Organometallics 2000, 19, 4887-4898
4887
Cohydrolysis of Organotin Chlorides with Trimethylchlorosilane. Okawara’s Pioneering Work Revisited and Extended† Jens Beckmann, Klaus Jurkschat,* Ulrich Kaltenbrunner, Stephanie Rabe, and Markus Schu¨rmann Lehrstuhl fu¨ r Anorganische Chemie II der Universita¨ t Dortmund, 44221 Dortmund, Germany
Dainis Dakternieks* and Andrew Duthie Centre for Chiral and Molecular Technologies, Deakin University, Geelong 3217, Australia
Dirk Mu¨ller Institut fu¨ r Angewandte Chemie, Rudower Chaussee 5, 12484 Berlin, Germany Received July 10, 2000
The synthesis of the stannasiloxanes {[R2(Me3SiO)Sn]2O}2 (1, R ) Me; 2, R ) Et), [R2(Me3SiO)Sn]2O (8, R ) Me3SiCH2; 9, R ) t-Bu), R2Sn(OSiMe3)2 (3, R ) i-Pr; 4, R ) Me3SiCH2; 5, R ) t-Bu; 6, R ) Cp(CO)3W; 7, R ) Cp(CO)2Fe), and [Cp(CO)2Fe]2Sn(OSiPh3)2 (7a), the monoorganotin trichloride Me3SiCH2SnCl3 (13), and the organotin oxocluster (Me3SiCH2Sn)12O14(OH)6Cl2 (14) is reported. Their identity was confirmed by both solution and solid state multinuclear NMR spectroscopy and in the case of 1, 2, 6, 7a, and 14 also by singlecrystal X-ray analyses. A spinning sideband analysis of the 119Sn MAS spectra reveals the coordination geometries of the tin atoms in the stannasiloxanes 1 and 2 to be different from those of related diorganotin oxides (R2SnO)n (R ) Me, Et). In solution, 1 and 2 exhibit an intramolecular exchange process as well as monomer-dimer equilibria. The reaction of 4 with cyclo-(t-Bu2SnO)3 and of cyclo-[(Me3SiCH2)2SnO]3 with cyclo-(t-Bu2SnO)3 provided evidence for the formation in situ of the mixed tetraorganodistannoxane t-Bu2(Me3SiO)SnOSn(OSiMe3)(CH2SiMe3)2 (10) and of the hexaorganotristannoxanes cyclo-[(Me3SiCH2)2Sn(OSnt-Bu2)2O] (11) and cyclo-{t-Bu2Sn[OSn(CH2SiMe3)2]2O} (12). Introduction During the past four decades dimeric tetraorganodistannoxanes of the type [R2(X)SnOSn(Y)R′2]2 (X, Y ) halogen, OH, OR, OSiMe3, OOCR, OSP(OR)2, NO3, N3, NCS, SH, OReO3; R, R′ ) alkyl, aryl) have attracted considerable attention because of their unique structural features and questions associated with this.1-5 They are also of interest as catalysts for a variety of † This work contains part of the Ph.D. theses of J. Beckmann and S. Rabe, Dortmund University, 1999, and of the intended Ph.D. thesis of U. Kaltenbrunner. (1) (a) Okawara, R.; White, D. G.; Fujitani, K.; Sato, H. J. Am. Chem. Soc. 1961, 83, 1342. (b) Okawara, R. Angew. Chem. 1961, 73, 683. (c) Okawara, R. Proc. Chem. Soc. (London) 1961, 383. (d) Okawara, R.; Wada, M. J. Organomet. Chem. 1963, 1, 81. (e) Alleston, D. L.; Davies, A. G.; Hancock, M.; White R. F. M. J. Chem. Soc. 1963, 5469. (f) Alleston, D. L.; Davies, A. G.; Hancock, M. J. Chem. Soc. 1964, 5744. (g) Considine, W. J.; Baum, G. A.; Jones, R. C. J. Organomet. Chem. 1965, 3, 308. (h) Yasuda, K.; Matsumoto, H.; Okawara, R. J. Organomet. Chem. 1966, 6, 528. (i) Wada, M.; Okawara, R. J. Organomet. Chem. 1967, 8, 261. (j) Maeda, Y.; Okawara, R. J. Organomet. Chem. 1967, 10, 247. (2) (a) Davies, A. G.; Harrison, P. G. J. Chem. Soc. (C) 1970, 2036. (b) Davies, A. G.; Smith, L.; Smith, P. J.; McFarlane, W. J. Organomet. Chem. 1971, 29, 245. (c) Chu, C. K.; Murray, J. D. J. Chem. Soc. (A) 1971, 360. (d) Chow, Y. M. Inorg. Chem. 1971, 10, 673. (e) Matsuda, H.; Mori, F.; Kashiwa, A.; Matsuda, S.; Kasai, N.; Jitsumori, K. J. Organomet. Chem. 1972, 34, 341. (f) Graziani, R.; Bombieri, G.; Forsellini, E.; Furlan, P.; Peruzzo, V.; Tagliavini, G. J. Organomet. Chem. 1977, 125, 43.
