Continuous Emulsion Polymerization: Problems in Development of

Jul 23, 2009 - In order to be economically viable, a continuous emulsion polymerization process must be able to produce a latex which satisfies applic...
0 downloads 0 Views 934KB Size
1 Continuous Emulsion Polymerization: Problems in Development of Commercial Processes GARY P O E H L E I N

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Continuous emulsion p o l y m e r i z a t i o n systems are s t u d i e d to e l u c i d a t e r e a c t i o n mechanisms and to generate the knowledge necessary f o r the development of commercial continuous processes. Problems encountered with the development of continuous r e a c t o r systems and some o f the ways of d e a l i n g w i t h these problems will be d i s c u s s e d in t h i s paper. Those i n t e r e s t e d i n more d e t a i l e d i n f o r m a t i o n on chemical mechanisms and t h e o r e t i c a l models should consult the review papers by Ugelstad and Hansen (1), ( k i n e t i c s and mechanisms) and by P o e h l e i n and Dougherty (2), (continuous emulsion p o l y m e r i z a t i o n ) . In order to be economically v i a b l e , a continuous emulsion p o l y m e r i z a t i o n process must be able t o produce a l a t e x which satisfies a p p l i c a t i o n requirements a t high r a t e s without frequent disruptions. Since most l a t e x products are developed i n batch equipment, the problems a s s o c i a t e d with c o n v e r t i n g to continuous systems can be s i g n i f i c a n t . Making such a change r e q u i r e s an understanding o f the d i f f e r e n c e s between batch and continuous r e a c t o r s and how these d i f f e r e n c e s i n f l u e n c e product p r o p e r t i e s and r e a c t o r performance. Reactor

Types:

Before d i s c u s s i n g d i f f e r e n c e s between r e a c t o r s a b r i e f d e s c r i p t i o n o f r e a c t o r types would seem i n order. Three c l a s s i f i c a t i o n s are normally recognized: 1. Batch, 2. Semi-Continuous or Semi-Batch, and 3. Continuous. The batch r e a c t o r i s , i n many ways, the simplest. Recipe i n g r e d i e n t s are charged and brought to r e a c t i o n temperature; i n i t i a t o r i s then added i f i t was not p a r t of the o r i g i n a l charge; the r e a c t i o n i s c a r r i e d to the d e s i r e d degree of conversion and the l a t e x i s removed f o r further processing. With semi-continuous (more p r o p e r l y , semi-batch) r e a c t o r s only p a r t of the charge i s added a t the beginning of the c y c l e . U s u a l l y some r e a c t i o n time i s allowed to pass before the remaining part of the charge i s added i n a c o n t r o l l e d manner. Sometimes

0-8412-0506-x/79/47-104-001$05.00/0 © 1979 American Chemical Society In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

POLYMERIZATION REACTORS AND PROCESSES

o n l y a p o r t i o n of the monomer i s w i t h h e l d from the i n i t i a l charge w h i l e i n other cases the secondary feed stream i s a monomer emulsion. Continuous r e a c t o r systems u s u a l l y c o n s i s t of s t i r r e d tanks connected i n s e r i e s with a l l the r e c i p e i n g r e d i e n t s fed i n t o the f i r s t r e a c t o r and the product removed from the l a s t r e a c t o r . Recipe i n g r e d i e n t s can a l s o be added at intermediate p o i n t s along the r e a c t o r t r a i n . Continuous-flow t u b u l a r r e a c t o r s can be used i n s e r i e s with the tanks, u s u a l l y as a p r e r e a c t o r i n f r o n t of the tanks.

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

Inhibitor Effect: I n h i b i t o r s can be present i n most r e a c t i o n i n g r e d i e n t s . They are d e l i b e r a t e l y added to monomers to prevent premature polymerization. Ingredient streams such as monomers are cleaned and handled c a r e f u l l y to avoid i n h i b i t i o n i n fundamental s t u d i e s , e s p e c i a l l y i n most academic l a b o r a t o r i e s . Commercial processes, however, are u s u a l l y operated with i n h i b i t o r s present i n the feed streams, p a r t i c u l a r l y i n the monomer. When such i n g r e d i e n t s are used i n a batch reactor, a dead time i s observed before the reaction starts. The simple two-reactor s e r i e s shown i n F i g u r e 1 w i l l be analyzed to demonstrate the e f f e c t of i n h i b i t o r on the performance of continuous systems. Since i n h i b i t o r w i l l be present i n the c o n t i n u o u s l y added feed stream, i t w i l l serve to reduce the e f f e c t i v e i n i t i a t i o n r a t e i n the f i r s t r e a c t o r . Since i n h i b i t o r i s v e r y r e a c t i v e with f r e e r a d i c a l s , a l l i n h i b i t o r fed must be destroyed before s i g n i f i c a n t r e a c t i o n can take p l a c e . Thus the e f f e c t i v e r a t e of i n i t i a t i o n i n the f i r s t r e a c t o r i s given by Equation 1.

