Constructing Ionic Liquid-Filled Proton Transfer Channels within

Dec 14, 2015 - The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust ...
2 downloads 12 Views 9MB Size
Subscriber access provided by UNIV OF NEBRASKA - LINCOLN

Article

Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide Wenjia Wu, Yifan Li, Pingping Chen, Jin-dun Liu, Jingtao Wang, and Haoqin Zhang ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.5b09642 • Publication Date (Web): 14 Dec 2015 Downloaded from http://pubs.acs.org on December 22, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Applied Materials & Interfaces is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Table of Contents

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide Wenjia Wu, Yifan Li, Pingping Chen, Jindun Liu, Jingtao Wang,* Haoqin Zhang School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China S Supporting Information

ABSTRACT: Herein, nanocomposite membranes are fabricated based on functionalized graphene oxides (FGOs) and sulfonated poly(ether ether ketone) (SPEEK), followed by being impregnated with imidazole-type ionic liquid (IL). The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust their motion and stacking. As a result, the nanocomposite membranes possess tunable interfacial domains as determined by free volume characteristic, which provide regulated location for IL storage. The stored ILs act as hopping sites for water-free proton conduction along the FGO-constructed interfacial channels. The microstructure at SPEEK-FGO interface governs the IL uptake and distribution in nanocomposite membrane. Different from GO and vinyl imidazole functionalized GO (VGO), the presence of acidic (–SO3H) groups confers the p-styrenesulfonic acid functionalized GO (SGO) incorporated nanocomposite membrane loose interface and strong electrostatic attraction with imidazole-type IL, imparting an enhanced IL uptake and anhydrous proton conductivity. Nanocomposite membrane containing 7.5% SGO attains the maximum IL uptake of 73.7% and hence the anhydrous conductivity of 21.9 mS cm-1 at 150 oC, more than 30 times of that of SPEEK control membrane (0.69 mS cm-1). In addition, SGOs generate electrostatic 1

ACS Paragon Plus Environment

Page 2 of 46

Page 3 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

attractions to the ILs confined within SGO-SPEEK interface, affording the nanocomposite membrane enhanced IL retention ability. KEYWORDS: functionalized graphene oxide, ionic liquid uptake and distribution, interfacial microstructure, nanocomposite membrane, anhydrous proton conductivity

2

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1. INTRODUCTION Development of highly conductive membrane that works under anhydrous condition is one of the most urgent demands for proton exchange membrane fuel cell (PEMFC) technology.1 PEMFC operated under elevated temperatures (above 100 oC) and anhydrous conditions has been the focus of interest, due to the numerous advantages of high tolerance of catalyst to CO, simplified heat/water management, and improved electrode kinetics.2-4 However, a fatal building block is the dificiency of water-independent high-performance proton exchange membrane (PEM). According to the transfer mechanism, protons can only be transported via short-distance ( SP-VGO-X-IL > SP-GO-X-IL > SP-IL (Figure 7b). The IL leaching would reduce the amount of proton hopping sites and thus decrease the proton conduction ability of the membrane. Figure 7c showed the anhydrous proton conductivities of the IL-filled membranes after IL leaching. SP-IL with the constant IL retention of 9.9% achieved the conductivity of 2.57 mS cm-1 at 150 oC. By comparison, nanocomposite membranes achieved enhanced anhydrous conductivities due to the higher amount of ILs in membrane, especially in the SPEEK-filler interfacial domains. For instance, the conductivities after IL leaching of SP-GO-X-IL, SP-VGO-X-IL, and SP-GO-X-IL were elevated to 3.37, 3.60, and 4.71 mS cm-1, respectively. Lin et al. used imidazolium functionalized SiO2 and mesoporous SiO2 to enhance the anhydrous conductivity and IL retention of polymer membrane, which attained the maximum conductivities of 10 and 12 mS cm-1 (160 oC) with the IL retentions of about 5.8% and 8.0%, respectively.47,48 By comparison, the corresponding values obtained in this study were acceptable, probably attributed to the long-range interfacial pathways formed by 2-D FGO/GO. 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 46