organic reactions such as transesterifications, acylations of alcohols, or the cleavage of silyl ethers.6 In the solid state, these dimeric tetraorganodistannoxanes contain characteristic Sn4O2X2Y2 structural motifs with ladderlike or stairwise arrangements (Chart 1).1d,3a-c In (3) (a) Harrison, P. G.; Begley, M. J.; Molloy, K. C. J. Organomet. Chem. 1980, 186, 213. (b) Puff, H.; Friedrichs, E.; Visel, F. Z. Anorg. Allg. Chem. 1981, 477, 50. (c) Puff, H.; Bung, I.; Friedrichs, E.; Jansen, A. J. Organomet. Chem. 1983, 254, 23. (d) Graziani, R.; Casellato, U.; Plazzogna, G. Acta Crystallogr. 1983, C39, 1188. (e) Vollano, J. F.; Day, R. O.; Holmes, R. R. Organometallics 1984, 3, 745. (f) Dakternieks, D.; Gable, R. W.; Hoskins, B. F. Inorg. Chim. Acta 1984, 85, L43. (g) Otera, J.; Yano, T.; Nakashima, K.; Okawara, R. Chem. Lett. 1984, 2109. (h) Yano, T.; Nakashima, K.; Otera, J.; Okawara, R. Organometallics 1985, 4, 1591. (i) Lockhart, T. P.; Manders, W. F.; Holt, E. M. J. Am. Chem. Soc. 1986, 108, 6611. (j) Narula, S. P.; Bharadwaj, S. K.; Sharma, H. K.; Mairesse, G.; Barbier, P.; Nowogrocki, G. J. Chem. Soc., Dalton Trans. 1988, 1719. (k) Gross, D. C. Inorg. Chem. 1989, 28, 2355. (l) Parulekar, C. S.; Jain, V. K.; Das, T. K.; Gupta, A. R.; Hoskins, B. F.; Tiekink, E. R. T. J. Organomet. Chem. 1989, 372, 193. (4) (a) Tiekink, E. R. T. Acta Crystallogr. 1991, C47, 661. (b) Vatsa, C.; Jain, V. K.; Kesavadas, T.; Tiekink, E. R. T. J. Organomet. Chem. 1991, 408, 157. (c) Vatsa, C.; Jain, V. K. Das, T. K. J. Organomet. Chem. 1991, 418, 329. (d) Tiekink. E. R. T. Appl. Organomet. Chem. 1991, 5, 1. (e) Jain, V. K.; Mokal, V. B.; Sandor, P. Magn. Reson. Chem. 1992, 30, 1158. (f) Flo¨ck, O. R.; Dra¨ger, M. Organometallics 1993, 12, 4623. (g) Schoop, T.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Organometallics 1993, 12, 571. (h) Kresinski, R. A.; Staples, R. J.; Fackler, J. P. Acta Crystallogr. 1994, C50, 40. (i) Mokal, V. B.; Jain, V. K.; Tiekink, E. R. T. J. Organomet. Chem. 1994, 471, 53. (j) Cox, M. J.; Tiekink, E. R. T. Z. Kristallogr. 1994, 209, 622. (k) Bonetti, J.; Gondard, C.; Pe´tiaud, R.; Llauro, M.-F.; Michel, A. J. Organomet. Chem. 1994, 481, 7.
