1 Controlling the Industrial Process Sources of Sulfur Oxides KONRAD SEMRAU
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
Stanford Research Institute, Menlo Park, Calif. 94025
Industrial process or "noncombustion" sources of sulfur oxides emission are frequently more significant locally than fossil fuel
combustion
sources.
The
most important
process
sources are: primary copper, lead, and zinc smelters; Claus sulfur plants; sulfuric acid plants; coke plants; iron ore sintering and pelletizing plants; regenerators of fluid catalytic cracking units; and sulfite pulp mills. In the future, Claus sulfur plants will become still more important sources because of growing hydrodesulfurization
of increasingly sour
petroleum stocks and because of future coal desulfurization to produce clean solid, liquid, and gaseous fuels. Control of sulfur oxides emissions from the industrial process sources is closely related to the technologies of the sources themselves, and changes in the process technologies may greatly improve the effectiveness and economy of emission control.
T o u r i n g the past decade, the principal concern with control of sulfur -
L
/
oxides emissions has been focused on flue gases from fuel combus-
tion, primarily the flue gases from power plants. F u e l combustion accounts for about three quarters of the estimated total sulfur oxide emissions in the United States.
However, the emissions from industrial
processes are frequently more significant than is indicated by their contribution (about one fifth) to the total emission. Whereas many of the combustion sources are individually small and widely dispersed, industrial operations are often relatively large and concentrated sources and may cause severe local pollution problems. Copper, zinc, and lead smelters, in particular, have a long and notorious history as pollution sources. It is only in recent years that individual power plants have become large enough that their sulfur oxide emissions
compare with those
smelters. 1 In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
from
2
S U L F U R
R E M O V A L
A N D R E C O V E R Y
T h e i n d u s t r i a l processes present b o t h s p e c i a l p r o b l e m s a n d s p e c i a l o p p o r t u n i t i e s t h a t are n o t e n c o u n t e r e d w i t h f u e l c o m b u s t i o n gases.
In
most cases, s u l f u r d i o x i d e concentrations i n t h e waste gases a r e h i g h e r t h a n i n c o m b u s t i o n gases, a n d there are greater o p p o r t u n i t i e s to r e c o v e r t h e s u l f u r d i o x i d e i n u s e f u l forms. T h e processes d e s i g n e d t o treat c o m b u s t i o n gases are n o t a l w a y s w e l l a d a p t e d to t r e a t i n g process F i n a l l y , changes i n t h e i n d u s t r i a l processes
f r e q u e n t l y present
gases. oppor
tunities f o r m o r e e c o n o m i c a l c o n t r o l a n d r e c o v e r y of t h e sulfur d i o x i d e . Emission Sources
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
T w o sets o f s u l f u r o x i d e e m i s s i o n estimates f o r t h e U n i t e d States, d r a w n f r o m E n v i r o n m e n t a l P r o t e c t i o n A g e n c y sources ( I , 2, 3) are p r e sented i n T a b l e s I a n d I I . T h e source categories i n t h e t w o tables are n o t consistent n o r a r e t h e estimates o f t h e total e m i s s i o n , e v e n a l l o w i n g f o r a 3-yr difference i n the base p e r i o d s . I t is also o b v i o u s t h a t c e r t a i n sources h a v e n o t b e e n a c c o u n t e d f o r i n t h e c o m p i l a t i o n s . N e v e r t h e l e s s , t h e esti mates d o i d e n t i f y most o f the i n d u s t r i a l sources a n d i n d i c a t e t h e i r r e l a t i v e m a g n i t u d e s . T h e d i s t r i b u t i o n s o f sources i n other nations a r e s i m i l a r t o those i n t h e U n i t e d States i n a n u m b e r o f r e p o r t e d instances Table I.
Estimated SO^ Emissions i n the United States (1970) SO χ Emission > tons/yr) a
Source
Category
Transportation F u e l c o m b u s t i o n i n s t a t i o n a r y sources I n d u s t r i a l process losses P u l p and paper C a l c i u m carbide Sulfuric acid plants C l a u s sulfur plants Coking P e t r o l e u m refining F l u i d catalytic cracking Thermal catalytic cracking Nonferrous metals Copper Z i n c a n d lead I r o n ore s i n t e r i n g a n d p e l l e t i z i n g S o l i d wastes d i s p o s a l Agricultural burning Miscellaneous C o a l refuse b u r n i n g Total a k
(4).
6
1.0 26.5 0.077 0.002 0.474 0.875 0.474 0.354 0.005 3.57 0.9 ?
Per cent of Total 2.88 76.42 0.22
—
6
1.37 2.52 1.37 1.02 0.01 10.30 2.72
—
0.1 0.1
0.29 0.29
0.2
0.58
34.68
100.00%
From Réf. 1. except as noted. Ref. 2.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
SE M R A U
Industrial
Table II.
Estimated SO* Emissions in the United States (1973)
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
Source
Process Sources
3
SOx Emission" (10* tons/yr)
Category
M o b i l e sources S t a t i o n a r y c o m b u s t i o n sources Steam—electric power I n d u s t r i a l boilers Metals P r i m a r y copper smelters P r i m a r y lead a n d zinc smelters Fuels industries P e t r o l e u m refineries N a t u r a l gas Chemicals Sulfuric acid Coking A c c i d e n t a l fires Total a
Per cent of Total
1.15
2.37
28.15 7.77
58.04 16.02
4.45 0.57
9.18 1.18
4.40 0.54
9.07 1.11
0.83 0.44 0.19
1.71 0.91 0.39
48.50
100.00%
From Ref. 8.
T h e s m e l t i n g of c o p p e r , l e a d , a n d z i n c f r o m sulfide ores is s e c o n d o n l y to f u e l c o m b u s t i o n U n i t e d States.
as a source of s u l f u r o x i d e emissions
H o w e v e r , i t seems c l e a r t h a t t h e greater p a r t of t h e refinery comes f r o m t h e c o m b u s t i o n heaters.
i n the
P e t r o l e u m refineries s t a n d i n t h i r d p l a c e i n T a b l e I I . emissions
o f h i g h - s u l f u r fuels i n boilers o r process
F r o m a process s t a n d p o i n t t h e y s h o u l d b e classified as o r i g i n a t -
i n g f r o m t h e category of stationary c o m b u s t i o n sources; this appears to h a v e b e e n d o n e i n T a b l e I . T h e s t r i c t l y process sources i n refineries consist p r i m a r i l y o f C l a u s s u l f u r p l a n t t a i l gases a n d t h e regenerators o f catalytic cracking units. T h e t a i l gases o f C l a u s s u l f u r plants a r e a p p a r e n t l y t h e s e c o n d largest process
source after
nonferrous
smelters.
T h e C l a u s plants
convert
h y d r o g e n sulfide, w h i c h is m o s t l y d e r i v e d f r o m p e t r o l e u m r e f i n i n g o r t h e treatment o f n a t u r a l gas. M o s t o f t h e largest C l a u s p l a n t s i n t h e U n i t e d States a n d C a n a d a are i n s t a l l e d at n a t u r a l gas-treating plants (2).
I t is
i r o n i c that a l t h o u g h n a t u r a l gas is o u r cleanest fossil f u e l , its p r e p a r a t i o n for u s e is sometimes a major source of s u l f u r o x i d e p o l l u t i o n . I n F r a n c e , the C l a u s plants at t h e L a c q n a t u r a l gas p l a n t w e r e e s t i m a t e d to y i e l d 10%
o f t h e t o t a l s u l f u r o x i d e e m i s s i o n i n t h e n a t i o n f o r 1970 (4) a n d
h a v e b e e n a serious source o f p o l l u t i o n a n d a g r i c u l t u r a l d a m a g e ( 5 ) . T h e emissions
from
C l a u s plants c a n b e e x p e c t e d to present a n
i n c r e a s i n g l y serious p o t e n t i a l p r o b l e m i n t h e f u t u r e as p e t r o l e u m r e f i n eries operate o n i n c r e a s i n g l y sour crudes elsewhere
from the M i d d l e East a n d
a n d as plants a r e b u i l t to d e s u l f u r i z e substitute n a t u r a l gas
( S N G ) a n d l i q u i d fuels f r o m c o a l .
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
S u l f u r i c a c i d plants c o n t i n u e to be s u b s t a n t i a l sources of s u l f u r o x i d e emissions.
T h e emissions
estimates p r e s e n t e d
u m a b l y refer o n l y to emissions emissions sludge
f r o m plants p r o d u c i n g
i n Tables I and II pre-
f r o m s u l f u r - b u r n i n g a c i d plants. by-product
acid from
a c i d , a n d other s u c h sources are p r o b a b l y
smelter
The gases,
classified w i t h
the
emissions f r o m the a p p r o p r i a t e industries. R e l a t i v e l y l i t t l e d i r e c t i n f o r m a t i o n has b e e n p u b l i s h e d o n the s u l f u r o x i d e emissions f r o m
fluid
catalytic cracking ( F C C ) unit
regenerators
(6, 7 ) , a l t h o u g h the estimate i n T a b l e I indicates that the t o t a l is s u b stantial.
T h e s u l f u r r e m a i n i n g i n the coke d e p o s i t e d
o n the catalyst is
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
r e l a t e d to the s u l f u r content of t h e p e t r o l e u m feedstock. T h e s u l f u r o x i d e content of t h e regenerator flue gases f r o m units t r e a t i n g r e l a t i v e l y l o w s u l f u r feedstocks is r e p o r t e d to b e several h u n d r e d p p m .
However,
the
a u t h o r has b e e n i n f o r m e d p r i v a t e l y that units t r e a t i n g h i g h - s u l f u r M i d d l e E a s t e r n feedstocks m a y y i e l d flue gases c o n t a i n i n g 1 %
or m o r e of sulfur
dioxide. I n t h e steel i n d u s t r y the m o s t c o m m o n source of s u l f u r o x i d e e m i s sions is the b u r n i n g of c o k e o v e n gas that has n o t b e e n
desulfurized.
H o w e v e r , emissions f r o m i r o n ore sinter plants are r e c e i v i n g
considerable
a t t e n t i o n i n G e r m a n y a n d J a p a n , i f not y e t i n the U n i t e d States. P e l l e t i z i n g plants are another p o t e n t i a l l y significant source. I n G e r m a n y , sinter plants are e s t i m a t e d to be responsible for a b o u t 6 % oxide emission
of the t o t a l s u l f u r
(8).
T h e p a p e r p u l p i n g i n d u s t r y is r e p o r t e d l y not, i n t o t a l , a v e r y l a r g e e m i t t e r of s u l f u r oxides, a l t h o u g h i n d i v i d u a l plants m a y present problems.
local
K r a f t mills emit more malodorous reduced sulfur compounds,
whereas sulfite m i l l s are m o r e i m p o r t a n t as emitters of s u l f u r
dioxide.
