. Ed. 2008, 47, 1138-1140. (12)

Kosal A. D.; Wilson E. E.; Ashfeld B. L. Direct Acyl Substitution of Carboxylic Acids: A Chemoselective O- to N-Acyl

Migration in the Traceless Staudinger Ligation. Chem. Eur. J. 2012, 18, 14444-14453.

(13)

(a) Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.; Woutersen, S.; Troeppner, O.; Ivanović-Bur

mazović, I.; Lu, H.-J.; Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schooneveld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B. Characterization of Porphyrin-Co(III)-‘Nitrene Radical’ Species Relevant in Catalytic Nitrene Tran -sfer Reactions. J. Am. Chem. Soc. 2015, 137, 5468-5479. (b) Paul, N. D.; Mandal, S.; Otte, M.; Cui, X.; Zhang, X. P.; de Bruin, B. Metalloradical Approach to 2H‑Chromenes. J. Am. Chem. Soc. 2014, 136, 1090-1096. (c) Zhu, T.-

ACS Paragon Plus Environment

12

Page 13 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Cobalt-Catalyzed Intermolecular Oxidative Isocyanide Insertion with Two A mines: An Approach to Guanidines. Adv. Synth. Catal. 2015, 357, 823-829.

(14)

(a) Gu, Z.-Y.; Liu, H.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Synthesis of Sulfonyl G

uanidines via Nitrene Radical Coupling with Isonitriles: A Combined Experimental and Computational Study. ACS Catal. 2017, 7, 3893−3899. (b) Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Sulfonyl Azides in Alcohols: Synthesis of Sulfonyl Isoureas. J. Org. Chem. 2017, 82, 7913 −7919.

ACS Paragon Plus Environment

13