10.1021/om000588i CCC: $19.00 © 2000 American Chemical Society Publication on Web 10/21/2000
4888
Organometallics, Vol. 19, No. 23, 2000 Chart 1
general, the tin atoms in these compounds are pentacoordinated. In concentrated solutions the dimers are preserved. However, redistribution reactions of dimeric tetraorganodistannoxanes and molecular weight measurements in diluted solutions provide evidence for their partial dissociation in solution.1j,3k,5e,n Moreover, for the symmetrically substituted tetrabutyldistannoxanes [Bu2(X)SnOSn(X)Bu2]2 (X ) OOCMe, OOC(2-NH2-C6H4)) 119Sn NMR spectroscopy in solution indicates monomer dimer equilibria which are slow on the NMR time scale.3h,j The 119Sn NMR chemical shifts reported for the monomeric species Bu2(X)SnOSn(Y)Bu2 (X ) Y) OOCMe, OOC(2-NH2-C6H4)) of -149 and -161 ppm, respectively, suggest the tin atoms in these compounds to remain pentacoordinated. This observation can tentatively be traced to the chelating capacity of the carboxylate ligands. (5) (a) Tiekink, E. R. T.; Gielen, M.; Bouhdid, A.; Biesemans, M.; Willem, R. J. Organomet. Chem. 1995, 494, 247. (b) Gielen, M.; Bouhdid, A.; Willem, R.; Bregadze, V. I.; Ermanson, L. V.; Tiekink, E. R. T. J. Organomet. Chem. 1995, 501, 277. (c) Ng, S. W.; Kumar Das, V. G. Acta Crystallogr. 1995, C51, 1774. (d) Narula, S. P.; Kaur, S.; Shankar, R.; Bharadwaj, S. K.; Chadha, R. K. J. Organomet. Chem. 1996, 506, 181. (e) Houghton, R. P.; Mulvaney, A. W. J. Organomet. Chem. 1996, 517, 107. (f) Teoh, S.-G.; Looi, E.-S.; Teo, S.-B.; Ng, S. W. J. Organomet. Chem. 1996, 509, 57. (g) Yu, Z. K.; Wang, S. H.; Yan, S. G. Heteroatom. Chem. 1996, 7, 3. (h) Danish, M.; Ali, S.; Mazhar, M. Heteroatom Chem. 1996, 7, 233. (i) Lacroix, C.; Bousmina, M.; Carreau, P. J.; Llauro, M. F.; Pe´tiaud, R.; Michel, A. Polymer 1996, 37, 2949. (j) Dakternieks, D.; Jurkschat, K.; van Dreumel, S.; Tiekink, E. R. T. Inorg. Chem. 1997, 36, 2023. (k) Blair, J. A.; Howie, A.; Wardell, J. L.; Cox, P. J. Polyhedron 1997, 16, 881. (l) Ribot, F.; Sanchez, C.; Meddour, A.; Gielen, M.; Tiekink, E. R. T.; Biesemans, M.; Willem, R. J. Organomet. Chem. 1998, 552, 177. (m) Suciu, E. N.; Kuhlmann, B.; Knudsen, G. A.; Michaelson, R. C. J. Organomet. Chem. 1998, 556, 41. (n) Primel, O.; Llauro, M.