T h e p u l p i n g processes ( p a r t i c u l a r l y sulfite) are most i n t e r e s t i n g because the c h e m i c a l r e c o v e r y cycles use b a s i c c h e m i s t r y that c o u l d
well
be
a p p l i e d to r e c o v e r y of s u l f u r d i o x i d e a n d s u l f u r f r o m the flue a n d process waste gases of other types of sources. F r o m t h e s t a n d p o i n t of s u l f u r r e c o v e r y , emphasized
the
recent experience has r e -
d e s i r a b i l i t y , i n most cases, of
processes t h a t
permit
r e c o v e r y of e l e m e n t a l sulfur. S u l f u r i c a c i d is the u s e f u l b y - p r o d u c t
that
is u s u a l l y most r e a d i l y a n d e c o n o m i c a l l y p r o d u c e d f r o m s u l f u r d i o x i d e , b u t i t cannot b e e c o n o m i c a l l y s h i p p e d for l o n g distances or be e c o n o m i c a l l y a n d safely stored for l o n g periods. long
distances
or
stored
indefinitely
E l e m e n t a l s u l f u r c a n be s h i p p e d with
minimal
environmental
problems. Nonferrous
Smelters
A large p a r t of t h e p e r t i n e n t l i t e r a t u r e to 1970 o n c o n t r o l of s u l f u r oxides f r o m c o p p e r , l e a d , a n d z i n c smelters was r e v i e w e d b y the a u t h o r
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
SE M R A U
Industrial
5
Process Sources
i n t w o p r e v i o u s papers (9, 10).
T h e o u t p u t of r e l a t e d p u b l i c a t i o n s has
g r e a t l y i n c r e a s e d since. T h e major n e w d e v e l o p m e n t s i n smelter e m i s s i o n c o n t r o l h a v e b e e n r e l a t e d to process changes outside t h e U n i t e d States.
and have
first
appeared
I n the U n i t e d States itself, c o n t r o l
devlop-
ments h a v e consisted m a i n l y of a d o p t i n g or a d a p t i n g systems or t e c h n i q u e s p i o n e e r e d a b r o a d . T h e c a p a b i l i t y for a h i g h degree of c o n t r o l b y l e a d a n d z i n c smelters is a c k n o w l e d g e d
{11,
12),
b u t w i t h respect
to
c o p p e r smelters, c o n t i n u i n g disputes center o n the a v a i l a b i l i t y of c o n t r o l methods for d i l u t e gases f r o m r e v e r b e r a t o r y furnaces a n d t h e a l l e g e d i m p r a c t i c a l i t y of
attaining 9 0 %
c o m p l e t e smelters ( I I , 13, 14).
or greater c o n t r o l of
emissions
from
I n a s m u c h as b o t h objectives h a v e b e e n
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
a t t a i n e d at c o p p e r smelters a b r o a d a n d are n o w b e i n g a p p r o a c h e d i n some installations i n the U n i t e d States, the disputes m u s t b e
regarded
as m o r e p o l i t i c a l t h a n t e c h n i c a l i n o r i g i n . Control Methods for Smelter Gases.
T h e favored control
method
for smelter gases continues to b e the m a n u f a c t u r e of s u l f u r i c a c i d b y t h e contact process, either d i r e c t l y or after p r e l i m i n a r y c o n c e n t r a t i o n of t h e s u l f u r d i o x i d e i n w e a k gases b y some c y c l i c a b s o r p t i o n process. as there is a use for the a c i d , this is u n q u e s t i o n a b l y the most
As long
economical
m e t h o d a v a i l a b l e . C o n s u m p t i o n of s u l f u r i c a c i d for l e a c h i n g of l o w - g r a d e a n d o x i d e - t y p e c o p p e r ores has i n c r e a s e d greatly. H o w e v e r , i t w i l l u l t i m a t e l y b e necessary to recover p a r t of the s u l f u r d i o x i d e i n s o m e other f o r m , p r e f e r a b l y as e l e m e n t a l sulfur. T h e A l l i e d C h e m i c a l C o r p . r e d u c t i o n process has b e e n a p p l i e d c o m m e r c i a l l y a n d o n a large scale to p y r r h o t i t e roaster gases c o n t a i n i n g a b o u t 1 2 % s u l f u r d i o x i d e (15, 16).
Application
to r i c h e r gases w i l l b e m o r e e c o n o m i c a l , a n d for leaner gases, use of a p r e l i m i n a r y c o n c e n t r a t i o n step is i n d i c a t e d (9,
10).
T h e A l l i e d C h e m i c a l process uses n a t u r a l gas as the r e d u c t a n t , w h i c h is u n d e s i r a b l e i n the face of the d i m i n i s h i n g supplies a n d i n c r e a s i n g costs of n a t u r a l gas.
H o w e v e r , there is no o b v i o u s reason w h y the process
cannot b e o p e r a t e d o n a p r o d u c e r gas g e n e r a t e d f r o m c o a l , as w a s d o n e earlier w i t h other processes ( 1 0 ) .
A n o t h e r process u s i n g o i l or p u l v e r i z e d
c o a l as the r e d u c t a n t has b e e n d e v e l o p e d b y O u t o k u m p u O y for use i n c o n j u n c t i o n w i t h the O u t o k u m p u flash s m e l t i n g process The
use
of
cyclic
absorption
processes for
(17).
concentrating
sulfur
d i o x i d e f r o m smelter gases is s t i l l v e r y l i m i t e d . If a n d w h e n s u l f u r d i o x i d e r e d u c t i o n is p r a c t i c e d , c o n c e n t r a t i o n processes m u s t b e u s e d m o r e extens i v e l y unless m e t a l l u r g i c a l processes are u s e d that d e l i v e r r i c h e r off-gases, p r o b a b l y w i t h s u l f u r d i o x i d e concentrations not l o w e r t h a n 20—25%.
The
A s a r c o D M A a b s o r p t i o n process (9,
use,
10)
is c o m i n g i n t o r e n e w e d
p a r t l y to p r o d u c e l i q u i d s u l f u r d i o x i d e a n d p a r t l y to p r o v i d e e n r i c h e d f e e d to s u l f u r i c a c i d p l a n t s .
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
6
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
A t the T a c o m a smelter, t h e D M A process is b e i n g u s e d o n c o p p e r c o n v e r t e r gas ( I S ) .
A t the A j o smelter, i t is also to be u s e d to treat
c o p p e r r e v e r b e r a t o r y f u r n a c e gases ( 1 9 ) .
T h e D M A process is n o t r e a l l y
w e l l s u i t e d to treat gases as d i l u t e as those f r o m r e v e r b e r a t o r y furnaces. It is m o r e e c o n o m i c for use o n c o n v e r t e r gases, o r p r e f e r a b l y , s t i l l r i c h e r gases ( 9 ) . A t the R o n n s k a r w o r k s of B o l i d e n A B i n S w e d e n , w h i c h i n c l u d e b o t h a c o p p e r a n d a l e a d smelter, a c y c l i c process u s i n g w a t e r as the absorbent concentrates s u l f u r d i o x i d e b o t h to p r o d u c e l i q u i d s u l f u r d i o x i d e a n d f o r f e e d to a c i d plants (20,21).
T h e process is r e p o r t e d to g i v e a n a b s o r p t i o n
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
efficiency of a b o u t 9 8 % o n gas c o n t a i n i n g 2 %
s u l f u r d i o x i d e . W a t e r is
n o t n o r m a l l y a f a v o r a b l e solvent for s u c h a n a p p l i c a t i o n b u t c a n b e u s e d i n this case b e c a u s e i t is a v a i l a b l e at a l o w t e m p e r a t u r e , less t h a n 5 ° C f o r most of t h e year.
Recovery
of s u l f u r d i o x i d e f r o m t h e
smelter is to b e i n c r e a s e d f r o m 90 to 9 5 %
by applying
complete
water-cooled
c o l l e c t i n g hoods a n d waste heat boilers to a l l the c o p p e r converters The Cominco
process,
(20).
w h i c h uses a s o l u t i o n of a m m o n i a as the
absorbent, has b e e n t r e a t i n g d i l u t e gases ( a b o u t 1 %
sulfur
dioxide)
f r o m l e a d ore s i n t e r i n g m a c h i n e s o n a l a r g e scale for m o r e t h a n 30 y r (10,
T h e gases m u s t be c l e a n e d a n d c o n d i t i o n e d b e f o r e e n t e r i n g
22).
the absorber.
T h e r e a f t e r , the o r i g i n a l source of t h e gases is i m m a t e r i a l ,
a n d the process c o u l d b e u s e d to treat gases f r o m c o p p e r r e v e r b e r a t o r y furnaces, a l t h o u g h i t has not a c t u a l l y b e e n so u s e d . A b s o r p t i o n processes for s u l f u r d i o x i d e t h a t use a m m o n i a as the absorbent h a v e b e e n w i d e l y s t u d i e d a n d a p p l i e d c o m m e r c i a l l y i n processes s u c h as p u l p a n d p a p e r m a n u f a c t u r e (23,
24).
T h e p r i n c i p a l variations appear i n the recovery
cycles f o l l o w i n g the a b s o r p t i o n step. I n the C o m i n c o process, the spent absorbent is a c i d i f i e d w i t h s u l f u r i c a c i d to release c o n c e n t r a t e d d i o x i d e a n d to f o r m a m m o n i u m sulfate as a b y - p r o d u c t . c o n j u n c t i o n w i t h a s u l f u r i c a c i d p l a n t is g e n e r a l l y necessary.
sulfur
Operation in W h e r e i t is
d e s i r a b l e to conserve a m m o n i a a n d r e d u c e a m m o n i u m sulfate p r o d u c t i o n , the s u l f u r d i o x i d e c a n be s t e a m - s t r i p p e d f r o m the r i c h solvent. process v a r i a t i o n w a s once u s e d for a p e r i o d b y C o m i n c o (10)
r e c e n t l y b e e n i n v e s t i g a t e d b y Electricité de F r a n c e for use o n p l a n t gases ( 2 5 ) .
This
a n d has power
I f i t is d e s i r e d to use a t h r o w a w a y process, t h e a m -
m o n i a a b s o r p t i o n process c a n be o p e r a t e d
as a d o u b l e - a l k a l i system.
T r e a t i n g the spent absorbent w i t h l i m e p r e c i p i t a t e s c a l c i u m sulfate a n d sulfite a n d releases a m m o n i a for r e t u r n to the a b s o r p t i o n system.
This
p r o c e d u r e w a s u s e d i n p a r t i n the G u g g e n h e i m process s t u d i e d i n t h e 1930's (26) 27).
a n d has b e e n r e c e n t l y r e v i v e d i n F r a n c e a n d J a p a n
(26,
T h e same a m m o n i a r e c o v e r y process is also u s e d i n the A r b i t e r
process for l e a c h i n g c o p p e r ores
(28).
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
S E M R A U
Industrial
7
Process Sources
O t h e r a b s o r p t i o n processes u s i n g s o l u b l e bases, s u c h as s o d i u m , o r adaptations of the contact s u l f u r i c a c i d process (29, a v a i l a b l e for t r e a t i n g d i l u t e smelter gases.
30)
are p o t e n t i a l l y
H o w e v e r , there is no reason
to expect that a n y of t h e m s h o u l d be a p p r e c i a b l y , i f at a l l , less expensive t h a n the a m m o n i a - b a s e processes. T h e O n a h a m a smelter i n J a p a n illustrates the degree of
emission
c o n t r o l a t t a i n a b l e at a c o n v e n t i o n a l c o p p e r smelter, u s i n g c o n v e n t i o n a l control techniques fitted
(31,
32).
T h e converters are e q u i p p e d w i t h t i g h t l y
hoods a n d w a s t e heat b o i l e r s , w h i c h m i n i m i z e s a i r i n f i l t r a t i o n a n d
raises the average s u l f u r d i o x i d e c o n c e n t r a t i o n i n the gas to 1 1 % b e f o r e
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
it enters a n e w d o u b l e - c o n t a c t s u l f u r i c a c i d p l a n t . T h e average s i o n efficiency is 9 9 . 8 % .
conver-
T h e gases f r o m the r e v e r b e r a t o r y f u r n a c e are
t r e a t e d i n the r e b u i l t single-contact s u l f u r i c a c i d p l a n t o r i g i n a l l y u s e d to treat the converter gases.