where R i s the net r a t e of i n i t i a t i o n i n the f i r s t r e a c t o r , f i s i n i t i a t i o n e f f e c t i v e n e s s f a c t o r , K, i s the i n i t i a t o r decomposit i o n r a t e constant, [ o ] i s the i n i t i a t o r c o n c e n t r a t i o n i n the mixed feed stream, i s the mean r e s i d e n c e time i n the f i r s t r e a c t o r , [H] i s the i n h i b i t o r c o n c e n t r a t i o n i n the mixed feed stream, and ?^ i s the number of f r e e r a d i c a l s consumed per i n h i b i t o r molecule. Equation 1 i s v a l i d only i f I

Q

(2)

1+K, 0a l

In t h i s case the i n h i b i t o r c o n c e n t r a t i o n i n the stream l e a v i n g Reactor 1, [H]_, i s zero. I f the i n h i b i t o r c o n c e n t r a t i o n , [H] , i s l a r g e r than necessary to s a t i s f y the e q u a l i t y of Equation 2 there w i l l be no p o l y m e r i z a t i o n i n Reactor 1 and the i n h i b i t o r c o n c e n t r a t i o n e n t e r i n g Reactor 2 w i l l be:

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

POEHLEIN

Continuous

Emulsion

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

F

V

Polymerization

[i l 2

v

Ih H

REACTOR 1 VOLUME V

F , F & F

1

ARE

REACTOR 2

VOLUMETRIC FLOW RATES

VOLUME V ,

Q

1

2

SIMPLIFIED FLOW DIAGRAM — END OF SERIES CSTR SYSTEM Figure

1.

Continuous

flow

FRONT

diagram

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4

POLYMERIZATION REACTORS AND PROCESSES

2K,[i i

e

9

(3

l

>

H

]

i

-

[ H ]

^

( i ^ r

o -

In t h i s case the r a t e of i n i t i a t i o n i n the second r e a c t o r w i l l be given by:

w

K

, i,2 "

f d 2 o \ |_(i+K e ) ( i + K e ) J 2 K

f

[ I

d

]

1

d

[ H 3

2

1 e

f

H

2

An examination of the above equations shows that Rj.,1 may be zero, or „ ^ g r e a t e r than R i , i even i f R _ i s f i n i t e . T h u s , i t may'be necessary to add i n h i b i t o r t o Reactor 2 to slow the r e a c t i o n so the heat can be removed by the c o o l i n g system. The i n f l u e n c e o f i n h i b i t o r on the performance o f a semicontinuous r e a c t o r can be, i n some ways, s i m i l a r to both batch and continuous systems. A dead time i s u s u a l l y observed upon a d d i t i o n o f the i n i t i a l charge. When the secondary stream flow i s s t a r t e d a f t e r some r e a c t i o n of the i n i t i a l charge, a d d i t i o n a l i n h i b i t o r flows i n t o the r e a c t o r and the i n i t i a t i o n r a t e drops. When t h i s programmed a d d i t i o n i s stopped the i n i t i a t i o n r a t e i n c r e a s e s ; sometimes enough t o cause temperature c o n t r o l problems. m

