Constructing High-Dimensional Neural Network Potential Energy

Jan 2, 2018 - Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. ‡. Department of Chemistry ...
1 downloads 0 Views 2MB Size
Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Article

Constructing High-Dimensional Neural Network Potential Energy Surfaces for Gas-Surface Scattering and Reactions Qinghua Liu, Xueyao Zhou, Linsen Zhou, Yaolong Zhang, Xuan Luo, Hua Guo, and Bin Jiang J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.7b12064 • Publication Date (Web): 02 Jan 2018 Downloaded from http://pubs.acs.org on January 4, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Submitted to J. Phys. Chem. C, 12/07/2017

Constructing High-dimensional Neural Network Potential Energy Surfaces for Gas-Surface Scattering and Reactions

Qinghua Liu,1,# Xueyao Zhou,1,# Linsen Zhou,2 Yaolong Zhang,1 Xuan Luo,1 Hua Guo,2,* and Bin Jiang1,* 1

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States

#: These authors contribute equally to this work

*: Corresponding authors, [email protected], [email protected] 1

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Abstract While the ab initio molecular dynamics (AIMD) approach to gas-surface interaction has been instrumental in exploring important issues such as energy transfer and reactivity, it is only amenable to short-time events and a limited number of trajectories because of the on-the-fly nature of the density functional theory (DFT) calculations. Here, we report a high-dimensional global reactive potential energy surface (PES) constructed with high fidelity from judiciously placed DFT points, using a machine learning method; and it is orders-of-magnitude more efficient than AIMD in dynamical calculations and can be employed in various simulations without performing additional electronic structure calculations. Importantly, the surface atoms are included in such a PES, which provides a unique platform for studying energy transfer and scattering/reaction of the impinging molecule on the solid surface on an equal footing.

2

ACS Paragon Plus Environment

Page 2 of 41

Page 3 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

I.

INTRODUCTION Heterogeneous catalytic processes are necessarily initiated by molecule-surface

collisions, which can lead to chemical bond rupture and/or formation, often accompanied by energy transfer.1 An in-depth understanding of the dynamics of these gas-surface processes at the atomic level is therefore highly desirable. Experimentally, the scattering and reactive processes have been investigated using laser and molecular beam techniques on clean crystalline surfaces in ultrahigh vacuum. These studies have succeeded in probing quantum state-resolved dynamics of molecule-surface encounters and provided stringent tests for theory.2-5 Theoretically,

the

dynamics

of

molecular

scattering

and

dissociative

chemisorption have been studied using quantum and classical models, both requiring information about electronic energies. To this end, the electronic Schrödinger equation is solved at given nuclear configurations within the Born-Oppenheimer (BO) approximation using a first-principles method, such as density functional theory (DFT).6 Dynamical calculations can be performed with a direct approach, which computes the energy and forces acting on the nuclei on the fly using DFT. This so-called Ab Initio Molecular Dynamics (AIMD) approach7 is quite versatile in handling both reaction and energy exchange between the impinging molecule and the surface. Consequently, there has recently been an increasing interest in AIMD simulations of molecular scattering and dissociation on metal surfaces, some of which have successfully reproduced experimental sticking coefficients within chemical

3

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

accuracy8,

9

Page 4 of 41

(i.e., H + H2S reaction, Phys. Chem. Chem. Phys. 2016, 18, 29113-29121. (43) Kolb, B.; Luo, X.; Zhou, X.; Jiang, B.; Guo, H., High-dimensional atomistic neural network potentials for molecule–surface interactions: HCl scattering from Au(111), J. Phys. Chem. Lett. 2017, 8, 666-672. (44) Shakouri, K.; Behler, J.; Meyer, J.; Kroes, G. J., Accurate neural network description of surface phonons in reactive gas-surface dynamics: N2 + Ru(0001), J. Phys. Chem. Lett. 2017, 8, 2131-2136.