T h e s u l f u r d i o x i d e c o n c e n t r a t i o n i n the r e v e r -
b e r a t o r y f u r n a c e gas has b e e n i n c r e a s e d b y m i n i m i z i n g air i n f i l t r a t i o n a n d b y u s i n g oxygen. T h e f u r n a c e is fitted w i t h o x y g e n - f u e l roof b u r n e r s s i m i l a r to those u s e d i n o p e n - h e a r t h steel furnaces.
T h e sulfur dioxide
c o n c e n t r a t i o n i n t h e gas e n t e r i n g the a c i d p l a n t is 2 . 5 % . to m a k e t h e a c i d p l a n t autogenous f u e l - f i r e d heater.
(10),
T h i s is too l o w
so the gas is p r e h e a t e d i n a
T h e c o n v e r s i o n efficiency is 9 6 . 9 % .
T h e gas c l e a n i n g
a n d c o n d i t i o n i n g system for t h e r e v e r b e r a t o r y f u r n a c e gas uses r e f r i g e r a t i o n for d e h u m i d i f i c a t i o n so that c o n c e n t r a t e d a c i d is p r o d u c e d even f r o m the d i l u t e gas. E v e n m i n o r r e s i d u a l emissions f r o m the O n a h a m a smelter are treated. T h e t a i l gases f r o m the a c i d plants are s c r u b b e d w i t h caustic soda to r e d u c e the final s u l f u r d i o x i d e c o n c e n t r a t i o n to a b o u t 20 p p m . T h e c o n v e r t e r b u i l d i n g is enclosed to p r e v e n t escape to the atmosphere of u n t r e a t e d gases that leak f r o m the furnaces.
L e a k i n g gases are c o l l e c t e d as
close to the sources as possible a n d are s c r u b b e d i n a l i m e r o c k t o w e r b e f o r e release.
V i r t u a l l y a l l of the s u l f u r d i o x i d e f r o m t h e smelter is
reportedly contained
(32).
A f t e r the system d e s c r i b e d a b o v e was d e v i s e d , the O n a h a m a smelter was e x p a n d e d , a n d a c o m m e r c i a l magnesia-base a b s o r p t i o n system d e v e l o p e d b y the c o m p a n y w a s a p p l i e d to the r e v e r b e r a t o r y f u r n a c e gases (27).
As described
(27),
C h e m i c o - B a s i c process (33)
the process is essentially the same as
T h e m a g n e s i u m sulfite is d e c o m p o s e d i n a r o t a r y k i l n i n t h e presence added carbon.
the
a l t h o u g h e q u i p m e n t details are not r e p o r t e d . of
T h e m a g n e s i a is r e t u r n e d to the a b s o r p t i o n process, a n d
the r i c h k i l n gas stream ( 1 3 - 1 5 %
sulfur dioxide)
is sent to a s u l f u r i c
acid plant. H i g h degrees of s u l f u r oxides e m i s s i o n c o n t r o l are r e p o r t e d at the n e w e r Japanese c o p p e r smelters, w h e t h e r t h e y use c o n v e n t i o n a l or a d v a n c e d s m e l t i n g processes (31).
A l l the p l a n t s u s i n g r e v e r b e r a t o r y or
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8 flash
S U L F U R
R E M O V A L
s m e l t i n g furnaces r e p o r t r e c o v e r y of at least 9 0 %
A N D
R E C O V E R Y
of the s u l f u r .
O f three plants u s i n g flash smelters, K o s a k a reports a s u l f u r r e c o v e r y of 9 5 % and T o y o and Saganoseki report 9 6 % . A s i l l u s t r a t e d b y the O n a h a m a smelter, it is essential to m i n i m i z e the v o l u m e of the off-gases f r o m a source. T h e c a p i t a l a n d o p e r a t i n g costs of a c o n t r o l system are d e t e r m i n e d p r i m a r i l y b y t h e v o l u m e of gas that m u s t b e t r e a t e d (9, 10).
T h e g r o w i n g a p p l i c a t i o n of e m i s s i o n controls has l e d
r e c e n t l y to m u c h m o r e active d e v e l o p m e n t of methods a n d e q u i p m e n t f o r c a p t u r e a n d c o o l i n g of waste gases as w e l l as heat r e c o v e r y f r o m t h e m (34,35).
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
Smelting Processes. (36)
T h e experience of the T r a i l l e a d - z i n c smelter
a n d the O n a h a m a c o p p e r smelter (32)
has d e m o n s t r a t e d t h a t h i g h
degrees of e m i s s i o n c o n t r o l c a n b e a t t a i n e d e v e n at c o n v e n t i o n a l smelters t h a t e m i t w e a k gas streams. N e v e r t h e l e s s , the r e l a t i v e costs of c o n t r o l l i n g s u c h e m i s s i o n sources are necessarily h i g h . Costs c a n b e r a d i c a l l y r e d u c e d o n l y t h r o u g h process changes t h a t r e d u c e off-gas v o l u m e s a n d increase s u l f u r d i o x i d e concentrations ( 9 , 37).
It is p a r t i c u l a r l y d e s i r a b l e to p r o -
d u c e off-gases r i c h e n o u g h to b e f e d d i r e c t l y to a s u l f u r d i o x i d e r e d u c t i o n p l a n t w i t h o u t u s i n g a p r e l i m i n a r y c o n c e n t r a t i o n process. T h e n e e d for process modifications or changes does not arise o n l y o r e v e n p r i m a r i l y f r o m a i r p o l l u t i o n c o n t r o l considerations, e v e n t h o u g h these m a y affect the t i m i n g . T h e p r i m a r y c o p p e r , l e a d , a n d z i n c s m e l t i n g i n d u s t r y i n the U n i t e d States is l a r g e l y obsolete. A n u m b e r of z i n c a n d l e a d smelters w e r e r e c e n t l y closed p r i m a r i l y because the installations were no longer economically competitive
(38)
w i t h the m o r e
modern
smelters o p e r a t i n g a b r o a d . N e w or r e n o v a t e d smelters are r e p l a c i n g the abandoned
ones.
A l t h o u g h means are a v a i l a b l e for c o n t r o l l i n g the b u l k of the e m i s sions f r o m the c o n v e n t i o n a l l e a d a n d z i n c smelters, n e w processes b e i n g d e v e l o p e d offer greater e c o n o m y as w e l l as better emission c o n t r o l ( 9 , 1 0 ) . C o m i n c o L t d . r e c e n t l y a n n o u n c e d the d e v e l o p m e n t of a n e w process to r e p l a c e the c o n v e n t i o n a l l e a d s m e l t i n g process w i t h its s i n t e r i n g p l a n t s a n d blast furnaces
(39).
A great d e a l of n e w c o p p e r s m e l t i n g t e c h n o l o g y r e c e n t years, b u t m o s t l y outside the U n i t e d States (40,
has a p p e a r e d i n 41).
This tech-
n o l o g y is b e i n g a d o p t e d i n the U n i t e d States o n l y v e r y s l o w l y a n d w i t h s e e m i n g r e l u c t a n c e , p o s s i b l y b e c a u s e the cost of s m e l t i n g has b e e n
a
r e l a t i v e l y s m a l l p a r t of t h e t o t a l cost of c o p p e r p r o d u c t i o n — a t least u n t i l r e c e n t l y (42).
T h e l i m i t s of cost r e d u c t i o n elsewhere are n o w b e i n g a p -
p r o a c h e d , h o w e v e r , a n d the expense of s m e l t i n g is b e i n g i n c r e a s e d b y s u l f u r oxides c o n t r o l a n d the s h a r p l y i n c r e a s e d cost of f u e l ( 42, 43 ).
The
r e v e r b e r a t o r y s m e l t i n g f u r n a c e , b e c a u s e of its p o o r heat a n d mass transfer characteristics, has a v e r y h i g h f u e l c o n s u m p t i o n .
T h e l a r g e v o l u m e of
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
Industrial
S E M R A U
9
Process Sources
c o m b u s t i o n gases g e n e r a t e d n o t o n l y is a source of heat loss, b u t d i l u t e s the s u l f u r d i o x i d e p r o d u c e d a n d increases the gas c l e a n i n g p r o b l e m that exists e v e n w i t h o u t s u l f u r o x i d e c o n t r o l . C u r r e n t l y , t h e shortages of n a t u r a l gas a n d f u e l o i l are l e a d i n g the c o p p e r smelters to c o n s i d e r c o n v e r s i o n to c o a l firing (44).
S u c h c o n v e r s i o n is itself e x p e c t e d to b e a costly a n d
time-consuming operation. T h e O u t o k u m p u flash s m e l t i n g process (35, 45) flash
s m e l t i n g process (46)
a n d the I n c o o x y g e n
were originally developed
to r e d u c e
fuel
r e q u i r e m e n t s , b u t t h e y h a v e i n c i d e n t a l l y l e d to other process efficiencies a n d to m o r e effective a n d e c o n o m i c a l p o l l u t i o n c o n t r o l . T h e I n c o process
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
is autogenous
a n d p r o d u c e s a gas s t r e a m c o n t a i n i n g a b o u t 8 0 %
sulfur
d i o x i d e . T h e o r i g i n a l f o r m of t h e O u t o k u m p u process is n o t c o m p l e t e l y autogenous,
but
produces
off-gases
containing about
10-14%
sulfur
d i o x i d e , d e p e n d i n g o n the s u l f u r content of the ore concentrate t r e a t e d . M o r e r e c e n t l y , the a i r has b e e n e n r i c h e d w i t h o x y g e n to m a k e the process c o m p l e t e l y autogenous, r e d u c i n g the gas v o l u m e a n d i n c r e a s i n g t h e s u l f u r d i o x i d e c o n c e n t r a t i o n to 17 or 1 8 % (45).
O u t o k u m p u has also d e v e l o p e d
an associated process for r e d u c i n g t h e s u l f u r d i o x i d e to e l e m e n t a l s u l f u r w i t h c o a l o r o i l . T h i s process is n o w g o i n g into c o m m e r c i a l a p p l i c a t i o n T h e O u t o k u m p u flash s m e l t i n g process is w i d e l y u s e d t h r o u g h o u t
(17).
the w o r l d , b u t the first u n i t i n the U n i t e d States w i l l b e i n the n e w T y r o n e smelter
(18).
T h e e l e c t r i c s m e l t i n g f u r n a c e has a l r e a d y h a d a l o n g h i s t o r y of use a b r o a d (40, 47)
a n d has n o w r e p l a c e d the r e v e r b e r a t o r y f u r n a c e i n t w o
U . S . c o p p e r smelters, C o p p e r h i l l a n d I n s p i r a t i o n (18).
T h e volume
of
off-gas f r o m a n e l e c t r i c f u r n a c e is d e t e r m i n e d b y the tightness of the f u r n a c e enclosure, a n d i t is p r a c t i c a l to restrict a i r i n l e a k a g e sufficiently to p r o d u c e a gas r i c h e n o u g h for f e e d to a s u l f u r i c a c i d p l a n t (47). the I n s p i r a t i o n smelter, a n average s u l f u r d i o x i d e c o n c e n t r a t i o n of is a n t i c i p a t e d (48).
At 4-8%
H e a t transfer a n d c o n t r o l are g o o d i n the e l e c t r i c
f u r n a c e , a n d the t h e r m a l efficiency is h i g h (47,
49).