a

v

e

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

i

Latex P a r t i c l e S i z e D i s t r i b u t i o n s : P a r t i c l e formation i n the e a r l y stages o f a batch r e a c t i o n i s normally q u i t e r a p i d . Hence the p a r t i c l e s u r f a c e area produced i s a b l e to adsorb the f r e e e m u l s i f i e r q u i t e e a r l y i n the r e a c t i o n (2 to 10% conversion) and p a r t i c l e formation ceases, o r a t best slows t o a v e r y low r a t e . P a r t i c l e s formed i n the beginning o f the r e a c t i o n would have approximately i d e n t i c a l ages a t the end of the batch r e a c t i o n . These p a r t i c l e s would be expected t o be n e a r l y the same s i z e u n l e s s f l o c c u l a t i o n mechanisms, s t o c h o s t i c d i f f e r e n c e s , o r secondary n u c l e a t i o n f a c t o r s a r e s i g n i f i c a n t . The p a r t i c l e s i n the l a t e x stream l e a v i n g a continuous s t i r r e d - t a n k r e a c t o r (CSTR) would have a broad d i s t r i b u t i o n of residence times i n the r e a c t o r . T h i s age d i s t r i b u t i o n , given by Equation 5, comes about because of the r a p i d mixing of the feed stream with the contents of the s t i r r e d r e a c t o r . (5)

A (t) = | ^ x

e"

t / 0

l

where A ^ ( t ) i s the r e s i d e n c e time d i s t r i b u t i o n and the p a r t i c l e age d i s t r i b u t i o n i n the stream l e a v i n g the f i r s t tank of the two-tank s e r i e s shown i n F i g u r e 1, and t i s time or age. The r e s i d e n c e time d i s t r i b u t i o n f o r a two-tank system i s given by (6)

A (t) = ^ 2

e"

t / 0

l

if0

1

= G

2

or

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1.

POEHLEIN

Continuous

e " >

(7

k

t

/

Emulsion

e

i 8,-9

~

e

2 ^ = -

t / 0

5

Polymerization

2 l

2

f

9

l '

e

2 a

r

e

Graphs of these d i s t r i b u t i o n s f o r v a r i o u s r a t i o s of shown i n F i g u r e 2. I f p a r t i c l e growth r a t e i s known, as a f u n c t i o n of p a r t i c l e s i z e , the s i z e d i s t r i b u t i o n can be c a l c u l a t e d from Equation 8. (8)

U(D)

= A(t)

y

d

D

(

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

dt

I

where U(D) i s the p a r t i c l e s i z e d i s t r i b u t i o n IdD/dtj i s the absolute v a l u e of the r a t e of time. Equation 8 i s based on the assumption by p o l y m e r i z a t i o n r a t h e r than f l o c c u l a t i o n . Case 2 k i n e t i c s are followed p a r t i c l e growth excess monomer i s given by:

based on diameter and diameter change w i t h that p a r t i c l e s grow I f Smith-Ewart i n the presence of

where K-^ i s a constant dependent on p o l y m e r i z a t i o n r a t e constants and s w e l l i n g parameters, [K] i s the monomer c o n c e n t r a t i o n at the r e a c t i o n s i t e and n i s the time-average number of f r e e r a d i c a l s per p a r t i c l e (n=0.5 f o r S-E Case 2). When Equation 9 i s used i n Equation 8 along with the r e l a t i o n s h i p s f o r the r e s i d e n c e time d i s t r i b u t i o n s one o b t a i n s the f o l l o w i n g dimensionless p a r t i c l e s i z e d i s t r i b u t i o n s f o r one- and two-tank systems. 3V e~

(10)

U (P)

=

(11)

U (D)

= 3V e"

X

2

(12) U ( P ) 2

2

5

= ^

V3

if 0

V3

(e

V

- e

V

)

if 0

2

=

X

-

0

2

m0

1

where V = D/(6K /"M7n0 /fr) / Equations 11 and 12 are only v a l i d i f the v o l u m e t r i c growth r a t e of p a r t i c l e s i s the same i n both r e a c t o r s ; a c o n d i t i o n which would not hold t r u e i f the conversion were h i g h or i f the temperatures d i f f e r . Graphs of these s i z e d i s t r i b u t i o n s are shown i n F i g u r e 3. They are a l l broader than the d i s t r i b u t i o n s one would expect i n l a t e x produced by batch r e a c t i o n . The p a r t i c l e s i z e d i s t r i b u t i o n s shown i n F i g u r e 3 are based on the assumption that steady-state p a r t i c l e generation can be achieved i n the CSTR systems. Consequences of t r a n s i e n t s or l i m i t - c y c l e behavior w i l l be d i s c u s s e d l a t e r i n t h i s paper. Semi-continuous r e a c t o r s can be used to produce very narrow or q u i t e broad p a r t i c l e s i z e d i s t r i b u t i o n s depending on the nature of the secondary feed stream and how i t i s added to the r e a c t o r . 1

1

3

1

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

POLYMERIZATION REACTORS AND PROCESSES

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

6

8 Ο

ί

« ci

1

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

poEHLEiN

7

Continuous Emulsion Polymerization

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

1.