25

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(45) Lykke, K. R.; Kay, B. D., Rotationally inelastic gas–surface scattering: HCl from Au(111), J. Chem. Phys. 1990, 92, 2614-2623. (46) Geweke, J.; Shirhatti, P. R.; Rahinov, I.; Bartels, C.; Wodtke, A. M., Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111), J. Chem. Phys. 2016, 145, 054709. (47) Rahinov, I.; Cooper, R.; Yuan, C.; Yang, X.; Auerbach, D. J.; Wodtke, A. M., Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v=2,J=1) scattering from Au(111), J. Chem. Phys. 2008, 129, 214708. (48) Ran, Q.; Matsiev, D.; Auerbach, D. J.; Wodtke, A. M., Observation of a change of vibrational excitation mechanism with surface temperature: HCl collisions with Au(111), Phys. Rev. Lett. 2007, 98, 237601. (49) Cooper, R.; Rahinov, I.; Yuan, C.; Yang, X.; Auerbach, D. J.; Wodtke, A. M., Efficient translational excitation of a solid metal surface: State-to-state translational energy distributions of vibrational ground state HCl scattering from Au(111), J. Vac. Sci. Technol. A 2009, 27, 907-912. (50) Shirhatti, P. R.; Geweke, J.; Steinsiek, C.; Bartels, C.; Rahinov, I.; Auerbach, D. J.; Wodtke, A. M., Activated dissociation of HCl on Au(111), J. Phys. Chem. Lett. 2016, 7, 1346-1350. (51) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 1992, 46, 6671-6687. (52) Hammer, B.; Hansen, L. B.; Nørskov, J. K., Improved adsorption energetics within density functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 1999, 59, 7413-7421. (53) Liu, T. H.; Fu, B. N.; Zhang, D. H., Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks, Sci. China: Chem. 2014, 57, 147-155. (54) Liu, T.; Fu, B.; Zhang, D. H., Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface, J. Chem. Phys. 2013, 139, 184705. (55) Liu, T.; Fu, B.; Zhang, D. H., HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new potential energy surface based on the RPBE functional, J. Chem. Phys. 2017, 146, 164706. (56) Juaristi, J. I.; Alducin, M.; Díez Muiño, R.; Busnengo, H. F.; Salin, A., Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces, Phys. Rev. Lett. 2008, 100, 116102. (57) Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using plane wave basis set, Phys. Rev. B 1996, 54, 11169-11186. (58) Kresse, G.; Furthmuller, J., Efficiency of ab initio total energy calculations for metals and semiconductors using plane wave basis set, Comp. Mater. Sci. 1996, 6, 15-50. 26

ACS Paragon Plus Environment

Page 26 of 41

Page 27 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(59) Blochl, P. E., Project augmented-wave method, Phys. Rev. B 1994, 50, 17953-17979. (60) Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 1999, 59, 1758-1775. (61) Methfessel, M.; Paxton, A. T., High-precision sampling for Brillouin zone integration in metals, Phys. Rev. B 1989, 40, 3616-3621. (62) Jiang, B.; Guo, H., Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions, J. Chem. Phys. 2014, 141, 034109. (63) Igel, C.; Hüsken, M., Empirical evaluation of the improved Rprop learning algorithms, Neurocomput. 2003, 50, 105-123. (64) Gutzwiller, M. C., Chaos in classical and quantum mechanics. Springer: New York ; London, 1990. (65) Bonnet, L.; Rayez, J.-C., Gaussian weighting in the quasiclassical trajectory method, Chem. Phys. Lett. 2004, 397, 106-109. (66) Head-Gordon, M.; Tully, J. C., Molecular dynamics with electronic frictions, J. Chem. Phys. 1995, 103, 10137-10145. (67) Jiang, B.; Alducin, M.; Guo, H., Electron–hole pair effects in polyatomic dissociative chemisorption: Water on Ni(111), J. Phys. Chem. Lett. 2016, 7, 327-331. (68) Luo, X.; Jiang, B.; Juaristi, J. I.; Alducin, M.; Guo, H., Electron-hole pair effects in methane dissociative chemisorption on Ni(111), J. Chem. Phys. 2016, 145, 044704. (69) Persson, M.; Hellsing, B., Electronic damping of adsorbate vibrations on metal surfaces, Phys. Rev. Lett. 1982, 49, 662-665. (70) Puska, M. J.; Nieminen, R. M., Atoms embedded in an electron gas: Phase shifts and cross sections, Phys. Rev. B 1983, 27, 6121-6128. (71) Hirshfeld, F., Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 1977, 44, 129-138. (72) Rittmeyer, S. P.; Meyer, J.; Juaristi, J. I.; Reuter, K., Electronic friction-based vibrational lifetimes of molecular adsorbates: beyond the independent-atom approximation, Phys. Rev. Lett. 2015, 115, 046102. (73) Tully, J. C.; Gilmer, G. H.; Shugard, M., Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters, J. Chem. Phys. 1979, 71, 1630-1642. (74) Hu, X.; Hase, W. L.; Pirraglia, T., Vectorization of the general Monte Carlo classical trajectory program VENUS, J. Comp. Chem. 1991, 12, 1014-1024 (75) Bonfanti, M.; Diaz, C.; Somers, M. F.; Kroes, G. J., Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I, Phys. Chem. Chem. Phys. 2011, 13, 4552-4561. (76) Grotemeyer, M.; Pehlke, E., Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: ab initio simulations for HCl/Al(111), Phys. Rev. Lett. 2014, 112, 043201.