Collectively, these data implied that the anhydrous conductivity was IL loading amount and distribution controllable for IL-filled nancomposites, and incorporating functionalized GO could simultaneously elevate IL uptake and IL retention by forming nano-confined domains. Table S1 also indicated that the creation of continuous interfacial channels should be one promising approach to store ILs and then to transport protons when compared with the approaches in literature. 4. CONCLUSIONS In summary, we attempted a facile approach to enhance IL uptake and retention of polymer membrane by incorporating functionalized GO species for efficient anhydrous proton conduction. Within the nanocomposite membrane, the GO species constructed numerous interfacial domains, which provided additional space for IL storage. Helped by the high aspect ratio and ultrahigh surface area of the fillers, the stored

ILs

formed

long-range

transfer

pathways

and

therefore

endowed

nanocomposite membrane with enhanced anhydrous proton conduction ability. Varying the functional groups could efficiently tune the interfacial microstsructure and thus the IL uptake and distribution, which determined the conduction ability of IL-filled composites. In addition, the nano-confined effect of interfacial domains offered nanocomposite membrane enhanced IL retention ability through capillary force, and the ability would be further strengthened at the presence of strong attraction from the groups on channel surface. Collectively, the high IL storage and retention ability conferred enhanced anhydrous conductivity and promising long-time operation stability on the nanocomposite membrane. While more efforts should be devoted to 25

ACS Paragon Plus Environment

Page 27 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

avoiding any loss of ILs from membrane to ensure the practical application in fuel cell, for example highly cross-linking of membrane surface, surface coating by inorganic materials, etc.

■ ASSOCIATED CONTENT S Supporting Information

Evaluation of free volume characteristics. FTIR spectra and TGA curves of the membranes. Anhydrous conductivities and IL retention abilities of some other membranes in literatures.

■ AUTHOR INFORMATION Corresponding Author *E-mail: [email protected]. Tel: 86-371-63887135. Fax: 86-371-63887135. Notes The authors declare no competing financial interest.



ACKNOWLEDGMENTS

We gratefully acknowledge the financial supports from National Natural Science Foundation of China (21506232 and U1304215), and China Postdoctoral Science Foundation (2014T70687).



REFERENCES

(1) Devanathan, R. Recent Developments in Proton Exchange Membranes for Fuel Cells. Energy Environ. Sci. 2008, 1, 101−119. (2) Wang, J. T.; Savinell, R. F.; Wainright, J.; Litt, M.; Yu, H. A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte. Electrochim. Acta 26

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 46

1996, 41, 193−197. (3) Yang, J.; Li, Q.; Cleemann, L. N.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.; He, R. Crosslinked

Hexafluoropropylidene

Polybenzimidazole

Membranes

with

Chloromethyl Polysulfone for Fuel Cell Applications. Adv. Eng. Mater. 2013, 3, 622−630. (4) Subianto, S.; Mistry, M. K.; Choudhury, N. R.; Dutta, N. K.; Knott, R. Composite Polymer Electrolyte Containing Ionic Liquid and Functionalized Polyhedral Oligomeric Silsesquioxanes for Anhydrous PEM Applications. ACS Appl. Mater. Interfaces 2009, 1, 1173−1182. (5) Wang, J.; Yue, X.; Zhang, Z.; Yang, Z.; Li, Y.; Zhang, H.; Yang, X.; Wu, H.; Jiang, Z. Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes. Adv. Funct. Mater. 2012, 22, 4539−4546. (6) Presiado, I.; Lal, J.; Mamontov, E.; Kolesnikov, A. I.; Huppert, D. Fast Proton Hopping Detection in Ice Ih by Quasi-Elastic Neutron Scattering. J. Phys. Chem. C 2011, 115, 10245−10251. (7) Sunda, A. P. Ammonium-Based Protic Ionic Liquid Doped Nafion Membranes as Anhydrous Fuel Cell Electrolytes. J. Mater. Chem. A 2015, 3, 12905−12912. (8) Yi, S.; Zhang, F.; Li, W.; Huang, C.; Zhang, H.; Pan, M. Anhydrous Elevated-Temperature Polymer Electrolyte Membranes Based on Ionic Liquids. J. Membr. Sci. 2011, 366, 349−355. (9) Jheng, L. C.; Hsu, S. L. C.; Tsai, T. Y.; Chang, W. J. Y. A Novel Symmetric 27