Ο

I

I

.ο "•δ

ε

ο

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

8

POLYMERIZATION REACTORS AND PROCESSES

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

I f the secondary feed stream i s simply monomer i t w i l l not normally have a major impact on the p a r t i c l e formation r e a c t i o n and the p a r t i c l e s i z e d i s t r i b u t i o n can be narrow. I f the secondary stream c o n t a i n s e m u l s i f i e r i t can f u n c t i o n i n three ways. When the emulsion feed i s s t a r t e d q u i c k l y the added e m u l s i f i e r can serve to lengthen the p a r t i c l e formation p e r i o d and hence to broaden the p a r t i c l e s i z e d i s t r i b u t i o n . When the emulsion feed i s s t a r t e d l a t e r and added i n such a manner that the e m u l s i f i e r i s promptly adsorbed on e x i s t i n g p a r t i c l e s , one can o b t a i n q u i t e narrow s i z e d i s t r i b u t i o n s . I f the emulsion feed i s s t a r t e d l a t e r but added r a p i d l y enough to generate f r e e emulsif i e r i n the r e a c t i o n mixture a second p o p u l a t i o n of p a r t i c l e s can be formed, again y i e l d i n g a broad s i z e d i s t r i b u t i o n . Copolymer Composition: When a batch r e a c t o r i s used to produce polymer from s e v e r a l monomers a s i g n i f i c a n t change i n copolymer composition can occur during the course o f the p o l y m e r i z a t i o n . The f i r s t polymer formed w i l l c o n t a i n a higher p o r t i o n of the more r e a c t i v e monomer w h i l e the f i n a l polymer formed w i l l be composed of a l a r g e r f r a c t i o n of the s l o w - r e a c t i n g monomer. More uniform polymer can be produced by u s i n g a semi-continuous system i n which a p o r t i o n of the more r e a c t i v e monomer i s withheld from the o r i g i n a l charge and added a t a c a r e f u l l y programmed r a t e d u r i n g the course of the r e a c t i o n . The polymeric m a t e r i a l produced i n a s i n g l e s t i r r e d - t a n k r e a c t o r w i l l , except f o r s t o c h a s t i c v a r i a t i o n s , be o f uniform composition. T h i s polymer composition can be s i g n i f i c a n t l y d i f f e r e n t from the composition i n the monomer feed mixture u n l e s s the c o n v e r s i o n i s h i g h . I f s e v e r a l tanks a r e connected i n s e r i e s the composition o f the polymer produced i n each r e a c t o r can be quite d i f f e r e n t . Since most p a r t i c l e s are formed i n the f i r s t r e a c t o r t h i s change i n composition i n the f o l l o w i n g r e a c t o r s can y i e l d polymer p a r t i c l e s i n which composition v a r i e s w i t h r a d i u s w i t h i n the p a r t i c l e s . Compositional d r i f t i n continuous r e a c t o r t r a i n s can be a l tered by i n t r o d u c i n g feed streams o f the more r e a c t i v e monomer between r e a c t o r s . T h i s procedure i s e q u i v a l e n t to programmed a d d i t i o n of the more r e a c t i v e monomer i n a semi-continuous system. The proceeding d i s c u s s i o n o f polymer composition was based on the assumption that e s s e n t i a l l y a l l polymer i s formed i n the o r ganic phases o f the r e a c t i o n mixture. I f a w a t e r - s o l u b l e monomer, such as some of the f u n c t i o n a l monomers, i s used, the r e a c t i o n s t a k i n g p l a c e i n the aqueous phase can c o n t r i b u t e to v a r i a t i o n i n polymer composition. In f a c t , i n extreme cases, water s o l u b l e polymer can be formed i n the aqueous phase. T h i s can happen i n batch, semi-continuous or continuous r e a c t o r s . The f a t e of funct i o n a l monomers could be c o n s i d e r a b l y d i f f e r e n t among the d i f f e r ent r e a c t o r types, but d e t a i l e d s t u d i e s on t h i s phenomenon have not been r e p o r t e d .