-F.; Pe´tiaud, R.; Michel, A. J. Organomet. Chem. 1998, 558, 19. (o) Beckmann, J.; Biesemans, M.; Hassler, K.; Jurkschat, K.; Martins, J. C.; Schu¨rmann, M.; Willem, R. Inorg. Chem. 1998, 37, 4891. (p) Gimenez, J.; Michel, A.; Pe´tiaud, R.; Llauro, M.-F. J. Organomet. Chem. 1999, 575, 286. (q) Jain, V. K.; Mokal, V. B.; Satyanarayana C. V. V. Indian J. Chem. 1999, A38, 249. (6) (a) van der Weij, F. W. J. Polymer Sci. 1981, 19, 3063. (b) Otera, J.; Yano, T.; Kawabata, A.; Nozaki, H. Tetrahedron Lett. 1986, 27, 2383. (c) Otera, J.; Yano, T.; Himeno, Y.; Nozaki, H. Tetrahedron Lett. 1986, 27, 4501. (d) Otera, J.; Nozaki, H. Tetrahedron Lett. 1986, 27, 5743. (e) Otera, J.; Ioka, S.; Nozaki, H. J. Org. Chem. 1989, 54, 4013. (f) Otera, J.; Dan-Oh, N.; Nozaki, H. J. Org. Chem. 1991, 56, 5307. (g) Otera, J.; Dan-Oh, N.; Nozaki, H. J. Chem. Soc., Chem. Commun. 1991, 1742. (h) Otera, J.; Dan-Oh, N.; Nozaki, H. Tetrahedron 1992, 48, 1449. (i) Otera, J. Chem. Rev. 1993, 93, 1449. (j) Laas, H. J.; Halpaap, R.; Pedain, J. J. Prakt. Chem. 1994, 336, 185. (k) Hori, Y.; Yamaguchi, A.; Hagiwara, T. Polymer 1995, 36, 4703. (l) Espinasse, I.; Pe´tiand, R.; Llauro, M. F.; Michel, A. Int. J. Polym. Anal. Charact. 1995, 1, 137. (m) Roelens, S. J. Org. Chem. 1996, 61, 5257. (n) Morcuende, A.; Ors, M.; Valverde, S.; Herrado´n, B. J. Org. Chem. 1996, 61, 5264. (o) Furla´n, R. L. E.; Mata, E. G.; Mascaretti, O. A. Tetrahedron Lett. 1996, 37, 5229. (p) Otera, J.; Kawada, K.; Yano, T. Chem. Lett. 1996, 225. (q) Orita, A.; Mitsutome, A.; Otera, J. J. Org. Chem. 1998, 63, 2420. (r) Sakamoto, M.; Satoh, K.; Nagano, M.; Nagano, M.; Tamura, O. J. Chem. Soc., Perkin Trans. 1 1998, 3389. (s) Orita, A.; Sakamoto, K.; Hamada, Y.; Mitsutome, A.; Otera, J. Tetrahedron 1999, 55, 2899. (t) Hori, Y.; Hagiwara, T. Int. J. Bio. Macromol. 1999, 25, 237. (u) Mascaretti, O. A.; Furlan, R. L. E. Aldrichim. Acta 1997, 30, 55.
Beckmann et al.