H o w e v e r , electric
s m e l t i n g i n d i r e c t l y partakes of the t h e r m a l inefficiency of t h e t h e r m a l p o w e r p l a n t , i f t h a t is the source of p o w e r .
H e n c e , it m a y n o t be as g e n -
e r a l l y f a v o r a b l e as autogenous flash s m e l t i n g . T h e c o n v e n t i o n a l c o n v e r t i n g process, w i t h its b a t c h o p e r a t i o n , i n h e r ently involves
fluctuations
i n the v o l u m e a n d s u l f u r d i o x i d e c o n c e n t r a t i o n
of the off-gases a n d thus c o m p l i c a t e s s u l f u r r e c o v e r y (42, 50). lem
The prob-
has b e e n p a r t i a l l y a l l e v i a t e d b y u s i n g i m p r o v e d hoods a n d w a s t e
heat boilers a n d b y u s i n g o x y g e n i n c o n v e r t i n g ( 9 ) .
T h e flash smelter
p r o d u c e s a r i c h e r matte, w h i c h reduces the w o r k that m u s t b e d o n e b y the converter
(45).
N e w types of converters are a p p e a r i n g that offer
better facilities for gas c o n t a i n m e n t t h a n does the c o n v e n t i o n a l P i e r c e Smith
converter
(49).
The
I n s p i r a t i o n smelter is b e i n g
fitted
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
with
10
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
H o b o k e n s i p h o n converters, the first u s e d i n the U n i t e d States
(48).
T h e t o p - b l o w n r o t a r y converter, u s i n g o x y g e n , has b e e n a p p l i e d to n i c k e l s m e l t i n g a n d c o n v e r t i n g (51). f o r autogenous
concentrate
It is a p p l i c a b l e to c o p p e r s m e l t i n g , b o t h s m e l t i n g a n d for m a t t e c o n v e r s i o n
(49).
Tests h a v e i n d i c a t e d t h a t the average s u l f u r d i o x i d e concentrations i n the off-gases c a n b e as h i g h as 2 5 - 5 0 %
(49,
52).
I d e a l l y , a c o n t i n o u s process i n c o r p o r a t i n g b o t h s m e l t i n g a n d c o n v e r t i n g steps c a n y i e l d a single, steady processed for s u l f u r r e c o v e r y .
flow
of off-gas that is r e a d i l y
T h r e e s u c h processes, the W O R C R A , the
M i t s u b i s h i , a n d the N o r a n d a , h a v e b e e n tested o n a s e m i c o m m e r c i a l
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
scale (44,
53, 54),
a n d a f u l l - s c a l e c o m m e r c i a l p l a n t of the N o r a n d a
process is u n d e r c o n s t r u c t i o n ( 55 ). A l l the processes p r o d u c e gas streams r i c h e n o u g h for f e e d to a s u l f u r i c a c i d p l a n t , a n d the use of o x y g e n c a n p r o d u c e s t i l l r i c h e r gases.
W i d e a p p l i c a t i o n of a n y of these processes
a w a i t s c o m p l e t i o n of c o m m e r c i a l d e v e l o p m e n t . A n o t h e r a p p r o a c h to c o p p e r s m e l t i n g ( o x i d e s m e l t i n g ) , a l r e a d y i n use a b r o a d , is b e i n g i n c o r p o r a t e d i n t o a n e w smelter i n A r i z o n a b y H e c l a M i n i n g C o . (18).
T h e sulfide ore is to b e roasted to sulfate i n a fluid b e d
roaster ( 56 ) a n d the r i c h off-gas f e d to a s u l f u r i c a c i d p l a n t . T h e s u l f u r i c a c i d w i l l b e u s e d to l e a c h t h e c a l c i n e d ore, a n d t h e c o p p e r
will
be
r e c o v e r e d b y e l e c t r o w i n n i n g . A r e l a t e d c o m m e r c i a l process, the B r i x l e g g E l e c t r o - S m e l t i n g Process, e m p l o y s d e a d r o a s t i n g of the c o p p e r ore, f o l l o w e d b y p y r o m e t a l l u r g i c a l r e d u c t i o n of the oxide c a l c i n e w i t h c a r b o n i n an electric furnace
(57).
A m o n g the v a r i o u s h y d r o m e t a l l u r g i c a l processes f o r c o p p e r r e c o v e r y , those i n c o r p o r a t i n g a c o n t r o l l e d o x i d a t i o n of the sulfide ore to e l e m e n t a l s u l f u r are of p a r t i c u l a r interest (9, 58).
T h e y a v o i d the p r o d u c t i o n of
p o s s i b l y u n n e e d e d s u l f u r i c a c i d or t h e costly c o l l e c t i o n a n d subsequent r e d u c t i o n of s u l f u r d i o x i d e . Sulfuric
Acid
Plants
T h e means for r e d u c i n g the s u l f u r d i o x i d e emissions f r o m s u l f u r i c a c i d plants are a l r e a d y r e l a t i v e l y w e l l d e v e l o p e d .
contact
A n y sulfur
d i o x i d e r e c o v e r e d as s u c h c a n b e r e c y c l e d to the a c i d p l a n t for c o n v e r s i o n to a c i d . T h e most p o p u l a r a p p r o a c h , at least i n n e w p l a n t s , appears to b e the d o u b l e - c o n t a c t process (59, 60) b a s i c contact process itself.
w h i c h is s i m p l y a n extension of the
I n s u l f u r - b u r n i n g p l a n t s , this presents
no
serious p r o b l e m s , b u t w h e r e the a c i d p l a n t is o p e r a t i n g o n a r e l a t i v e l y d i l u t e process gas, i t m a y n o t b e p o s s i b l e to operate a u t o g e n o u s l y
(10).
I n t h e latter instance, the d o u b l e - c o n t a c t process c a n s t i l l b e u s e d , b u t a u x i l i a r y h e a t m u s t b e s u p p l i e d (61).
S o m e forms of the d o u b l e - c o n t a c t
process are r e p o r t e d c a p a b l e of o p e r a t i n g a u t o g e n o u s l y w i t h s u l f u r d i -
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
Industrial
S E M R A U
11
Process Sources
o x i d e concentrations as l o w as 5 %
(62).
Applications now being made
to smelter gases are assisted b y measures to l i m i t infiltration of a i r i n t o gas c o l l e c t i o n systems. The
conversion
efficiencies
of
double-contact
systems
reportedly
r a n g e f r o m 9 9 . 5 % to as h i g h as 9 9 . 9 % , w i t h exit sulfur d i o x i d e c o n c e n trations r a n g i n g f r o m a b o u t 500 p p m to as l o w as 100 p p m (60, These conditions obviously depend
62).
o n the i n i t i a l gas c o n d i t i o n s a n d
system d e s i g n factors. E x i s t i n g single-contact a c i d p l a n t s c a n also b e c o n v e r t e d to d o u b l e contact plants (63).
I n s u c h cases, h o w e v e r , u s i n g a d d - o n
scrubber
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
systems is a n a l t e r n a t i v e , a n d s e v e r a l s u c h systems h a v e b e e n u s e d c o m m e r c i a l l y . T h e C o m i n c o a m m o n i a a b s o r p t i o n process has b e e n u s e d for m a n y years (22,
64).
L o r d process ( 6 6 )
T h e L u r g i S u l f a c i d process
(65)
and Wellman-
h a v e h a d m o r e recent a n d l i m i t e d use.
The Mitsu-
b i s h i - J E C C O process has also b e e n a p p l i e d to a c i d p l a n t t a i l gases
(27,
b u t t h e g y p s u m b y - p r o d u c t w o u l d b e essentially a waste i n the
67, 68),
U n i t e d States. I n J a p a n , o p e n - c y c l e s c r u b b i n g of w a s t e gases w i t h s o d i u m h y d r o x i d e or c a r b o n a t e solutions has b e e n p o p u l a r f o r t r e a t i n g gas streams ( i n c l u d i n g s u l f u r i c a c i d p l a n t t a i l gases ) that c o n t a i n r e l a t i v e l y s m a l l t o t a l q u a n t i ties of s u l f u r d i o x i d e (27).
A b s o r b e n t r e g e n e r a t i o n has b e e n u n n e c e s s a r y
because the s o d i u m sulfite or sulfate c o u l d b e s o l d to k r a f t p u l p m i l l s . T h e U n i o n C a r b i d e P u r a s i v S is a fixed-bed a d s o r p t i o n process u s i n g a m o l e c u l a r sieve adsorbent.
It removes s u l f u r d i o x i d e f r o m the c l e a n ,
d r y t a i l gases of contact s u l f u r i c a c i d p l a n t s . T w o or m o r e adsorbers are o p e r a t e d i n sequence;
the l o a d e d b e d is r e g e n e r a t e d b y a s t r e a m of
h e a t e d a i r that desorbs the s u l f u r d i o x i d e a n d t h e n is f e d to t h e i n l e t of the s u l f u r i c a c i d p l a n t . T h e first c o m m e r c i a l p l a n t of this t y p e is n o w o p e r a t i n g o n t h e t a i l gases of a single-contact a c i d p l a n t t h a t processes a m i x t u r e of spent a l k y l a t i o n a c i d a n d h y d r o g e n sulfide f r o m a r e f i n e r y (69,
70).
I t is r e p o r t e d to r e d u c e the exit sulfur d i o x i d e c o n c e n t r a t i o n
f r o m a b o u t 4000 p p m ( a v e r a g e ) to 1 5 - 2 5 p p m
Claus Sulfur
(69).
Plants
T h e h y d r o g e n sulfide present i n n a t u r a l gas, S N G , t o w n gas, a n d synthesis gas m u s t b e r e m o v e d for the sake of p r o d u c t gas
quality.
H e n c e , t e c h n o l o g y for r e m o v i n g h y d r o g e n sulfide f r o m gases has b e e n e x t e n s i v e l y d e v e l o p e d a n d is itself t h e subject of a v o l u m i n o u s literature (71, 72).
F r o m t h e s t a n d p o i n t of e c o n o m i c r e c o v e r y of sulfur, the c h e m -
istry of h y d r o g e n sulfide is s u b s t a n t i a l l y m o r e t r a c t a b l e t h a n that of sulfur dioxide.
F o r t h e most p a r t , these processes are n o t w i t h i n the
chosen scope of the present p a p e r .
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
12
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
O n c e r e c o v e r e d f r o m gas streams, h y d r o g e n sulfide m u s t g e n e r a l l y b e c o n v e r t e d e i t h e r to s u l f u r i c a c i d or, m o r e c o m m o n l y , to e l e m e n t a l sulfur.
T h e C l a u s process is the s t a n d a r d one for c o n v e r t i n g h y d r o g e n
sulfide to e l e m e n t a l s u l f u r .
A few
a b s o r p t i o n processes, s u c h as the
S t r e t f o r d (71, 72, 7 3 ) , t h a t also o x i d i z e t h e a b s o r b e d h y d r o g e n sulfide to e l e m e n t a l s u l f u r are u s e d p r i m a r i l y to treat gas streams c o n t a i n i n g o n l y r e l a t i v e l y l o w concentrations of h y d r o g e n sulfide. T h e c o n v e r s i o n of h y d r o g e n sulfide to e l e m e n t a l s u l f u r i n the C l a u s process is l i m i t e d b y a c o m b i n a t i o n of e q u i l i b r i u m a n d k i n e t i c factors. O v e r the past d e c a d e , t h e pressures of a i r p o l l u t i o n c o n t r o l r e q u i r e m e n t s
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
h a v e r e s u l t e d i n m a j o r i m p r o v e m e n t s i n the d e s i g n a n d o p e r a t i o n of C l a u s p l a n t s , w i t h consequent increases i n c o n v e r s i o n a n d r e d u c t i o n of s u l f u r oxides emissions ( 74-79 ). N e v e r t h e l e s s , emissions s t i l l c o m m o n l y e x c e e d the p e r m i s s i b l e l i m i t s c o m i n g into force b o t h i n the U n i t e d States a n d a b r o a d . S u l f u r d i o x i d e r e d u c t i o n plants present s i m i l a r p r o b l e m s . A p a r t f r o m the i n i t i a l f u r n a c e or reactor, t h e y are essentially C l a u s p l a n t s . T h e effluent streams f r o m C l a u s p l a n t s c o n t a i n u n r e a c t e d h y d r o g e n sulfide a n d s u l f u r d i o x i d e a n d e l e m e n t a l s u l f u r present as v a p o r a n d m i s t (77).