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1.

POEHLEIN

Continuous

Emulsion

Polymerization

9

Reaction Rate: Continuous s t i r r e d - t a n k r e a c t o r s can behave very d i f f e r e n t l y from batch r e a c t o r s w i t h regard to the number of p a r t i c l e s formed and p o l y m e r i z a t i o n r a t e . These d i f f e r e n c e s are probably most extreme f o r styrene, a monomer which c l o s e l y f o l l o w s Smith-Ewart Case 2 k i n e t i c s . Rate and number of p a r t i c l e s i n a batch r e a c t o r f o l l o w s the r e l a t i o n s h i p expressed by Equation 13. (13) Rp

«

N

a

R

i

°-

4

0

S -

6

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

where S i s the e m u l s i f i e r c o n c e n t r a t i o n . A s i n g l e CSTR y i e l d s a d i f f e r e n t r e l a t i o n s h i p as shown by Equation 14. (14) Rp

a

N

a

R

i

S

0

where 0 i s the mean residence time. Equations 13 and 14 represent r a t e s during i n t e r v a l two i n batch p o l y m e r i z a t i o n and f o r i n t e r mediate conversions i n a CSTR. These two equations i l l u s t r a t e an important p o i n t . That i s , even w i t h the same k i n e t i c mechanisms, the i n f l u e n c e of key v a r i a b l e s on r a t e and p a r t i c l e generation may be q u i t e d i f f e r e n t between the two r e a c t o r types. A summary of steady-state r a t e s f o r a number of monomers i s given by P o e h l e i n and Dougherty (2) . The r a t e of p o l y m e r i z a t i o n w i t h styrene-type monomers i s d i r e c t l y p r o p o r t i o n a l to the number of p a r t i c l e s formed. In batch r e a c t o r s most of the p a r t i c l e s a r e nucleated e a r l y i n the r e a c t i o n and the number formed depends on the e m u l s i f i e r a v a i l a b l e to s t a b i l i z e these small p a r t i c l e s . In a CSTR o p e r a t i n g a t steady-state the r a t e of n u c l e a t i o n of new p a r t i c l e s depends on the c o n c e n t r a t i o n of f r e e e m u l s i f i e r , i . e . the e m u l s i f i e r not adsorbed on other s u r f a c e s . Since the average p a r t i c l e s i z e i n a CSTR i s l a r g e r than the average s i z e at the end of the batch n u c l e a t i o n p e r i o d , fewer p a r t i c l e s a r e formed i n a CSTR than i f the same r e c i p e were used i n a batch r e a c t o r . Since r a t e i s p r o p o r t i o n a l to the number of p a r t i c l e s f o r styrene-type monomers, the r a t e per u n i t volume i n a CSTR w i l l be l e s s than the i n t e r v a l two r a t e i n a batch r e a c t o r . In f a c t , the maximum CSTR r a t e w i l l be about 60 to 70 percent the batch r a t e f o r such monomers. Monomers f o r which the r a t e i s not as s t r o n g l y dependent on the number of p a r t i c l e s w i l l d i s p l a y l e s s of a d i f f e r e n c e between batch and continuous r e a c t o r s . A l s o , continuous r e a c t o r s w i t h a p a r t i c l e seed i n the feed may be capable of higher r a t e s . Reactor production r a t e depends on average r e a c t i o n r a t e and the f r a c t i o n of the time the r e a c t o r i s not operating. With a batch r e a c t o r the r e a c t i o n r a t e s t a r t s s m a l l , i n c r e a s e s to a r a t h e r constant value, sometimes increases f u r t h e r to a maximum, and then decreases r a p i d l y as the monomer c o n c e n t r a t i o n f a l l s . The r e a c t i o n r a t e i n a continuous r e a c t o r i s dependent on monomer conversion but i t does not vary with time once steady-state

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

10

POLYMERIZATION

REACTORS AND PROCESSES

o p e r a t i o n i s achieved. T h i s r a t e can be high f o r a wide range of conversions, but i t w i l l be low at the high conversion end of the reactor t r a i n . Thus l a r g e r e a c t o r volumes may be r e q u i r e d i f high conversion l a t e x e s are to be produced.