The origin of the catalytic activity of tetraorganodistannoxanes is the subject of controversial discussion6 and, according to a recent work, may be associated with the presence of monomeric tetraorganodistannoxanes.5e So far, only two examples of monomeric tetraorganodistannoxanes R2(X)SnOSn(X)R2 (R ) CH(SiMe3)2, X ) OH; R ) 2,4,6-(CF3)3C6H2, X ) Cl) with tetracoordinated tin atoms are known, and these are stabilized by bulky R groups.7 No studies concerning the catalytic activity are reported for these compounds. In a recent series of papers we reported alkylidenebridged double and triple ladder compounds8 which show lower catalytic activity in acylation reactions as compared with simple [Bu2(Cl)SnOSn(Cl)Bu2]2.8c This decreased activity was attributed to the higher kinetic stability of the former compounds. In previous publications, Okawara et al. described the cohydrolysis of R2SnCl2 with Me3SiCl, providing dimeric tetraorganodistannoxanes of the type [R2(Me3SiO)SnOSn(OSiMe3)R2]2 (R ) Me, Et). These compounds were only partially characterized at that time,1a-c and we now describe the reinvestigation of these compounds including X-ray structure analyses and both solution and solid state NMR spectroscopy. Moreover, we also describe the role of the substituents attached to tin, and we have extended the cohydrolysis method reported by Okawara et al.1a-c to other diorganotin dichlorides and Me3SiCH2SnCl3 to give diorganostannasiloxanes of the type R2Sn(OSiMe3)2 (R ) i-Pr, CH2SiMe3, t-Bu, W(CO)3Cp, Fe(CO)2Cp) and the tin-oxo cluster compound (Me3SiCH2Sn)12O14(OH)6Cl2. To elucidate the reactivity of selected compounds, redistribution reactions were performed, the results of which are also reported. Results and Discussion The cohydrolysis of diorganotin dichlorides R2SnCl2 (R ) Me, Et, i-Pr, CH2SiMe3, t-Bu, Cp(CO)3W,9,10 Cp(CO)2Fe) with an excess of Me3SiCl in aqueous ammonia/hexane was performed according to a method slightly modified from that published by Okawara et al.1a The weakly basic reaction conditions give rise to in situ formation of Me3SiOH, which subsequently reacts with the organotin intermediates. Depending on the identity of R, either dimeric tetraorganodistannoxanes [R2(Me3SiO)SnOSn(OSiMe3)R2]2 (1, R ) Me; 2, R ) Et) or bis(trimethylsiloxy) diorganotin compounds R2Sn(OSiMe3)2 (3, R ) i-Pr; 4, R ) CH2SiMe3; 5, R ) t-Bu; 6, R ) Cp(CO)3W; 7, R ) Cp(CO)2Fe) were obtained in almost quantitative yield (Scheme 1). Compounds 1 and 2 are colorless crystalline solids, and 6 and 7 are orange crystalline solids, whereas compounds 3-5 are distillable oils. Unlike comparable (7) (a) Edelman, M. A.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1990, 1116. (b) Brooker, S.; Edelmann, F. T.; Stalke, D. Acta Crystallogr. 1991, C47, 2527. (8) (a) Dakternieks, D.; Jurkschat, K.; Schollmeyer, D.; Wu, H. Organometallics 1994, 13, 4121. (b) Mehring, M.; Schu¨rmann, M.; Reuter, H.; Dakternieks, D.; Jurkschat, K. Angew. Chem. 1997, 109, 1150. (c) Mehring, M.; Schu¨rmann, M.; Paulus, I.; Horn, D.; Jurkschat, K.; Orita, A.; Otera, J.; Dakternieks, D.; Duthie, A. J. Organomet. Chem. 1999, 574, 176. (d) Schulte, M.; Schu¨rmann, M.; Dakternieks, D.; Jurkschat, K. Chem. Commun. 1999, 1291. (9) Nesmeyanov, A. N.; Kolobova, N. E.; Zakharova, M. Ya; Lokshin, B. V.; Anisimov, K. N. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1969, 471. (10) Jurkschat, K.; Kaltenbrunner, U.; Schu¨rmann, M. Main Group Met. Chem., accepted.