27

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 41

Table 1. Parameters used in QCT calculations to simulate exactly experimental conditions in Ref. 50 for HCl dissociation and Ref. 46 for HCl inelastic scattering, and AIMD conditions in Ref. 14, respectively.

a

Simulation

〈Ei〉 (eV)

ࢻ (m/s)a

Tn (K)

Ts (K)

Ntotal

HCl dissociation

0.94 1.18 1.29 1.55 1.80 2.12 2.56

158 245 207 292 323 364 371

296 400 500 620 740 910 1060

170 170 170 170 170 170 170

100000 50000 25000 10000 10000 5000 5000

DCl dissociation

1.6~2.5

-

300

300

5000

HCl inelastic scattering

0.99 1.12 1.37

-

ν=0, j=0 ν=0, j=0 ν=0, j=0

323, 593, 953 323, 593, 953 323, 593, 953

100000 100000 100000

The velocity distribution is given by f (v ) = v 3 exp(− [ (v − v0 ) / α ] ) and Ei=mv2/2 2

28

ACS Paragon Plus Environment

Page 29 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Table 2 Vibrational excitation probabilities for HCl(ν=0→1) on Au(111).a Adiabatic PES Ei (eV)

0.99

1.12

1.37

a

Ts (K)

b

LDFA b

Expt.c

GB

HB

GB

HB

323

8.95E-4

1.33E-2

9.80E-4

9.42E-3

6.00E-4

593

1.65E-3

1.51E-2

1.96E-3

1.56E-2

6.87E-4

953

2.15E-3

1.89E-2

3.90E-3

2.32E-2

1.83E-3

323

2.75E-3

2.47E-2

2.00E-3

1.70E-2

8.10E-4

593

3.28E-3

2.61E-2

3.05E-3

2.27E-2

8.91E-4

953

4.59E-3

2.75E-2

4.91E-3

2.96E-2

1.95E-3

323

8.46E-3

5.00E-2

6.55E-3

3.75E-2

1.80E-3

593

8.90E-3

4.79E-2

8.36E-3

4.12E-2

1.91E-3

953

8.79E-3

4.39E-2

1.01E-2

4.19E-2

3.33E-3

Vibrational excitation probability is defined as P0,1 =

N0→1 measured in N0→0 + N0→1

experiment. b

The full width at half-maximum of the Gaussian weighting function is 0.1.

c

The experiment data are taken from Eq. (5) and TABLE II in Ref. 46.

29

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 41

Table 3. Mean total energy loss (in eV) in the vibrational elastic and inelastic scattering and relative percentages of the incidence energy in parentheses. Ei=0.99 eV Ts (K) Adiabatic

ν=0→0

ν=0→1

Ei=1.12 eV

Ei=1.37 eV

LDFA

Adiabatic

LDFA

Adiabatic

LDFA

323

0.30 (29.9%)

0.31 (30.8%)

0.35 (31.2%)

0.36 (32.1%)

0.45 (33.0%)

0.47 (33.9%)

593

0.28 (28.6%)

0.29 (28.9%)

0.34 (30.1%)

0.34 (30.5%)

0.44 (32.1%)

0.44 (32.5%)

953

0.26 (26.5%)

0.26 (26.3%)

0.31 (28.0%)

0.31 (27.7%)

0.42 (30.5%)

0.41 (30.3%)

323

0.22 (22.0%)

0.22 (22.3%)

0.28 (24.6%)

0.28 (25.1%)

0.38 (27.5%)

0.41 (29.8%)

593

0.19 (19.3%)

0.17 (17.1%)

0.25 (22.2%)

0.24 (21.0%)

0.36 (26.5%)

0.37 (26.9%)

953

0.14 (14.3%)

0.12 (12.0%)

0.21 (18.5%)

0.18 (16.3%)

0.33 (24.1%)

0.30 (22.1%)