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

A d d i t i o n of Feed Streams: Since feed streams are not added a f t e r the s t a r t of a batch r e a c t i o n one need only be concerned w i t h proper i n i t i a l a d d i t i o n and b l e n d i n g procedures. Streams f l o w i n g i n t o a CSTR, however, are being introduced i n t o a polymer l a t e x . I f added improperly, these streams can f a i l to be mixed completely and they can cause flocculation. Streams should be introduced where they are mixed r a p i d l y and the i o n i c c o n c e n t r a t i o n should be as low as p o s s i b l e . I n t r o d u c t i o n of such streams as i n i t i a t o r s o l u t i o n s a t h i g h c o n c e n t r a t i o n s or i n the wrong l o c a t i o n can cause l o c a l f l o c c u l a t i o n and/or non-uniform r e a c t i o n . Recipe a d d i t i o n s can a l s o be important with semi-continuous r e a c t o r s . A d d i t i o n r a t e s i n f l u e n c e r e a c t o r performance, and i n c o r r e c t a d d i t i o n l o c a t i o n can l e a d to non-uniform r e a c t i o n w i t h i n the r e a c t o r , l o c a l i z e d f l o c c u l a t i o n , and r e a c t o r short-circuiting. Unsteady-State

Operation:

A c h i e v i n g s t e a d y - s t a t e o p e r a t i o n i n a continuous tank r e a c t o r system can be d i f f i c u l t . P a r t i c l e n u c l e a t i o n phenomena and the decrease i n t e r m i n a t i o n r a t e caused by high v i s c o s i t y w i t h i n the p a r t i c l e s ( g e l e f f e c t ) can c o n t r i b u t e to s i g n i f i c a n t reactor i n s t a b i l i t i e s . V a r i a t i o n i n the l e v e l of i n h i b i t o r s i n the feed streams can a l s o cause r e a c t o r c o n t r o l problems. Convers i o n o s c i l l a t i o n s have been observed with many d i f f e r e n t monomers. These o s c i l l a t i o n s o f t e n r e s u l t from a l i m i t c y c l e behavior of the p a r t i c l e n u c l e a t i o n mechanism. Such o s c i l l a t i o n s are d i f f i c u l t to t o l e r a t e i n commercial systems. They can cause uneven heat loads and s i g n i f i c a n t t r a n s i e n t s i n f r e e e m u l s i f i e r concentration thus p o t e n t i a l l y causing f l o c c u l a t i o n and the formation of w a l l polymer. T h i s problem may be one of the most d i f f i c u l t to handle i n the development of commercial continuous processes. One of the most promising ways of d e a l i n g with conversion o s c i l l a t i o n s i s the use of a s m a l l - p a r t i c l e l a t e x seed i n a feed stream so that p a r t i c l e n u c l e a t i o n does not occur i n the CSTRs. Berens (3) used a seed produced i n another r e a c t o r to achieve s t a b l e o p e r a t i o n of a continuous PVC r e a c t o r . Gonzalez (4) used a continuous t u b u l a r p r e - r e a c t o r to generate the seed f o r a CSTR producing PMMA l a t e x . P o e h l e i n and Dougherty (2) provide more d e t a i l s on t r a n s i e n t o p e r a t i o n problems and some p o t e n t i a l c o n t r o l o p t i o n s . Considerable work i s c u r r e n t l y being conducted i n a number of u n i v e r s i t y

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1.

POEHLEIN

Continuous

Emulsion

Polymerization

11

and i n d u s t r i a l l a b o r a t o r i e s on approaches to the c o n t r o l of continuous r e a c t o r s . These e f f o r t s should produce new i n s i g h t s i n t o t h i s troublesome problem.

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

Reactor

Design:

I d e a l l y one would l i k e a continuous r e a c t o r system to operate i n d e f i n i t e l y a t the d e s i r e d s t e a d y - s t a t e . U n f o r t u n a t e l y , a number of f a c t o r s can cause s h o r t e r runs. Formation o f w a l l polymer and l a t e x f l o c c u l a t i o n i s one such problem. T h i s phenomenon can reduce r e a c t o r performance ( f o r example, l o s s o f heat t r a n s f e r ) , lower product q u a l i t y , and shorten run time. Reactor design can have a s i g n i f i c a n t i n f l u e n c e on r e a c t o r performance i n a number of ways. Some aspects of r e a c t o r design such as heat t r a n s f e r , s t r u c t u r a l design, e t c . , are reasonably well-understood. Other phenomena such as mixing d e t a i l s , l a t e x f l o c c u l a t i o n , and the formation w a l l polymer are not completely understood. A recent patent (5) d e s c r i b e s r e a c t o r s used f o r continuous polychloroprene production which have some i n t e r e s t i n g f e a t u r e s and c l a i m s . These r e a c t o r s are shown i n F i g u r e s 4 and 5. They i n c l u d e the f o l l o w i n g f e a t u r e s : 1. They a r e operated completely f u l l thus p r o v i d i n g no w a l l s i n a vapor space which might be a p l a c e f o r l a t e x to d r y . 2. The i n s i d e s u r f a c e i s smooth w i t h rounded corners and no i n t e r n a l f i x t u r e s such as b a f f l e s . 3. The a x i a l - f l o w p r o p e l l e r s have been operated with a steady flow of 10-15 m /min/m3 r e a c t o r volume. They have a l s o been operated w i t h o s c i l l a t i n g motion. 4. The r e a c t o r i s completely surrounded by a j a c k e t f o r h e a t i n g and c o o l i n g . 5. Scale-up i s non-geometric w i t h length/diameter r a t i o s v a r y i n g from 2:1 to 30:1. The nongeometric scale-up helps to i n c r e a s e heat t r a n s f e r area as r e a c t o r volume i n c r e a s e s . 6. The a g i t a t o r s h a f t i s i n c l i n e d from 0° to 45° with the v e r t i c a l , and m u l t i p l e i m p e l l e r s are used with longer r e a c t o r s . A number of the above f e a t u r e s are i n c l u d e d to reduce f l o c c u l a t i o n and the formation of w a l l polymer. While fundament a l knowledge on f l o c c u l a t i o n or the formation of w a l l polymer i s inadequate to e s t a b l i s h the e f f e c t s of a l l r e a c t o r design v a r i a b l e s , the f e a t u r e s of the Bayer r e a c t o r seem q u a l i t a t i v e l y c o r r e c t . More fundamental work w i l l be necessary to develop an understanding of the i n f l u e n c e of design on r e a c t o r performance and product q u a l i t y . 3

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

POLYMERIZATION REACTORS AND PROCESSES

Figure 4.

Short polychloroprene

reactor

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

POEHLEiN

Continuous

Emukion

Polymerization

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

1.

Figure 5.

Polychloroprene reactor with multiple-impeller agitator

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

13

14

POLYMERIZATION REACTORS AND PROCESSES

Conclusions: The development of commercial continuous processes i n v o l v e s the c o n s i d e r a t i o n of many f a c t o r s a s s o c i a t e d w i t h process design and product q u a l i t y . Most of the f a c t o r s d i s c u s s e d i n t h i s paper w i l l be important. Other, e q u a l l y s i g n i f i c a n t parameters, may be important f o r s p e c i f i c polymer products. F a i l u r e t o d e a l w i t h any o f these problems may mean f a i l u r e to develop an economical process. Acknowledgment:

Downloaded by 210.240.63.180 on January 10, 2016 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch001

Support from the N a t i o n a l Science Foundation (Grants No. GK-36 489 and ENG 75-15 337) i s g r a t e f u l l y acknowledged. Literature Cited: 1. 2. 3. 4. 5.

U g e l s t a d , J . and Hansen, F.K., Rubber Chem. & Technology, (1976), 49(3), 536-609. P o e h l e i n , G.W. and Dougherty, D.J., Rubber Chem. & Technology, (1977), 50(3), 601-638. Berens, A.R., J. Appl. Polym. S c i . , 18, (1974), 2379. Gonzalez, P., R.A., M.S. T h e s i s , Dept. o f Chem. Eng., Lehigh U n i v e r s i t y , Bethlehem, Pa. (1974). German Patent No. 2,520,891 (1976), Assigned t o Bayer, A.G.

Note:

References 1. and 2. c o n t a i n extensive b i b l i o g r a p h i e s on emulsion p o l y m e r i z a t i o n k i n e t i c s and continuous emulsion polymerization respectively.

RECEIVED January 19, 1979.

In Polymerization Reactors and Processes; Henderson, J. Neil, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.