ACS Paragon Plus Environment

Page 29 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Polybenzimidazole Membrane for High Temperature Proton Exchange Membrane Fuel Cells. J. Mater. Chem. A 2014, 2, 4225−4233. (10) Wang, J.; Bai, H.; Zhang, H.; Zhao, L.; Chen, H.; Li, Y. Anhydrous Proton Exchange Membrane of Sulfonated Poly (ether ether ketone) Enabled by Polydopamine-Modified Silica Nanoparticles. Electrochim. Acta 2015, 152, 443−455. (11) Jin, Y. G.; Qiao, S. Z.; da Costa, J. D.; Wood, B. J.; Ladewig, B. P.; Lu, G. Q. Hydrolytically Stable Phosphorylated Hybrid Silicas for Proton Conduction. Adv. Funct. Mater. 2007, 17, 3304−3311. (12) Ayyaru, S.; Dharmalingam, S. Improved Performance of Microbial Fuel Cells using Sulfonated Polyether Ether Ketone (SPEEK) TiO2-SO3H Nanocomposite Membrane. RSC Adv. 2013, 3, 25243–25251. (13) Zhao, D.; Yi, B. L.; Zhang, H. M.; Yu, H. M. MnO2/SiO2-SO3H Nanocomposite as Hydrogen Peroxide Scavenger for Durability Improvement in Proton Exchange Membranes. J Membr. Sci. 2010, 346, 143–151. (14) Sivasankaran, A.; Sangeetha, D. Influence of Sulfonated SiO2 in Sulfonated Polyether Ether Ketone Nanocomposite Membrane in Microbial Fuel Cell. Fuel 2015, 159, 689−696. (15) Ayyaru, S.; Dharmalingam, S. A Study of Influence on Nanocomposite Membrane of Sulfonated TiO2 and Sulfonated Polystyrene-Ethylene-Butylene-Polysty -rene for Microbial Fuel Cell Application. Energy 2015, 88, 202–208. (16) Ke, C. C.; Li, X. J.; Shen, Q.; Qu, S. G.; Shao, Z. G.; Yi, B. L. Investigation on Sulfuric Acid Sulfonation of In-Situ Sol-Gel Derived Nafion/SiO2 Composite 28

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Membrane. Int. J. Hydrogen Energ. 2011, 36, 3606–3613. (17) He, G.; Zhao, J.; Hu, S.; Li, L.; Li, Z.; Li, Y.; Li, Z.; Wu, H.; Yang, X.; Jiang, Z. Functionalized Carbon Nanotube via Distillation Precipitation Polymerization and Its Application in Nafion-Based Composite Membranes. ACS Appl. Mater. Interfaces 2014, 6, 15291−15301. (18) Ye, Y. S.; Wang, H.; Bi, S. G.; Xue, Y.; Xue, Z. G.; Liao, Y. G.; Zhou, X. P.; Xie, X. L.; Mai, Y. W. Enhanced Ion Transport in Polymer-Ionic Liquid Electrolytes Containing Ionic Liquid-Functionalized Nanostructured Carbon Materials. Carbon 2015, 86, 86−97. (19) Zhang, N.; Wang, B.; Zhang, Y.; Bu, F.; Cui, Y.; Li, X.; Zhao, C.; Na, H. Mechanically Reinforced Phosphoric Acid Doped Quaternized Poly (ether ether ketone) Membranes via Cross-Linking with Functionalized Graphene Oxide. Chem. Commun. 2014, 50, 15381−15384. (20) Jiang, Z.; Shi, Y.; Jiang, Z. J.; Tian, X.; Luo, L.; Chen, W. High Performance of a Free-Standing Sulfonic Acid Functionalized Holey Graphene Oxide Paper as a Proton Conducting Polymer Electrolyte for Air-Breathing Direct Methanol Fuel Cells. J. Mater. Chem. A 2014, 2, 6494−6503. (21) Zhao, L.; Li, Y.; Zhang, H.; Wu, W.; Liu, J.; Wang, J. Constructing Proton-Conductive Highways within an Ionomer Membrane by Embedding Sulfonated Polymer Brush Modified Graphene Oxide. J. Power Sources 2015, 286, 445−457. (22) Feng, K.; Tang, B.; Wu, P. “Evaporating” Graphene Oxide Sheets (GOSs) for 29