Cohydrolysis of Organotin Chlorides
Organometallics, Vol. 19, No. 23, 2000 4889
Scheme 1
diorganotin alkoxides,11 compounds 1-7 are remarkably stable toward moisture. However, upon contact with moist air over several weeks, compound 2 slowly transforms to an amorphous insoluble material, which was identified by elemental analysis and IR spectroscopy as diethyltin oxide. The molecular structures of compounds 1 and 2 are depicted in Figures 1 and 2, respectively, and crystallographic data are given in Table 1. Selected bond lengths and angles are listed in Table 2. Both 1 and 2 are ladder-type centrosymmetric dimers with a center of inversion at 0.5, 0.5, 0.5 for 1 and at 0, 0, 0 for 2. The Sn4O6 structural motif is planar to (0.018(3) Å in 1 and to (0.019(3) Å in 2. Each tin atom exhibits a distorted trigonal bipyramidal geometry with the equatorial positions being occupied by two carbons (C(1), C(11) for Sn(1); C(21), C(31) for Sn(2)) and one oxygen (O(2)) and the axial positions by two oxygens (O(1), O(2a) for Sn(1); O(1), O(3) for Sn(2)). The trigonal bipyramidal configuration is more distorted at Sn(2) (geometrical goodness12,5j,o ∆∑(θ) 89.4 for 1, 87.2 for 2). The Sn(1)-O(1)-Sn(2) bridges are strongly asymmetric, with Sn(1)-O(1) and Sn(2)-O(1) distances of 2.171(5) (1)/2.146(4) (2) and 2.419(5) (1)/2.480(4) Å (2), respectively. The asymmetry of the axial Sn(2)-O(1) and Sn(2)-O(3) bonds amounts to 0.39 Å for 1 and 0.472 Å for 2, which is greater than the asymmetries of 0.3440.024 Å, as reported for axial Sn-Cl bonds of related tetraorganodichlorodistannoxanes.5j The intramolecular Sn(1)‚‚‚O(3a) distances of 3.462(6) (1) and 3.528(4) Å (2) are slightly shorter than the sum of the van der Waals radii13a of oxygen (1.50 Å) and tin (2.20 Å), which is reflected in the opening of the C(1)-Sn(1)-C(11) bond angles of 130.3(4)° (1) and 128.9(2)° (2). The very weak but different Sn(1)‚‚‚O(3a) contacts cause in turn the Sn(2)-O(3)-Si(2) bond angles in 1 and 2 to differ by 11.5°. The Si(1)-O(1) distances of 1.621(6) (1) and 1.630(4) Å (2) involving the bridging oxygens are longer than the Si(2)-O(3) distances of 1.579(6) (1) and 1.593(5) Å (2) involving nonbridging oxygens. This is a straight(11) Beckmann, J.; Jurkschat, K.; Mahieu, B.; Schu¨rmann, M. Main Group Metal Chem. 1998, 21, 113. (12) (a) Dra¨ger, M. J. Organomet. Chem. 1983, 251, 209. (b) Kolb, U.; Beuter, M.; Dra¨ger, M. Inorg. Chem. 1994, 33, 4522. (13) (a) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Anorganische Chemie, Prinzipien von Struktur und Reaktivita¨ t; de Gruyter: Berlin, New York, 1995; 2. Auflage, p 335. (b) Kircher, P.; Huttner, G.; Heinze, K.; Zsolnai, L. Eur. J. Inorg. Chem. 1998, 1057. (c) Biryukov, B. P.; Struchkov, Yu. T. Zh. Struct. Chim. 1968, 9, 488.
Figure 1. General view (SHELXTL) of a molecule of 1 showing 30% probability displacement ellipsoids and the atom numbering (symmetry transformations used to generate equivalent atoms: a ) -x + 1, -y + 1, -z + 1).
Figure 2. General view (SHELXTL) of a molecule of 2 showing 30% probability displacement ellipsoids and the atom numbering (symmetry transformations used to generate equivalent atoms: a ) -x, -y, -z).
forward example of a Si-O bond activation by a Lewis acidic tin moiety. The molecular structure of compound 6 is shown in Figure 3. Selected bond lengths and angles are given in Table 3. The tin atom shows a distorted tetrahedral configuration with angles between 95.4(2)° (O(21)Sn(1)-O(25)) and 126.17(2)° (W(1)-Sn(1)-W(2)). The latter angle and the Sn-W distances of 2.8267(5) and 2.7983(5) Å are comparable with the corresponding values of 125.52(5)° and 2.788(1)/2.794(1) Å, as reported for the anion {[(CO)5W]2SnOEt}22-.13b Most remarkably, the Sn(1)-O(21) (1.891(4) Å) and Sn(1)-O(25) (1.972(4) Å) distances differ by 0.081 Å. The first one is rather short and hints at ionic bonding. The lengthening of the
4890
Organometallics, Vol. 19, No. 23, 2000
Beckmann et al.