They commonly
also c o n t a i n c a r b o n y l sulfide a n d
carbon
d i s u l f i d e f o r m e d b y reactions w i t h h y d r o c a r b o n s present i n t h e f e e d gas (77).
I t is u s u a l l y r e q u i r e d that t h e t a i l gas b e i n c i n e r a t e d , e v e n t h o u g h
not otherwise t r e a t e d , to c o n v e r t t h e h y d r o g e n sulfide, c a r b o n y l sulfide, a n d c a r b o n d i s u l f i d e to the less toxic a n d m a l o d o r o u s s u l f u r d i o x i d e . S i n c e t h e c o n v e r s i o n l i m i t e v e n i n i m p r o v e d C l a u s p l a n t s is not r e a d i l y r a i s e d a b o v e a b o u t 9 7 % , the emphasis i n emission c o n t r o l has n o w passed to u s i n g t a i l gas-treating p l a n t s to attain o v e r a l l c o n v e r s i o n efficiencies of 9 9 % or m o r e .
T h e e c o n o m i c s of c o n t r o l at C l a u s p l a n t s
a r e p r o b a b l y m o r e f a v o r a b l e t h a n i n a n y other case r e q u i r i n g c o n t r o l of d i l u t e gas streams (i.e., those c o n t a i n i n g less t h a n about 2 - 3 %
sulfur
d i o x i d e ). T h e r e are three p r i n c i p a l approaches to t a i l gas t r e a t m e n t : 1. C o n t i n u a t i o n of the C l a u s r e a c t i o n at l o w e r e d temperatures, o n a s o l i d catalyst or i n a l i q u i d m e d i u m . 2. C a t a l y t i c hydrogénation of the s u l f u r d i o x i d e , c a r b o n y l sulfide, a n d c a r b o n d i s u l f i d e i n t h e t a i l gas to r e f o r m h y d r o g e n sulfide, w h i c h is subsequently recovered b y absorption. 3. I n c i n e r a t i o n of the t a i l gas a n d c o n v e r s i o n of a l l s u l f u r c o m p o u n d s to s u l f u r d i o x i d e , f o l l o w e d b y one of the s u l f u r d i o x i d e c o n t r o l systems. T h e first class of systems is i l l u s t r a t e d b y the S u l f r e e n (80, 81, a n d I F P (83, 84)
processes.
82)
I n the S u l f r e e n process the C l a u s r e a c t i o n
takes p l a c e o n t h e c a r b o n or a l u m i n a catalyst i n a
fixed-bed
reactor. A t
the r e d u c e d t e m p e r a t u r e , the c o n v e r s i o n e q u i l i b r i u m is i m p r o v e d , b u t the s u l f u r is r e t a i n e d o n t h e catalyst as a l i q u i d a n d m u s t b e r e m o v e d b y
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
Industrial
S E M R A U
13
Process Sources
h o t inert gas i n a r e g e n e r a t i o n
cycle.
I n the I F P process the C l a u s
r e a c t i o n takes p l a c e i n a h i g h - b o i l i n g solvent glycol)
(typically a polyalkylene
c o n t a i n i n g a catalyst. C a r b o n y l sulfide a n d c a r b o n d i s u l f i d e are
not affected.
T h e p r o d u c t s u l f u r is d r a w n off as a l i q u i d . T h e
of the S u l f r e e n a n d I F P processes are about 7 5 - 9 0 % ,
efficiencies
so that n e i t h e r
process is e c o n o m i c a l l y s u i t a b l e for a t t a i n i n g the v e r y l o w exit c o n c e n trations r e a c h e d w i t h some of the other processes. T h e s e c o n d class of systems is i l l u s t r a t e d b y the B e a v o n ( 73, 85 ) a n d S h e l l S C O T (86)
processes. I n each process a c o b a l t m o l y b d a t e catalyst
p r o m o t e s hydrogénation of the s u l f u r d i o x i d e a n d e l e m e n t a l s u l f u r to
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
h y d r o g e n sulfide. It also catalyzes the h y d r o l y s i s of the c a r b o n y l sulfide a n d c a r b o n disulfide to h y d r o g e n sulfide. T h e gas stream is t h e n c o o l e d , the w a t e r v a p o r is c o n d e n s e d out, a n d t h e h y d r o g e n sulfide is r e c o v e r e d . I n the B e a v o n process, the h y d r o g e n sulfide is a b s o r b e d a n d o x i d i z e d to e l e m e n t a l s u l f u r b y the S t r e t f o r d process.
I n the S C O T process, the
h y d r o g e n sulfide is c o n c e n t r a t e d b y a b s o r p t i o n i n a n a l k a n o l a m i n e s o l u t i o n , a n d t h e c o n c e n t r a t e d h y d r o g e n sulfide s t r i p p e d f r o m the is r e c y c l e d to the C l a u s u n i t .
absorbent
B o t h the B e a v o n a n d S C O T processes
consist of c o m b i n a t i o n s of p r e v i o u s l y u s e d a n d essentially c o n v e n t i o n a l technologies.
The
concentrations
S t r e t f o r d system r e p o r t e d l y
of h y d r o g e n
gives m u c h l o w e r
sulfide t h a n does a l k a n o l a m i n e
exit
scrubbing,
b u t is c h e m i c a l l y a n d m e c h a n i c a l l y m u c h m o r e c o m p l e x . T h e t h i r d class of c o n t r o l systems m a y use a n y of t h e s u l f u r d i o x i d e c o n t r o l systems; a m o n g those u s e d c o m m e r c i a l l y are the H a l d o r T o p s o e (5, 8 0 ) , W e l l m a n - L o r d (27, 67),
a n d C h i y o d a (27, 67, 87)
systems.
The
circumstances are g e n e r a l l y h i g h l y f a v o r a b l e for r e c o v e r y processes that p r o d u c e a stream of c o n c e n t r a t e d sulfur d i o x i d e , since this c a n be r e c y c l e d to the C l a u s p l a n t . T h e a p p l i c a t i o n of processes that p r o d u c e s u l furic
acid
or
s o l i d wastes
will
be
dictated
only
by
peculiar
local
circumstances. O n e subclass
of
sulfur dioxide
recovery
processes incorporates
l i q u i d - p h a s e v a r i a t i o n of the C l a u s r e a c t i o n for r e g e n e r a t i n g
the
a ab-
sorbent a n d d i r e c t l y p r o d u c i n g e l e m e n t a l s u l f u r . Processes of this t y p e are the Stauffer A q u a c l a u s process (88),
w h i c h w a s d e v e l o p e d specifically
for C l a u s p l a n t t a i l gases, a n d the B u r e a u of M i n e s C i t r a t e process
(89).
I n e a c h , the absorbent is t h e s o d i u m salt of a stable, n o n v o l a t i l e w e a k a c i d , w h i c h forms a basic s o l u t i o n b y h y d r o l y s i s . T h e a n i o n of the a c i d buffers the s o l u t i o n as a c i d is f o r m e d b y the a b s o r p t i o n of s u l f u r d i o x i d e . T h e spent absorbent, w h i c h consists of a s o l u t i o n of s o d i u m sulfite a n d bisulfite a n d of the w e a k a c i d , is c o n t a c t e d d i r e c t l y w t i h h y d r o g e n sulfide. T h e h y d r o g e n sulfide reacts w i t h the sulfite a n d b i s u l f i t e to y i e l d elem e n t a l s u l f u r , a n d the regenerated basic salt s o l u t i o n is r e c i r c u l a t e d t o the a b s o r p t i o n step.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
I n the B u r e a u of M i n e s process the absorbent is s o d i u m c i t r a t e ; that u s e d i n the A q u a c l a u s process has b e e n i d e n t i f i e d as s o d i u m (90).
phosphate
A s is c o m m o n i n s i m i l a r processes, some of the s u l f u r d i o x i d e is
o x i d i z e d to sulfate, w h i c h is n o t r e a d i l y regenerated, a n d t h i o s u l f a t e a n d p o l y t h i o n a t e s are also f o r m e d (88, 89).
C o n s e q u e n t l y , i t is necessary to
d r a w off p u r g e streams of the absorbents, recover t h e citrate a n d p h o s p h a t e for reuse, a n d d i s c a r d t h e sulfate a n d thionates. Losses of citrate a n d p h o s p h a t e i n this o p e r a t i o n c a n g r e a t l y affect the e c o n o m i c s of the processes. I F P has d e v e l o p e d
a n a m m o n i a a b s o r p t i o n process
t h a t is
(91)
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
p a r a l l e l to the C i t r a t e a n d A q u a c l a u s processes i n s o m e respects.
The
s u l f u r d i o x i d e is a b s o r b e d i n a m m o n i a s o l u t i o n i n a g e n e r a l l y c o n v e n t i o n a l m a n n e r . T h e spent absorbent c o n t a i n i n g a m m o n i u m sulfite a n d bisulfite is d e c o m p o s e d b y h e a t i n g i n a n evaporator, a n d the r e s u l t i n g a m m o n i a , s u l f u r d i o x i d e , a n d w a t e r v a p o r are sent to a n I F P l i q u i d - p h a s e C l a u s reactor (83)
i n t o w h i c h h y d r o g e n sulfide is also injected. T h e h y d r o g e n
sulfide a n d s u l f u r d i o x i d e react to f o r m e l e m e n t a l s u l f u r , a n d the a m m o n i a , w h i c h is not affected, passes t h r o u g h the reactor a n d is r e c y c l e d to the absorber.
T h e n o n v o l a t i l e sulfate a n d thionates f r o m t h e sulfite
e v a p o r a t o r pass to a sulfate r e d u c t i o n reactor w h e r e t h e y are r e d u c e d to s u l f u r d i o x i d e w i t h h y d r o g e n sulfide (27,
91).
T h e sulfur dioxide from
this o p e r a t i o n also is sent to the I F P reactor. I t has b e e n suggested (80, 88)
t h a t the A q u a c l a u s or C i t r a t e process
m i g h t be s u b s t i t u t e d for the c o n v e n t i o n a l C l a u s p l a n t to c o n v e r t a l l t h e h y d r o g e n sulfide to e l e m e n t a l sulfur. O n e m a j o r factor d e t e r m i n i n g the p r a c t i c a l i t y of this a p p r o a c h is t h e p r o b l e m of s e p a r a t i n g the sulfate a n d thionates f r o m t h e p h o s p h a t e o r citrate. A secondary process system to r e c o v e r s o d i u m a n d s u l f u r f r o m the p u r g e d absorbent w i l l b e a v i r t u a l necessity at a n y l a r g e i n s t a l l a t i o n . T h e c a p i t a l cost of a C l a u s s u l f u r p l a n t s t r o n g l y depends t o t a l gas flow (77),
d e t e r m i n e d p r i m a r i l y b y the gas flow
o n the
a n d the costs for a t a i l g a s - t r e a t i n g system w i l l b e flow.