ACS Paragon Plus Environment

Page 30 of 46

Page 31 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Rolled Up GOSs and Its Applications in Proton Exchange Membrane Fuel Cell. ACS Appl. Mater. Interfaces 2013, 5, 1481−1488. (23) He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-Modified Graphene Oxide Nanocomposite Membrane for Proton Exchange Membrane Fuel Cell under Anhydrous Conditions. J. Mater. Chem. A 2014, 2, 9548−9558. (24) Lakshminarayana, G.; Nogami, M. Proton Conducting Organic-Inorganic Composite

Membranes

under

Anhydrous

Conditions

Synthesized

from

Tetraethoxysilane/Methyltriethoxysilane/Tri-methyl Phosphate and 1-Butyl-3-Methyl -imidazolium Tetrafluoroborate. Solid State Ionics 2010, 181, 760−766. (25) Lee, S. Y.; Ogawa, A.; Kanno, M.; Nakamoto, H.; Yasuda, T.; Watanabe, M. Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids. J. Am. Chem. Soc. 2010, 132, 9764−9773. (26) Ye, Y. S.; Tseng, C. Y.; Shen, W. C.; Wang, J. S.; Chen, K. J.; Cheng, M. Y.; Rich, J.; Huang, Y. J.; Chang, F. C.; Hwang, B. J. A New Graphene-Modified Protic Ionic Liquid-Based Composite Membrane for Solid Polymer Electrolytes. J. Mater. Chem. 2011, 21, 10448−10453. (27) Mondal, A. N.; Tripathi, B. P.; Shahi, V. K. Highly Stable Aprotic Ionic-Liquid Doped

Anhydrous

Proton-Conducting

Polymer

Electrolyte

Membrane

for

High-Temperature Applications. J. Mater. Chem. 2011, 21, 4117−4124. (28) Jothi, P. R.; Dharmalingam, S. An Efficient Proton Conducting Electrolyte Membrane for High Temperature Fuel Cell in Aqueous-Free Medium. J Membr. Sci. 30

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2014, 450, 389–396. (29) van de Ven, E.; Chairuna, A.; Merle, G.; Benito, S. P.; Borneman, Z.; Nijmeijer, K. Ionic Liquid Doped Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications. J. Power Sources 2013, 222, 202−209. (30) Sekhon, S. S.; Park, J. S.; Baek, J. S.; Yim, S. D.; Yang, T. H.; Kim, C. S. Small-Angle X-ray Scattering Study of Water Free Fuel Cell Membranes Containing Ionic Liquids. Chem. Mater. 2009, 22, 803−812. (31) Xu, C.; Liu, X.; Cheng, J.; Scott, K. A Polybenzimidazole/Ionic-Liquid -Graphite-Oxide Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2015, 274, 922−927. (32) Mishra, A. K.; Kuila, T.; Kim, D. Y.; Kim, N. H.; Lee, J. H. Protic Ionic Liquid-Functionalized Mesoporous Silica-Based Hybrid Membranes for Proton Exchange Membrane Fuel Cells. J. Mater. Chem. 2012, 22, 24366−24372. (33) Zhang, H.; Wu, W.; Wang, J.; Zhang, T.; Shi, B.; Liu, J.; Cao, S. Enhanced Anhydrous Proton Conductivity of Polymer Electrolyte Membrane Enabled by Facile Ionic Liquid-Based Hoping Pathways. J. Membr. Sci. 2015, 476, 136−147. (34) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806−4814. (35) Liu, G.; Zhang, H.; Yang, X.; Wang, Y. Facile Synthesis of Silica/Polymer Hybrid Microspheres and Hollow Polymer Microspheres. Polymer 2007, 48, 5896−5904. 31