Table 1. Crystallographic Data for 1, 2, 6, 7a, and 14 formula fw cryst syst cryst size, mm space group a, Å b, Å c, Å R, deg β, deg γ, deg V, Å3 Z Fcalcd, Mg/m3 Fmeas, Mg/m3 µ, mm-1 F(000) θ range, deg index ranges no. of reflns collcd completeness to θ max no. of indep reflns/Rint no. of reflns obsd with (I > 2σ(I)) no. of refined params GooF (F2) R1(F) (I > 2σ(I)) wR2(F2) (all data) (∆/σ)max largest diff peak/hole, e/Å3
1
2
6
7a
14
C20H60O6Si4Sn4 983.80 monoclinic 0.20 × 0.15 × 0.10 P21/c 7.363(1) 24.811(1) 11.957(1) 90 101.920(1) 90 2137.2(4) 2 1.529 1.545(4) 2.446 968 3.42-26.04 -7ehe7 -30eke30 -14ele14 28 916 93.2% 3920/0.03 2419
C28H76O6Si4Sn4 1096.01 monoclinic 0.30 × 0.20 × 0.20 P21/n 11.005(1) 19.036(1) 11.888(1) 90 93.618(1) 90 2485.5(3) 2 1.464 1.485(3) 2.112 1096 3.43-25.68 -13ehe13 -23eke23 -14ele14 33 630 99.4% 4698/0.045 2680
C22H28O8Si2SnW2 963.01 monoclinic 0.20 × 0.15 × 0.15 P21/n 10.383(1) 25.716(1) 11.125(1) 90 104.601(1) 90 2874.5(4) 4 2.225 n.m. 8.970 1800 3.48-26.81 -13ehe13 -31eke31 -12ele12 40 937 94.9% 5412/0.05 3309
C50H40Fe2O6Si2Sn 1023.39 monoclinic 0.10 × 0.08 × 0.08 P21/c 21.125(1) 12.484(1) 17.810(1) 90 91.682(1) 90 4694.9(5) 4 1.448 n.m. 1.236 2072 2.95-27.49 -27ehe27 -16eke16 -22ele22 59 767 99.3% 10700/0.032 6080
C48H138Cl2O20Si12Sn12 ‚2CHCl3 3345.32 triclinic 0.40 × 0.20 × 0.20 P1 h 15.357(1) 16.087(1) 16.138(1) 96.894(1) 114.585(1) 114.204(1) 3097.1(3) 1 1.794 n.m. 2.837 1620 2.55-30.56 -21ehe21 -16eke16 -23ele20 39 721 86.6% 16435/ 0.034 9652
163 1.064 0.0505 0.1417 0.001 2.361/-0.806
208 0.938 0.0370 0.0927 0.001 0.439/-0.629
324 0.862 0.0295 0.0585 250 °C (dec)). Method 2. To a stirred solution of Me3SiCH2SnCl3 (5.0 g, 16.0 mmol) in 100 mL of distilled water was slowly added a 1 M aqueous KOH solution until the pH was stable at 4.0. The colorless precipitate was filtered and washed with 500 mL of distilled water. After drying at 80 °C and 1.5 Torr overnight, the material was crystallized from chloroform to give a microcrystalline solid (3.3 g, 85%, mp > 250 °C (dec)). 1H NMR (400.13 MHz, CDCl3) δ: 0.14 (9H; SiMe3), 0.21 (9H, SiMe3), 0.34 (2H, (2J(1H-119Snoct) ) 172 Hz; CH2Sn), 0.56 (2H, 2J (1H119Sn ) ) 141 Hz; CH Sn). 13C{1H} NMR (100.62 MHz, CDCl ) sp 2 3 δ: 1.4 (3J(13C-119Snsp) ) 34 Hz; SiMe3), 1.8 (3J(13C-117/119Snoct) ) 43 Hz; SiMe3), 7.9 (1J(13C-119Snsp) ) 667 Hz; CH2Sn), 15.1 (1J(13C-119Snoct) ) 965 Hz; CH2Sn). 29Si{1H} NMR (79.49 MHz, CDCl3) δ: 0.6, 2.4. 