C o n s e q u e n t l y , r e d u c i n g the gas
c a n s i g n i f i c a n t l y r e d u c e b o t h c a p i t a l a n d o p e r a t i n g costs.
A major,
i f not the largest, p a r t of the gas i n the C l a u s system is n i t r o g e n w h i c h is i n t r o d u c e d i n the a i r u s e d to c o m b u s t the h y d r o g e n sulfide, a n d i n t o the t a i l gas w h e n t h e latter is i n c i n e r a t e d (72,
77).
T h e gas v o l u m e c o u l d
b e g r e a t l y r e d u c e d b y u s i n g o x y g e n i n s t e a d of a i r to s u p p o r t the c o m b u s t i o n (72,
77).
T h e cost savings f r o m t h e use of o x y g e n w o u l d p r o b -
a b l y not b e sufficient to j u s t i f y c o n s t r u c t i n g a n o x y g e n p l a n t solely t o s u p p l y the C l a u s p l a n t , b u t i f a n o x y g e n p l a n t w e r e r e q u i r e d f o r other purposes
a n y w a y , p r o v i d i n g i n c r e m e n t a l c a p a c i t y to s u p p l y t h e C l a u s
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
SE M R A U
Industrial
15
Process Sources
p l a n t as w e l l m i g h t h a v e m e r i t . I n p e t r o l e u m refineries p r o d u c i n g i n t e r m e d i a t e - B t u f u e l gas f r o m o i l or i n S N G p l a n t s , s u c h o x y g e n p l a n t s w i l l g e n e r a l l y be r e q u i r e d .
Petroleum
Refineries
P e t r o l e u m refineries, a l o n g w i t h n a t u r a l gas p r o c e s s i n g p l a n t s , are p r o b a b l y the best situated s u l f u r oxides sources w i t h respect to e m i s s i o n c o n t r o l . T h e a v a i l a b i l i t y of h y d r o g e n sulfide a l l o w s r e a d y processing
of
r e c o v e r e d s u l f u r d i o x i d e to e l e m e n t a l s u l f u r for d i s p o s a l . Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
I n U . S . refineries at least, the largest source of s u l f u r o x i d e emissions is u n d o u b t e d l y the b u r n i n g of h i g h - s u l f u r fuels, i n c l u d i n g sour refinery gases, r e s i d u a l o i l , h e a v y refinery residues, a n d p e t r o l e u m coke. D u r i n g refinery upsets, the flaring of large amounts of u n t r e a t e d refinery gas m a y also result i n h i g h s h o r t - t e r m s u l f u r oxide e m i s s i o n rates. T h e pressure of air p o l l u t i o n c o n t r o l regulations is r e s u l t i n g i n g e n e r a l treatment of r e finery
gases.
H y d r o g e n sulfide is b e i n g r e m o v e d
b y w e l l established
t e c h n o l o g y a n d c o n v e r t e d to e l e m e n t a l s u l f u r i n C l a u s p l a n t s .
Desulfur-
i z e d r e s i d u a l o i l m i g h t be u s e d , w h e r e a v a i l a b l e , to r e p l a c e t h e l i q u i d fuels, b u t it has b e e n c o m m o n p r a c t i c e for refineries to c o n s u m e t h e i r lowest g r a d e residues i n t h e i r o w n operations. F l u e gas s c r u b b i n g systems m i g h t be u s e d to c o n t r o l the s u l f u r d i o x i d e e m i t t e d f r o m b u r n i n g of s u c h fuels. T h i s is b e i n g d o n e to a l i m i t e d extent i n J a p a n (27).
However, an
a l t e r n a t i v e a p p r o a c h is to gasify the residues to p r o d u c e a l o w - B t u f u e l gas, u s i n g a process s u c h as the S h e l l G a s i f i c a t i o n Process, ( S G P )
(92).
T h i s w o u l d p e r m i t r e c o v e r y of the s u l f u r as h y d r o g e n sulfide, u s i n g the same processes e m p l o y e d to treat the refinery gases. T h e S h e l l G a s i f i c a t i o n Process has b e e n a p p l i e d o n a f a i r l y large c o m m e r c i a l scale T h e s u l f u r oxide emissions f r o m the regenerators of
fluid
(93). catalytic
c r a c k i n g units m a y b e c o n t r o l l e d either b y h y d r o t r e a t i n g the f e e d to the c a t a l y t i c c r a c k e r or b y s c r u b b i n g the flue gas f r o m t h e regenerator
(7).
H y d r o t r e a t i n g the feedstock presents several process advantages i n a d d i t i o n to emission r e d u c t i o n a n d is a l r e a d y i n use (7, 94, 95). t h e regenerator flue gas has b e e n p r o p o s e d (7, 96), tions a p p e a r to be i n service.
I t is r e p o r t e d
(97)
Scrubbing
b u t no s u c h i n s u l a that t h e first k n o w n
w e t s c r u b b e r i n s t a l l a t i o n for regenerator flue gas w i l l go i n t o service at the E x x o n refinery at B a y t o w n , T e x .
T h e scrubber w i l l remove sulfur
d i o x i d e as w e l l as collect catalyst fines, r e p l a c i n g the c o n v e n t i o n a l electrostatic p r e c i p i t a t o r for the latter d u t y .
It appears that the m a i n d u t y
of t h e s c r u b b e r w i l l be p a r t i c u l a t e c o l l e c t i o n .
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
16
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
Steel Mills T h e c o k e o v e n gas p r o d u c e d a n d u s e d i n i n t e g r a t e d steel m i l l s has very
commonly
not b e e n d e s u l f u r i z e d
except w h e r e
the
combustion
gases c a m e i n contact w i t h m o l t e n m e t a l . C o n s e q u e n t l y , the c o m b u s t i o n of coke o v e n gas has b e e n one of the p r i n c i p a l sources of sulfur d i o x i d e emissions f r o m steel m i l l s , e v e n t h o u g h a d e q u a t e t e c h n o l o g y for c o n t r o l has l o n g b e e n a v a i l a b l e . O c c a s i o n a l l y , the h y d r o g e n sulfide i n the gas has b e e n c o n c e n t r a t e d b y a n a b s o r p t i o n process a n d c o n v e r t e d to s u l f u r i c a c i d i n a contact p l a n t or to e l e m e n t a l s u l f u r i n a C l a u s p l a n t .
The
i n c r e a s i n g l y stringent a i r p o l l u t i o n c o n t r o l regulations are f o r c i n g i n s t a l Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
l a t i o n of m o r e s u c h systems b o t h i n the U n i t e d States a n d a b r o a d (27, B e c a u s e c o k e o v e n gas does n o t c o n t a i n e x t r e m e l y h i g h
hydrogen
sulfide concentrations of h y d r o g e n sulfide, i t c a n b e effectively b y processes s u c h as the S t r e t f o r d (73,
85)
or T a k a h a x (27,
98).
72),
treated which
b o t h a b s o r b the h y d r o g e n sulfide a n d o x i d i z e it to e l e m e n t a l sulfur. A b o u t h a l f the s u l f u r oxides emission f r o m steel p l a n t s originates i n s i n t e r i n g p l a n t s (99),
w i t h m u c h h i g h e r p r o p o r t i o n s at some m i l l s
(100).
T h e q u a n t i t y , of course, d e p e n d s o n t h e s u l f u r content of the ore b e i n g s i n t e r e d , a n d t h e s i t u a t i o n w i l l be s i m i l a r at p e l l e t p l a n t s , w h i c h are g e n e r a l l y l o c a t e d at the mines r a t h e r t h a n at the steel m i l l s . I n the U n i t e d States, c o n c e r n w i t h sinter p l a n t p o l l u t i o n has b e e n f o c u s e d l a r g e l y o n p a r t i c u l a t e matter, b u t i n G e r m a n y a n d J a p a n the s u l f u r oxides emission is of serious concern.
I t is l i k e l y t h a t at some sinter plants,
fluoride
emissions are a c t u a l l y a m o r e serious p o l l u t i o n p r o b l e m t h a n s u l f u r oxide emission. F l u o r i d e emissions f r o m sinter plants are r e c e i v i n g i n c r e a s i n g l y serious attention i n G e r m a n y a n d the N e t h e r l a n d s . I n J a p a n , s c r u b b i n g systems are b e i n g a p p l i e d to sinter p l a n t s to c o n t r o l s u l f u r d i o x i d e a n d s h o u l d also be v e r y effective hydrogen
fluoride.
K a w a s a k i Steel C o r p . has tested
l i m e s c r u b b i n g process o n a d e m o n s t r a t i o n i n s t a l l a full-scale system, h a n d l i n g 750,000 m
scale 3
in removing
Mitsubishi-JECCO (27)
and will
now
gas/hr, on a new sintering
p l a n t that m a y b e t h e largest i n the w o r l d ( 100). N i p p o n K o k a n has d e v e l o p e d
a n d tested a n a m m o n i a - b a s e
a l k a l i s c r u b b i n g process for sinter plants (27).
double-
B o t h i n this system a n d
the M i t s u b i s h i process, l i m e w i l l p r e c i p i t a t e the s u l f u r oxides as w e l l as t h e fluoride that is p r o b a b l y present. T h e concentrations of s u l f u r d i o x i d e i n sinter p l a n t gases are v a r i o u s l y r e p o r t e d to range f r o m a b o u t 0.02 to 1.5 v o l %
(8,68,101).
There
appears to be n o w a y to increase the s u l f u r d i o x i d e concentrations levels s u i t a b l e for e c o n o m i c recovery, a n d t h e presence of
fluorides
b e a h i n d r a n c e i n a n y case. H o w e v e r , it m a y b e feasible to r e d u c e
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
to
would the
1.
SE M R A U
Industrial
17
Process Sources
waste gas v o l u m e b y a p p l y i n g t h e t e c h n i q u e s of u p d r a f t s i n t e r i n g a n d gas r e c i r c u l a t i o n that h a v e b e e n u s e d i n the nonferrous s m e l t i n g i n d u s t r y .
Pulp
Mills I n t h e p u l p i n g i n d u s t r y , s u l f u r oxides emissions represent loss of
p u l p i n g c h e m i c a l , b u t t h e e c o n o m i c loss is a p p a r e n t l y n o t r e g a r d e d as v e r y serious, at least i n this p e r i o d of r e l a t i v e l y a b u n d a n t a n d c h e a p sulfur. I n c u r r e n t p r a c t i c e , m u c h s u l f u r is e v i d e n t l y lost to b e c o m e either a w a t e r o r a i r p o l l u t a n t (16, 53, 102),
but pollution control regulations
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
are f o r c i n g i n c r e a s e d r e c o v e r y a n d r e c y c l i n g of s u l f u r a n d other p u l p i n g c h e m i c a l s . T h e n e e d to increase heat r e c o v e r y a n d use s h o u l d also i n f l u ence e m i s s i o n controls. I n t h e k r a f t process, the most serious a i r p o l l u t a n t s are h y d r o g e n sulfide a n d other r e d u c e d s u l f u r c o m p o u n d s (103).
E v e n though their
mass emissions m a y n o t b e h i g h , t h e i r extreme malodorousness constitutes the major p r o b l e m . T h e emissions of s u l f u r d i o x i d e f r o m k r a f t r e c o v e r y furnaces m a y range f r o m s m a l l to s u b s t a n t i a l , d e p e n d i n g o n t h e c o m p o sition of t h e b l a c k l i q u o r a n d o n t h e o p e r a t i n g c o n d i t i o n s i n the f u r n a c e (104-109).