ACS Paragon Plus Environment

Page 32 of 46

Page 33 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(36) Zhang, H.; Wu, W.; Li, Y.; Liu, Y.; Wang, J.; Zhang, B.; Liu, J. Polyelectrolyte Microcapsules as Ionic Liquid Reservoirs within Ionomer Membrane to Confer High Anhydrous Proton Conductivity. J. Power Sources 2015, 279, 667−677. (37) Yave, W.; Car, A.; Peinemann, K. V.; Shaikh, M. Q.; Rätzke, K.; Faupel, F. Gas Permeability and Free Volume in Poly (amide-b-ethylene oxide)/Polyethylene Glycol Blend Membranes. J. Membr. Sci. 2009, 339, 177−183. (38) Li, Y.; Xin, Q.; Wu, H.; Guo, R.; Tian, Z.; Liu, Y.; Wang, S.; He, G.; Pan, F.; Jiang, Z. Efficient CO2 Capture by Humidified Polymer Electrolyte Membranes with Tunable Water State. Energy Environ. Sci. 2014, 7, 1489−1499. (39) Gahlot, S.; Sharma, P. P.; Kulshrestha, V.; Jha, P. K. SGO/SPES-Based Highly Conducting Polymer Electrolyte Membranes for Fuel Cell Application. ACS Appl. Mater. Interfaces 2014, 6, 5595−5601. (40) Tang, H.; Ehlert, G. J.; Lin, Y.; Sodano, H. A. Highly Efficient Synthesis of Graphene Nanocomposites. Nano lett. 2011, 12, 84−90. (41) Liu, J.; Xue, Y.; Dai, L. Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. J. Phys. Chem. Lett. 2012, 3, 1928−1933. (42) Jeon, J. D.; Kwak, S. Y. Ionic Cluster Size Distributions of Swollen Nafion/Sulfated β-cyclodextrin Membranes Characterized by Nuclear Magnetic Resonance Cryoporometry. J. Phys. Chem. B 2007, 111, 9437–9443. (43) Mendil-Jakani, H.; Lopez, I. Z.; Legrand, P. M.; Mareau, V. H.; Gonon, L. A New Interpretation of SAXS Peaks in Sulfonated Poly (ether ether ketone) (sPEEK) Membranes for Fuel Cells. Phys.Chem.Chem.Phys. 2014, 16, 11243−11250. 32

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 46

(44) Scott, M. P.; Brazel, C. S.; Benton, M. G.; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Application of Ionic Liquids as Plasticizers for Poly (Methyl Methacrylate). Chem. Commun. 2002, 13, 1370–1371. (45) Inan, T. Y.; Doğan, H.; Unveren, E. E.; Eker, E. Sulfonated PEEK and Fluorinated Polymer Based Blends for Fuel Cell Applications: Investigation of the Effect of Type and Molecular Weight of the Fluorinated Polymers on the Membrane’s Properties. Int. J. Hydrogen Energy 2010, 35, 12038–12053. (46) Tripathi, B. P.; Shahi, V. K. Surface Redox Polymerized SPEEK-MO 2-PANI (M= Si, Zr and Ti) Composite Polyelectrolyte Membranes Impervious to Methanol. Colloids Surf. A 2009, 340, 10–19. (47) Lin, B.; Cheng, S.; Qiu, L.; Yan, F.; Shang, S.; Lu, J. Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application. Chem. Mater. 2010, 22, 1807−1813. (48) Lin, B.; Qiu, B.; Qiu, L.; Si, Z.; Chu, F.; Chen, X.; Yan, F. Imidazolium-Functionalized

SiO2

Nanoparticle

Doped

Proton

Conducting

Membranes for Anhydrous Proton Exchange Membrane Applications. Fuel Cells 2013, 13, 72–78.

33

ACS Paragon Plus Environment

Page 35 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Scheme 1. Synthesis process of the nanocomposite membrane.