119Sn{1H} NMR (149.20 MHz, CDCl3) δ: -269.6 (2J(119Snsp-O-117/119Snoct) ) 434 Hz, (2J(119Snsp-O117Sn ) ) 183 Hz), -460.5 (2J(119Sn -O-117/119Sn ) ) 434 Hz, sp oct sp (2J(119Snoct-O-117Snoct) ) 191 Hz; Snoct). Mo¨ssbauer spectroscopy: IS 0.50, QS 1.80; IS 0.86, QS 1.40. IR (KBr) νOH: 3645 cm-1. Anal. Calcd for C48H138Cl2O10Si12Sn12 (2868.35): C, 20.10; H, 4.85; Cl, 2.47. Found: C, 20.10; H, 5.00; Cl, 2.20. Crystallography. Intensity data for the colorless (1, 2, 14) and orange (6, 7a) crystals were collected on a Nonius KappaCCD diffractometer with graphite-monochromated Mo KR (0.71069 Å) radiation at 291 K. The data collection covered almost the whole sphere of reciprocal space with 360 frames via ω-rotation (∆/ω ) 1°) at two times 5 s (2), 10 s (6, 14), 30 s (7a), and 40 s (1) per frame. The crystal-to-detector distance was 2.7 cm (1, 6, 14), 2.8 cm (2), and 3.0 cm with a detectorθ-offset of 5° (7a). Crystal decay was monitored by repeating
4898
Organometallics, Vol. 19, No. 23, 2000
the initial frames at the end of data collection. The data were not corrected for absorption effects. Analyzing the duplicate reflections, there was no indication for any decay. The structure was solved by direct methods using SHELXS9724a and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods with SHELXL97.24b The H atoms were placed in geometrically calculated positions using a riding model (C-Hprim. 0.96 Å, C-Hsec. 0.97 Å; Haryl C-H 0.93). The H atoms isotropic temperature factors of 1 and 2 are constrained to be 1.2 times those of the carrier atom, and those of 6, 7a, and 14 are refined with common isotropic temperature factors for Haryl (0.080(8) (6), 0.095(2) (7a) Å2) and for Halkyl (Uiso 0.16(1) (6); 0.134(3) (14) Å2). Disordered trimethylsilyl (1, 2), ethyl (2), and carbonyl (7a) groups were found with occupancies of 0.4 (C(51′)) and 0.6 (C(51)) in 1 and of 0.5 (C(32), C(43), C(32′), C(43′)) in 2 and (24) (a) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467. (b) Sheldrick, G. M. SHELXL97; University of Go¨ttingen, 1997. (c) International Tables for Crystallography; Kluwer Academic Publishers V. C.: Dordrecht, 1992. (d) Sheldrick, G. M. SHELXTL Release 5.1 Software Reference Manual; Bruker AXS, Inc.: Madison, WI, 1997.
Beckmann et al. (O(16), O(17), O(16′), O(17′)) in 7a. Disordered phenyl rings in 7a were refined as constrained regular hexagons with occupancies of 0.7 (C(61) > C(66)) and 0.3 (C(61′) > C(66′)). Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography.24c The figures were created by SHELXTL.24d Crystallographic data are given in Table 1.
Acknowledgment. The authors thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Australian Research Council for financial support. Dr. B. Mahieu, Universite de Louvainla-Neuve (Belgium), is gratefully acknowledged for recording the Mo¨ssbauer spectrum of 14. Supporting Information Available: Tables of all coordinates, anisotropic displacement parameters, and geometric data for compounds 1, 2, 6, 7a, and 14. This material is available free of charge via the Internet at http://pubs.acs.org. OM000588I