S e v e r a l recent studies h a v e t r e a t e d factors i n f l u e n c i n g t h e
s u l f u r d i o x i d e e m i s s i o n (104, 106, 107, 108). T h e s u l f u r d i o x i d e i n k r a f t r e c o v e r y f u r n a c e gases c a n b e r e a d i l y s c r u b b e d w i t h s o d i u m c a r b o n a t e to p r o d u c e s o d i u m sulfite or sulfate as m a k e u p f o r c o o k i n g l i q u o r p r e p a r a t i o n . T h e absorbent l i q u o r c a n b e u s e d i n the s c r u b b e r units that collect p a r t of t h e s o d i u m
carbonate
a n d sulfate p a r t i c u l a t e s t h a t escape c o l l e c t i o n b y t h e electrostatic p r e c i p i t a t o r . P a r t i c u l a r l y i n S w e d e n , s u c h afterscrubbers are sometimes u s e d also to r e c o v e r l o w l e v e l heat (110), cover s u l f u r d i o x i d e as w e l l (111). sulfur dioxide from kraft recovery common i n Japan
a n d t h e y c o u l d b e e x t e n d e d to r e T h e use of afterscrubbers to c o l l e c t f u r n a c e gases a p p e a r to be f a i r l y
(27).
S u l f u r d i o x i d e e m i s s i o n is a m u c h m o r e serious p r o b l e m i n sulfite m i l l s . T h e s u l f u r d i o x i d e m a y b e e m i t t e d i n t h e t a i l gases f r o m a b s o r p t i o n towers u s e d to p r e p a r e c o o k i n g l i q u o r , i n b l o w p i t gases, i n digester r e l i e f gases, a n d i n v e n t i n g n o n c o n d e n s i b l e s l i q u o r evaporators
(102, 103, 112).
f r o m m u l t i p l e - e f f e c t spent
T a i l gas s c r u b b e r s a r e sometimes
a p p l i e d to r e d u c e t h e emissions f r o m a b s o r p t i o n towers
(113).
Vent
gases m a y also b e sent to the absorbers to r e c o v e r the s u l f u r d i o x i d e c o n t a i n e d (102, 103, 112).
B l o w p i t gases c a n b e s c r u b b e d w i t h w a t e r
to r e c o v e r b o t h s u l f u r d i o x i d e a n d heat (6, 114).
A l t h o u g h this p r o -
c e d u r e is r e p o r t e d to b e e c o n o m i c a l l y f a v o r a b l e , i t is a p p a r e n t l y n o t u n i v e r s a l l y p r a c t i c e d i n t h e U n i t e d States e v e n n o w .
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
18
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
T h e r e q u i r e m e n t s for w a t e r p o l l u t i o n c o n t r o l h a v e b e e n f o r c i n g a shift to c o n c e n t r a t i n g spent sulfite p u l p i n g l i q u o r b y e v a p o r a t i o n , f o l l o w e d b y incineration w i t h heat recovery
(102).
When
calcium-base
l i q u o r is b u r n e d , t h e s u l f u r emerges as c a l c i u m sulfate a n d is n o t a v a i l a b l e f o r r e c y c l e to the p u l p i n g process.
T h e flue gas f r o m s u c h furnaces
i n S w e d e n is r e p o r t e d to c o n t a i n 0.2—0.3%
s u l f u r d i o x i d e , a n d i n one
S w e d i s h m i l l a B a h c o w e t limestone s c r u b b e r is u s e d to treat t h e gases (115). W h e n a m m o n i a - b a s e sulfite l i q u o r is b u r n e d , t h e s u l f u r is released as sulfur dioxide.
H o w e v e r , i t has n o t b e e n t h e p r a c t i c e to r e c o v e r t h e
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
s u l f u r d i o x i d e f o r re-use, a l t h o u g h a b s o r p t i o n systems w e r e for t h e p u r p o s e (23, 24, 102, 103, 112).
developed
Nevertheless, recovery
are n o w g o i n g i n t o service w i t h a m m o n i a - b a s e m i l l s
systems
(116).
M o s t of sulfite m i l l s u s i n g a s u l f u r d i o x i d e r e c o v e r y c y c l e h a v e u s e d the w e l l e s t a b l i s h e d magnesia-base process (117, 118, 119, 120,
121).
W h e n the magnesia-base spent l i q u o r is b u r n e d , or m a g n e s i u m sulfite a n d sulfate are s m e l t e d i n t h e presence of excess c a r b o n , t h e s u l f u r goes off as s u l f u r d i o x i d e , a n d t h e m a g n e s i u m r e m a i n s as t h e oxide.
I n the
c a l c i u m system, t h e e q u i v a l e n t reactions t a k e p l a c e o n l y at m u c h h i g h e r temperatures.
E x p e r i e n c e w i t h t h e magnesia-base p u l p i n g process w a s
u n d o u b t e d l y t h e i n s p i r a t i o n f o r d e v e l o p m e n t of the C h e m i c o - B a s i c and
other
s i m i l a r processes u s i n g m a g n e s i a i n c y c l i c
sulfur
(33)
dioxide
r e c o v e r y systems. T h e s o d i u m - b a s e sulfite systems present experience w i t h s u l f u r r e c o v e r y processes t h a t m a y h a v e w i d e a p p l i c a t i o n outside t h e p a p e r p u l p industry.
T h e b a s i c c h e m i s t r y i n v o l v e d is h i s t o r i c a l l y v e r y o l d
(122).
E s s e n t i a l l y , f o u r steps u n d e r l i e t h e v a r i o u s processes: 1. T h e spent s o d i u m - b a s e sulfite l i q u o r is b u r n e d u n d e r r e d u c i n g c o n d i t i o n s , as i n the k r a f t process, y i e l d i n g a smelt of s o d i u m sulfide. 2. T h e s o d i u m sulfide is t r e a t e d w i t h steam a n d c a r b o n d i o x i d e . S o d i u m c a r b o n a t e is f o r m e d , a n d h y d r o g e n sulfide is d r i v e n off. 3. T h e s o d i u m c a r b o n a t e is u s e d to absorb s u l f u r d i o x i d e , p r o d u c i n g f r e s h s o d i u m sulfite or b i s u l f i t e f o r use as c o o k i n g l i q u o r . 4. T h e h y d r o g e n sulfide is b u r n e d to p r o v i d e t h e s u l f u r d i o x i d e f o r c o o k i n g l i q u o r p r o d u c t i o n , o r i n some processes, i t is sent to a C l a u s p l a n t f o r c o n v e r s i o n to e l e m e n t a l s u l f u r . A m o n g t h e v a r i o u s p u l p i n g c h e m i c a l r e c o v e r y systems a r e t h e S t o r a (123),
S i v o l a (124),
a n d T a m p e l l a (125)
processes, w h i c h h a v e
been
d e m o n s t r a t e d c o m m e r c i a l l y . T h e first of t h e process steps g i v e n a b o v e c a n b e a c c o m p l i s h e d w i t h s o d i u m sulfate o r sulfite b y s m e l t i n g u n d e r r e d u c i n g c o n d i t i o n s , w h i c h is t h e oldest m e t h o d f o r p r o d u c i n g s o d i u m sulfide
(126).
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
SE M R A U
Industrial
19
Process Sources
T h e process c o m p o s e d of t h e a b o v e sequence of steps c a n b e u s e d t o recover e l e m e n t a l s u l f u r f r o m s u l f u r d i o x i d e - b e a r i n g gases, u s i n g s o d i u m c a r b o n a t e as t h e p r i m a r y absorbent.
A l t e r n a t i v e l y , i t c a n b e u s e d to
recover s u l f u r a n d s o d i u m c a r b o n a t e f r o m t h e s o d i u m sulfate f o r m e d i n the c y c l i c a b s o r p t i o n processes, s u c h as the W e l l m a n - L o r d , t h a t a r e u s e d for c o n c e n t r a t i n g s u l f u r d i o x i d e f r o m d i l u t e gas streams (10).
A purge
s t r e a m o f t h e absorbent m u s t b e w i t h d r a w n to p r e v e n t b u i l d u p of exces sive sulfate. D i s p o s a l of the s o d i u m sulfate as s u c h w i l l p r o b a b l y b e c o m e difficult i f the s o d i u m - b a s e
a b s o r p t i o n processes are u s e d o n a l a r g e
scale f o r s u l f u r d i o x i d e r e c o v e r y .
N i t t e t u C h e m i c a l E n g i n e e r i n g has
d e v e l o p e d a process u s i n g t h e same b a s i c c h e m i s t r y to d e a l s p e c i f i c a l l y Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
w i t h t h e sulfate b u i l d u p i n s o d i u m - b a s e absorbents u s e d to d e s u l f u r i z e c o k e o v e n gas Literature
(127).