30

ACS Paragon Plus Environment

Page 31 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure captions: Fig. 1 (a) The six-dimensional dynamical coordinate system for HCl/Au(111). (b-d) two-dimensional cuts of the PES with the molecular center and orientation fixed at a top (T) site and θ=47°, ϕ=30° (b), bridge (B) site and θ=65°, ϕ=30° (c), and hcp (H) site and θ=47°, ϕ=90° (d), respectively, as a function of the HCl bond length (r) and the vertical distance of the HCl molecule (Z) above the frozen surface. The fcc (F) site shows roughly the same PES contour as the hcp site, so not displayed. The contours from the PES (solid lines) and DFT (dashed lines) have an interval of 0.1 eV. The Au, Cl, and H atoms are shown in yellow, green, and white, respectively. Fig. 2 (a) Transition-state geometry with upper two metal layers optimized with DFT. The displacements of Au atoms surrounding the HCl molecule (in Å) are marked in the figure. (b) The dependence of the barrier height (Eb) on the three-dimensional displacements (∆X, ∆Y, ∆Z) of surface atoms. ∆X and ∆Y are taken with respect to Au5 only, while ∆Z is taken on Au1, Au2, and Au5 synchronously. The barrier heights obtained from the PES (solid symbols) are compared with these calculated by DFT at the same geometries (open symbols). Fig. 3 (a) Comparison of initial dissociation sticking probabilities (S0) of DCl obtained from AIMD14 (red circles) and the PES (black squares). (b) Comparison of experimental50 and calculated S0 of HCl at various nozzle temperatures and a fixed surface temperature of 170 K. Previous QD55 and AIMD15 results are also shown for comparison. 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 4 Distributions of total energy transfer to surface phonons and to EHPs (insets) for HCl(ν=0→0) (upper panel) and HCl(ν=0→1) (lower panel) scattering from Au(111) at the three incidence energies and a surface temperature of 593 K.

32

ACS Paragon Plus Environment

Page 32 of 41

Page 33 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Fig. 1.

33

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 2.

34

ACS Paragon Plus Environment

Page 34 of 41

Page 35 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Fig. 3.

35

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 4.

36

ACS Paragon Plus Environment

Page 36 of 41

Page 37 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

TOC graphic

37

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 1 (a) The six-dimensional dynamical coordinate system for HCl/Au(111). (b-d) two-dimensional cuts of the PES with the molecular center and orientation fixed at a top (T) site and θ=47°, ϕ=30° (b), bridge (B) site and θ=65°, ϕ=30° (c), and hcp (H) site and θ=47°, ϕ=90° (d), respectively, as a function of the HCl bond length (r) and the vertical distance of the HCl molecule (Z) above the frozen surface. The fcc (F) site shows roughly the same PES contour as the hcp site, so not displayed. The contours from the PES (solid lines) and DFT (dashed lines) have an interval of 0.1 eV. The Au, Cl, and H atoms are shown in yellow, green, and white, respectively. 527x506mm (150 x 150 DPI)

ACS Paragon Plus Environment

Page 38 of 41

Page 39 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Fig. 2 (a) Transition-state geometry with upper two metal layers optimized with DFT. The displacements of Au atoms surrounding the HCl molecule (in Å) are marked in the figure. (b) The dependence of the barrier height (Eb) on the three-dimensional displacements (∆X, ∆Y, ∆Z) of surface atoms. ∆X and ∆Y are taken with respect to Au5 only, while ∆Z is taken on Au1, Au2, and Au5 synchronously. The barrier heights obtained from the PES (solid symbols) are compared with these calculated by DFT at the same geometries (open symbols). 254x305mm (150 x 150 DPI)

ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 3 (a) Comparison of initial dissociation sticking probabilities (S0) of DCl obtained from AIMD12 (red circles) and the PES (black squares). (b) Comparison of experimental46 and calculated S0 of HCl at various nozzle temperatures and a fixed surface temperature of 170 K. Previous QD51 and AIMD13 results are also shown for comparison. 97x153mm (150 x 150 DPI)

ACS Paragon Plus Environment

Page 40 of 41

Page 41 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Fig. 4 Distributions of total energy transfer to surface phonons and to EHPs (insets) for HCl(ν=0→0) (upper panel) and HCl(ν=0→1) (lower panel) scattering from Au(111) at the three incidence energies and a surface temperature of 593 K. 500x730mm (150 x 150 DPI)

ACS Paragon Plus Environment