34

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Scheme 2. The schematic representation of synthesis process and chemical structure of FGO.

35

ACS Paragon Plus Environment

Page 36 of 46

Page 37 of 46

d

Transmittance (a.u.)

GO 1736 1386 1628

VGO

745

SGO 1568

1447

2923 3500

3000

1250-1000 2500

2000

1500

Wave number (cm-1)

169.6

402.4

a b c

80

SGO 396

400

404

408

164

168

172

VGO

Weight (%)

Intensity (a.u.)

1000

100

e

176

3

S 2p

O 1s N 1s

GO

GO VGO SGO

500

f

b

60

c a

40

C 1s 20

600

500

400

300

200

100

100

0

200

SGO 2θ = 10.3°

VGO 2θ = 10.6°

GO 2θ = 9.8°

20

400

500 o

g

10

300

Temperature ( C)

Bind energy (eV)

Relative intensity (a.u.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

30

2θ (degree)

36

ACS Paragon Plus Environment

600

700

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Characterization of GO, VGO, and SGO: TEM images of GO (a), VGO (b), and SGO (c), FTIR spectra (d), XPS spectra (e), TGA curves (f), and WXRD patterns (g).

37

ACS Paragon Plus Environment

Page 38 of 46

Page 39 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Figure 2. SEM images of the cross-section of (a) SP, (b) SP-IL, (c) SP-GO-5%, (d) SP-GO-5%-IL, (e) SP-VGO-5%, (f) SP-VGO-5%-IL, (g) SP-SGO-5%, and (h) SP-SGO-5%-IL.

38

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

a b c d c

e f

e f g h

b g h

0.20

0.25

0.30

SP SP-GO-5% SP-VGO-5% SP-SGO-5%

0.35

SP-IL SP-GO-5%-IL SP-VGO-5%-IL SP-SGO-5%-IL

0.40

-1

0.45

0.50

b

a Relative intensity (a.u.)

d a Relative intensity (a.u.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 40 of 46

SP SP-GO-5% SP-VGO-5% SP-SGO-5% SP-IL SP-GO-5%-IL SP-VGO-5%-IL SP-SGO-5%-IL 10

0.55

20

30

2θ (degree)

q (nm )

Figure 3. (a) SAXS patterns and (b) WXRD patterns of the membranes.

39

ACS Paragon Plus Environment

40

Page 41 of 46

SP-GO-X SP-VGO-X SP-SGO-X

70

IL uptake (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

60

50

40

0

2.5%

5.0%

7.5%

10.0%

Filler content

Figure 4. IL uptakes of the membranes (Treating temperature: 55 oC; Treating time:72 h).

40

ACS Paragon Plus Environment

-1

-1

1.5

Proton conductivity (mS cm )

a

SP SP-GO-5% SP-VGO-5% SP-SGO-5%

1.0

0.5

0.0

b

SP-IL SP-GO-2.5%-IL SP-GO-5%-IL SP-GO-7.5%-IL SP-GO-10%-IL

20

15

10

5

60

80

100

120

140

40

60

Temperature (°C)

c

15

-1

SP-IL SP-VGO-2.5%-IL SP-VGO-5%-IL SP-VGO-7.5%-IL SP-VGO-10%-IL

20

80

100

120

140

Temperature (°C)

Proton conductivity (mS cm )

-1

Page 42 of 46

0 40

Proton conductivity (mS cm )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Proton conductivity (mS cm )

ACS Applied Materials & Interfaces

10

5

d

SP-IL SP-SGO-2.5%-IL SP-SGO-5%-IL SP-SGO-7.5%-IL SP-SGO-10%-IL

20

15

10

5

0

0 40

60

80

100

120

40

140

60

80

100

120

140

Temperature (°C)

Temperature (°C)

Figure 5. Temperature-dependent proton conductivities of (a) IL-free membranes, (b) SP-GO-XIL, (c) SP-VGO-X-IL, and (d) SP-SGO-X-IL.