Cited
1. Cavender, J. H . , Kircher, D. S., Hoffman, A. J., "Nationwide Air Pollutant Emission Trends—1940-1970," E P A Publ. No. AP-115 (Jan. 1973). 2. Beers, W . D., "Characterization of Claus Plant Emissions," Processes Re search, Inc., E P A Report EPA-R2-73-188, Apr. 1973, NTIS: PB-220376. 3. Environmental Protection Agency, "Cost of Clean Air—1973," U.S. Senate Document No. 93-40, U.S. Government Printing Office, Washington, D.C. (1972). 4. Economic Commission for Europe, "Desulfurization of Fuels and Com bustion Gases," Report on the Proceedings of the Seminar, Geneva (Nov. 16-20, 1970), United Nations, Ν. Y., 1971. 5. Bailleul, M . R., Bapseres, Ε. Α., Guyot, G . L., in "Sulfur and S O Develop ments," pp. 119-122, A I C h E , 1971. 6. Lea, N . S., Christoferson, E . A., Chem. Eng. Progr. (1965) 61(11), 89. 7. Wollaston, E . G., Forsythe, W . L . , Vasalos, I. Α., Oil Gas J. (1971) 69(31), 64. 8. Brocke, W., VDI-Berichte (1970) 149, 98. 9. Semrau, Κ. T., J. Metals (1971) 23(3), 41. 10. Semrau, K. T., J. Air Pollut. Contr. Ass. (1971) 21, 185. 11. U.S. Bur. Mines, Inform. Cir. 8571 (1971). 12. Gibson, F. W., Chem. Eng. (1969) 76(26), 66. 13. Mining Eng. (1973) 25, 19. 14. Smelter Control Research Association, "The Removal of Sulphur Dioxide from Copper Reverberatory Furnace Gas by Wet-Limestone Scrubbing," New York (1973). 15. Hunter, W . D., Jr., Power (1973) 117(9), 63. 16. Hunter, W . D., Jr., Michener, A. W., Eng. Mining J. (1973) 174(6), 117. 17. Malmstrom, R., Tuominen, T . , Advan. Extract. Metallurgy Refining, Paper 20, Institution of Mining and Metallurgy, London, Oct. 1971. 18. Beal, J. V., Mining Eng. (1973) 25(4), 35. 19. Mining Eng. (1972) 24(4), 27. 20. Petersson, S. Α., in "Environmental Control," C. Rampacek, ed., pp. 3-18, The Metallurgical Society of A I M E , 1972. 21. Petersson, S., Kem. Tidskr. (1970) 1, 34. 22. King, R. Α., Ind. Eng. Chem. (1950) 42, 2241. 23. Clement, J. L . , Sage, W . L . , Tappi (1969) 52(8), 1449. 2
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
20
SULFUR REMOVAL AND RECOVERY
24. Palmrose, G. V., Hull, J. H . , Tappi (1952) 35, 193. 25. Mascarello, J., Auclair, J., Hamelin, R., Pelecier, C., Proc. Amer. Power Conf. (1969) 31, 439. 26. Dean, R. S., U.S. Bur. Mines, Rep. Invest. 3339 (May 1937). 27. Ando, J., "Recent Developments in Desulfurization of Fuel Oil and Waste Gas in Japan—1973," E P A Rept. No. EPA-R2-73-229, May 1973, NTIS: PB-221-439. 28. Eng. Mining J. (1973) 174(2), 74. 29. Guyot, G., Chim. Ind., Genie Chim. (1969) 101, 31. 30. Ibid., 101, 813. 31. Eng. Mining J. (1971) 172(11), 69. 32. Ibid., 173(8), 69. 33. Shah, I. S., Chem. Eng. Progr. (1971) 67, 51. 34. Kakaria, V. K., Turner, A . L . , Teter, Ε. K., in "Environmental Control," C. Rampacek, ed., pp. 89-102,The Metallurgical Society of A I M E , 1972. 35. Mealey, M . , Eng. Mining J. (1972) 173(6), 130. 36. Donovan, J. R., Stuber, P. J., Chem. Eng. (1970) 77(26), 47. 36. McMeekin, G . R., Can. Inst. Mining Met. Bull. (1973) 66(738), 51. 37. Semrau, K. T., Eng. Mining J. (1971) 172, 115. 38. Eng. Mining J. (1972) 173(2), 69. 39. Wall Street J. (Aug. 20, 1973) 7. 40. Treilhard, D . G., Chem. Eng. (1973) 80(9), P-Z. 41. White, L . , Chem. Eng. (1973) 80(9), A A - C C . 42. Milliken, C. L . , J. Metals (1970) 22(8), 51. 43. Kellogg, H . H . , Latin Amer. Conf. Mining Metallurgy, Santiago, Chile, Aug. 26-Sept. 1, 1973. 44. Pay Dirt (Bisbee, Ariz.) (1974) 415, 15. 45. Lutjen, G . P., Dayton, S. H . , Tinsley, C. R., Eng. Mining J. (1973) 174(11), 73. 46. Merla, S., Young, C. E . , Matousek, J. W., in "Environmental Control," C. Rampacek, ed., pp. 19-35, The Metallurgical Society of A I M E , 1972. 47. Persson, J. A., Treilhard, D . G., J. Metals (1973) 25, (1), 34. 48. Rodolff, D . W., Marble, E . R., Jr., J. Metals (1972) 24(7), 14. 49. Queneau, P. E., J. Metals (1973) 25, 15. 50. Holderreed, F . L . , Mining Eng. (1971) 23(9), 45. 51. Guccione, E . , Eng. Mining J. (1973) 174(12), 81. 52. Daniele, R. Α., Jaquay, L . H . , " T B R C — A New Smelting Technique," A I M E - T M S Paper A72-101 (1972). 53. Eng. Mining J. (1972) 173(8), 66. 54. Reynolds, J. O., Phillips, K. J., Fitzgerald, D. E . , Worner, Η. K., in " E n vironmental Control," C. Rampacek, ed., pp. 67-85, The Metallurgical Society of A I M E , 1972. 55. Themelis, N . J., McKerrow, G . C., Tarassoff, P., Hallett, G . D.,J.Metals (1972) 24(4), 25. 56. MacAskill, D., Eng. Mining J. (1973) 174(7), 82. 57. Kettner, P., Maelzer, C. Α., Schwartz, W . H . , in "Environmental Control," C. Rampacek, ed., pp. 37-63, The Metallurgical Society of A I M E , 1972. 58. Eng. Mining J. (1973) 174(12), 33. 59. Remirez, R., Chem. Eng. (1969) 76(2), 80. 60. Tucker, W . G., Burleigh, J. R., Chem. Eng. Progr. (1971) 67(5), 57. 61. Furkert, H . , Chem. Eng. (1969) 76, (1), 70. 62. Browder, T . J., Chem. Eng. Progr. (1971) 67(5), 45. 63. Connor, J. M., Chemico World (1969) 4(5), 4. 64. Kronseder, J. G., Chem. Eng. Progr. (1968) 64(11), 71.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
1.
SEMRAU
Industrial Process Sources
21
65. Scheidel, C. F., Annu. AIChE Meetg., 61st, Los Angeles, Dec. 1-5, 1968, preprint No. 6E. 66. Davis, J. C., Chem. Eng. (1971) 78(27), 43. 67. Elder, H . W., Princiotta, F . T., Hollinden, G. Α., Gage, S. J., "Sulfur Oxide Control Technology—Visits in Japan, August 1972," U.S. Gov ernment Interagency Report, Muscle Shoals, Ala. (Oct. 30, 1972). 68. Uno, T., Atsukawa, M., Muramatsu, K., Proc. 2nd Intern. Lime/Limestone Wet-Scrubbing Symp., E P A Publ. No. APTD-1161 (1972), pp. 833-49. 69. Collins, J. J., Fornoff, L . L . , Manchanda, K. D., Miller, W . C., Lovell, D. C., Annu. A I C h E Meetg, Philadelphia, Paper No. 24d, Nov. 15, 1973. 70. Collins, J. J., Fornoff, L . L . , Miller, W . C., Lovell, D. C., APCA Annu. Meetg, 66th, Chicago, June 24-28, 1973. 71. Goar, B. G., Oil Gas J. (1971) 69(28), 75; 69(29), 84. 72. Hyne, J. B., Oil Gas J. (1972) 70(35), 64. 73. Beavon, D. K., Vaell, R. P., Proc. Div. Refining, API (1972) 52, 267. 74. Barry, C.B., Oil Gas J. (1970) 68(19), 63. 75. Barry, C. B., Hydrocarbon Process. (1972) 51(4), 102. 76. Berlie, Ε. M., 4th ]oint Chem. Eng. Conf., AIChE Can. Soc. Chem. Eng., Paper 19e, Vancouver, Canada, Sept. 9-12, 1973. 77. Bryant, H. S., Oil Gas J. (1973) 71(13), 70. 78. Palm, J. W., Hydrocarbon Process. (1972) 51, (3), 105. 79. Pearson, M . J., Hydrocarbon Process. (1973) 52, (2), 81. 80. Farrar, G. L . , Oil Gas J. (1970) 68(42), 72. 81. Krill, H . , Storp, K., Chem. Eng. (1973) 80(17), 84. 82. Storp, K., Air Pollut. Control Ass., Annu. Meetg., 65th, A P C A paper 72-83, Miami Beach, June 18-22, 1972. 83. Barthel, Y., Bistri, Y., Deschamps, Α., Renault, P., Simadoux, J. C., Dutriau, R., Hydrocarbon Process. (1971) 50(5), 89. 84. Hirai, M . , Odello, R., Shimamura, H., Chem. Eng. (1972) 79(8), 78. 85. Beavon, D. K., Chem. Eng. (1971) 78(28), 71. 86. Naber, J. E., Wesselingh, J. Α., Groenendaal, W., Chem. Eng. Progr. (1973) 69(12), 29. 87. Idemura, H . , Chem. Econ. Eng. Rev. (1972) 4(12), 23. 88. Hayford, J. S., Van Brocklin, L . P., Kuck, Μ. Α., Chem. Eng. Progr. (1973) 69(12), 54. 89. Rosenbaum, J. B., McKinney, W . Α., Beard, H . R., Crocker, L . , Nissen, W. L . , U.S. Bur. Mines Rep. Invest. (1973) 7774. 90. Chem. Eng. (1974) 81(3), 64. 91. Busson, C., Dazael, C., Franckowiak, S., Odello, R., Oil Gas J. (1973) 71(32), 67. 92. Elec. World (1973) 179(3), 30. 93. Oil Gas J. (1973) 71(32), 61. 94. Hemler, C. L . , Vermillion, W . L . , Oil Gas J. (1973) 71(45), 88, 91. 95. Hildebrand, R. E., Huling, G. P., Ondish, G . F., Oil Gas J. (1973) 71(50), 112. 96. Finneran, J. A., Murphy, J. R., Whittington, E. L . , Oil Gas J. (1974) 72(2), 52. 97. Chem. Eng. (1973) 80(21), 79. 98. J. Metals (1973) 25, (1), 4. 99. Iron Steel Eng. (1974) 51, (1), D16. 100. J. Metals (1973) 25(8), 4. 101. Nakai, Y., Yokogawa, T., Chem. Econ. Eng. Rev. (1970) 2(5), 44. 102. Canty, C., Perry, F . G . , Jr., Woodland, L . R., Tappi (1973) 56(9), 52. 103. Hendrickson, E. R., Roberson, J. E., Koobler, J. B., "Control of Atmos pheric Emissions in the Wood Pulping Industry," Vol. I-III, Final Report, ΝAPCA Contract No. C P A 22-69-18 (Mar. 15, 1970).
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
22
SULFUR REMOVAL AND RECOVERY
104. Borg, A., Teder, A., Warnqvist, B., Tappi (1974) 57(1), 126. 105. Gommi, J. V., Tappi (1972) 55, 1094. 106. Lang, C. J., DeHaas, G. G . , Gommi, J. V . , Nelson, W., Tappi (1973) 56,
Downloaded by UNIV OF MISSISSIPPI on June 19, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch001
107. 108. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127.
Lo Cicero, P. M . , Sjolseth, D . E., Tappi (1973) 56, 76. Walther, J. E., Amberg, H . R., Tappi (1972) 55, 1185. Price, F . C., Chem. Eng. (1973) 80(9), RR. Winklepleck, R. G., Suda, S., Tappi (1973) 56, (6), 73. Vegeby, Α., Pulp Pap. Mag. Can. (1968) 69(9), 68. Croon, I., Pap. Trade J. (1973) 157(26), 27. E P A / N C A S I , "Atmospheric Emissions From the Pulp and Paper Manu facturing Industry," Publ. No. EPA-450/1-73-002, Environmental Pro tection Agency, Research Triangle Park, N . C . (Sept. 1973). Aho, W . O. Tappi (1969) 52, 620. Moody, D . M . , Tappi (1969) 52, 448. Foss, E., Pap. Trade J. (1973) 157(26), 28. Frantisak, F . , Air J. (Peabody Galion) (Fall 1973) 8. Clement, J. L . , Tappi (1966) 49(8), 127A. Hanway, J. E., Jr., Henby, E. B., Smithson, G . R., Jr., Tappi (1967) 50(10), 64A. Kleinegger, J. D., Tappi (1969) 52, 1291. Markant, H . P., McIlroy, R. Α., Matty, R. E., Tappi (1962) 45, 849. Walther, J. E., Amberg, H . R., Hamby, Η., III, Chem. Eng. Progr. (1973) 69(6), 100. Collins, T . T . , Jr., Schick, P. E., Pap. Trade J. (1970) 154(24), 39. Cederquist, K. N . , Ahlborg, N . K. G . , Lunden, B., Wentworth, T . O., Tappi (1960) 43(8), 702. Kennedy, Ε. H . , Tappi (1960) 43, 683. Tanner, T., Clement, J. L . , Tappi (1973) 56, (9), 63. Sconce, J. S., in "Kirk-Othmer Encyclopedia of Chemical Technology," 2nd E d . , 18, pp. 510-515, 1969. Mitachi, K., Chem. Eng. (1973) 80(24), 78.
RECEIVED April 4, 1974
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.