41

ACS Paragon Plus Environment

Page 43 of 46

a

-4

b

-7

-5

-8

ln σ (S cm-1)

ln σ (S cm-1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

-6

SP SP-GO-5% SP-VGO-5% SP-SGO-5%

-7

-8 2.4

2.6

-1

Ea= 24.95 KJ mol -1 Ea= 24.53 KJ mol -1 Ea= 23.77 KJ mol -1 Ea= 24.16 KJ mol 2.8

3.0

-9

SP-IL SP-GO-5%-IL SP-VGO-5%-IL SP-SGO-5%-IL

-10

-11

3.2

2.4

2.6

1000/T (K-1)

-1

Ea= 23.13 KJ mol -1 Ea= 19.81 KJ mol -1 Ea= 19.85 KJ mol -1 Ea= 19.65 KJ mol 2.8

3.0

3.2

1000/T (K-1)

Figure 6. The Arrhenius plots of proton conductivity of membranes: (a) IL-free membranes and (b) IL-filled membranes.

42

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

a

70

b

85

SP-IL (70%) SP-GO-5%-IL (70%) SP-VGO-5%-IL (70%) SP-SGO-5%-IL (70%)

25

IL retention (%)

80

IL loss (%)

75

SP-IL (70%) SP-GO-5%-IL (70%) SP-VGO-5%-IL (70%) SP-SGO-5%-IL (70%)

70

65

20

15

10

0 0

40

80

120

160

200

240

0

40

Immersing time (min)

80

120

160

200

240

Immersing time (min)

c

-1

Proton conductivity (mS cm )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 44 of 46

SP-IL (70%) SP-GO-5%-IL (70%) SP-VGO-5%-IL (70%) SP-SGO-5%-IL (70%)

4

3

2

1

0 40

60

80

100

120

140

Temperature (°C)

Figure 7. (a) IL loss and (b) IL retention values of the membranes as a function of time; (c) temperature-dependent anhydrous conductivities of the membranes after being immersed in water.

43

ACS Paragon Plus Environment

Page 45 of 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Table 1. Densities and FFV values of the membranes determined by the buoyancy method. Sample

ρB (g cm-3)

FFV (%)

SP

1.359±0.005

0.223±0.007

SP-GO-2.5%

1.281±0.007

0.225±0.008

SP-GO-5%

1.206±0.009

0.231±0.008

SP-GO-7.5%

1.146±0.007

0.233±0.007

SP-GO-10%

1.110±0.008

0.219±0.006

SP-VGO-2.5%

1.271±0.006

0.221±0.005

SP-VGO-5%

1.179±0.006

0.229±0.007

SP-VGO-7.5%

1.094±0.007

0.239±0.007

SP-VGO-10%

1.045±0.005

0.230±0.006

SP-SGO-2.5%

1.255±0.006

0.227±0.007

SP-SGO-5%

1.158±0.009

0.236±0.007

SP-SGO-7.5%

1.079±0.008

0.241±0.008

SP-SGO-10%

1.026±0.007

0.233±0.005

44

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 46 of 46

Table 2. IL uptakes and anhydrous proton conductivities (120 oC) of as-prepared membranes. Sample

IL uptake (%)

σ (mS cm-1)

SP-IL

43.0±0.75

7.2±0.47

SP-GO-2.5%-IL

45.3±0.78

8.3±0.49

SP-GO-5%-IL

56.0±0.84

10.5±0.51

SP-GO-7.5%-IL

57.9±0.89

10.8±0.52

SP-GO-10%-IL

36.2±0.74

5.1±0.44

SP-VGO-2.5%-IL

39.7±0.78

7.4±0.48

SP-VGO-5%-IL

52.8±0.79

9.5±0.48

SP-VGO-7.5%-IL

66.5±0.90

13.6±0.49

SP-VGO-10%-IL

56.8±0.87

9.9±0.49

SP-SGO-2.5%-IL

50.0±0.75

9.7±0.49

SP-SGO-5%-IL

64.3±0.86

14.3±0.51

SP-SGO-7.5%-IL

73.7±0.91

17.2±0.52

SP-SGO-10%-IL

58.5±0.80

12.6±0.51

45

ACS Paragon Plus Environment