3 Conversion Electron Mössbauer Spectroscopy and Its Recent Development
1
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
M. J. TRICKER
Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS
The principles and applications of conversion electron Mössbauer spectroscopy (CEMS) are reviewed in detail. Consideration is given to the surface selectivity and sensitivity of C E M S , and experimental and theoretical aspects of the method are discussed in depth. Applications of C E M S in areas such as the oxidation of iron and steels, surface treat ment of steels, metallurgy, measurements of surface stress, ion-implantation, thin films, inorganic solids and minerals, and archeological materials are described.
n p h e m a j o r i t y o f Môssbauer s p e c t r o s c o p i c experiments a r e p e r f o r m e d -••in a transmission geometry
a n d involve the detection
r a d i a t i o n t r a n s m i t t e d t h r o u g h t h i n absorbers.
of g a m m a
I n this m o d e a w e a l t h o f
d a t a r e l a t i n g to t h e b u l k p r o p e r t i e s of solids m a y b e o b t a i n e d .
However,
i f i n f o r m a t i o n r e l a t i n g t o t h e surface p r o p e r t i e s o f solids i s sought, t h e use of t r a n s m i s s i o n m e t h o d s
i s r e s t r i c t e d t o r a t h e r s p e c i a l absorbers.
These m a y b e microcrystallites, either freely supported o r dispersed o n h i g h - a r e a i n e r t substrates, r a t h e r s p e c i a l solids w i t h h i g h i n t e r n a l surface areas s u c h as zeolites o r c l a y m i n e r a l s , o r s i m p l y stacks o f v e r y t h i n absorbers.
T o c i r c u m v e n t these restrictions a n d a l l o w t h e s t u d y o f t h e
surface a n d near-surface regions o f solids, t h e r e has b e e n a significant increase i n interest i n t h e p a s t f e w years i n b a c k s c a t t e r i n g t e c h n i q u e s b a s e d o n t h e d e t e c t i o n of c o n v e r s i o n electrons e m i t t e d f r o m t h e surface f o l l o w i n g t h e o c c u r r e n c e o f a resonant event i n t h e absorber.
Because
these electrons a r e a t t e n u a t e d r a p i d l y i n m a t t e r , o n l y those
electrons
Current address: The British Petroleum Company, Ltd., BP Research Centre, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN, England. 1
0065-2393/81/0194-0063$09.50/0 © 1981 American Chemical Society In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
64
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
p r o d u c e d i n regions close to t h e surface escape t h e surface, a n d t h e r e s u l t i n g M o s s b a u e r s p e c t r u m is w e i g h t e d t o w a r d s t h e surface regions of the absorber.
A l t h o u g h , i n p r i n c i p l e , m a n y isotopes are a m e n a b l e to
s t u d y b y c o n v e r s i o n e l e c t r o n M o s s b a u e r spectroscopy studies to date h a v e i n v o l v e d either
5 7
F e or
1 1 9
(CEMS),
most
S n , a n d w o r k w i t h these
isotopes forms t h e m a i n c o n t e n t of this r e v i e w . T w o basic types of C E M S experiments m a y b e p e r f o r m e d .
The
first
of these i n v o l v e s the d e t e c t i o n of the t o t a l flux of b a c k s c a t t e r e d electrons w i t h o u t e n e r g y r e s o l u t i o n . T h i s a p p r o a c h w i l l b e r e f e r r e d to as i n t e g r a l CEMS.
I n the s e c o n d t y p e of e x p e r i m e n t the flux of b a c k s c a t t e r e d elec
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
trons is e n e r g y - r e s o l v e d , a n d M o s s b a u e r s p e c t r a are a c c u m u l a t e d u s i n g selected b a n d s of e l e c t r o n energies.
I t w i l l e m e r g e that t h i s t e c h n i q u e
a l l o w s the surface regions of solids to b e p r o b e d as a f u n c t i o n of d e p t h . A c c o r d i n g l y , t h i s t e c h n i q u e w i l l be r e f e r r e d to as d e p t h - r e s o l v e d v e r s i o n e l e c t r o n M o s s b a u e r spectroscopy CEMS
(DCEMS).
con
S i n c e t h e a r e a of
has b e e n r e v i e w e d i n the past ( 1 , 2 , 3 ) , emphasis h e r e w i l l
g i v e n to recent d e v e l o p m e n t s .
p r i n c i p l e s of the t e c h n i q u e a n d g i v e a b r o a d o v e r v i e w of t h e ments i n the area u p to a b o u t m i d - 1 9 7 6 . recent d e v e l o p m e n t s
be
H o w e v e r , t h e first section does o u t l i n e t h e develop
L a t e r sections w i l l d e a l w i t h
i n i n s t r u m e n t a t i o n , t h e o r e t i c a l aspects
and
data
r e d u c t i o n , a n d a p p l i c a t i o n s of C E M S .
Basic Principles and Overview of CEMS Internal Conversion and Backscattering Experiments.
F o r many
M o s s b a u e r n u c l i d e s the d e c a y of t h e e x c i t e d n u c l e a r s p i n state is h i g h l y internally converted (4). fied
T h e process o f i n t e r n a l c o n v e r s i o n is e x e m p l i
b y reference to T a b l e I , w h e r e t h e events t h a t o c c u r d u r i n g the
d e c a y of the I =
3 / 2 excited
s p i n state of
i n t e r n a l c o n v e r s i o n coefficient a for t h e 7 = i r o n is large, a n d o n l y a b o u t 1 0 %
5 7
F e are s u m m a r i z e d .
3/2 - » I =
The
i t r a n s i t i o n of
of the d e c a y events o c c u r b y t h e
e m i s s i o n of a 1 4 . 4 - k e V g a m m a p h o t o n . T h e p r e d o m i n a n t event is one of i n t e r n a l c o n v e r s i o n w h i c h results i n the e j e c t i o n of a 7 . 3 - k e V K - c o n v e r s i o n e l e c t r o n together w i t h s u b s e q u e n t A u g e r electrons a n d x - r a y p h o t o n s . I n t e r n a l c o n v e r s i o n also occurs i n the L - a n d M - s h e l l s , b u t w i t h l o w e r p r o b a b i l i t y , a n d leads to t h e p r o d u c t i o n of f u r t h e r c o n v e r s i o n electrons, A u g e r electrons, a n d x - r a y p h o t o n s . 2 3 . 8 - k e V t r a n s i t i o n of
1 1 9
A s i m i l a r s i t u a t i o n is f o u n d f o r the
S n , a l t h o u g h h e r e t h e K - c o n v e r s i o n process is
e n e r g e t i c a l l y f o r b i d d e n a n d t h e m a j o r i t y of electrons are 1 9 . 6 - k e V L c o n v e r s i o n electrons ( T a b l e I ) . I n v i e w of t h i s p h e n o m e n o n , i t is p o s s i b l e to r e c o r d M o s s b a u e r spectra i n a backscatter geometry b y detecting either the backscattered photons or electrons r a t h e r t h a n b y the m o r e u s u a l p r a c t i c e of d e t e c t i n g t h e
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
TRICKER
Conversion
Electron
Mossbauer
65
Spectroscopy
Table I. Summary of Major Events D u r i n g the Decay of 1=3/2 Excited-Spin States of F e and Sn° 57
Energy (keV)
Fe
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
57
119
Number (per 100) Absorption Events
y-photons X-x-rays K - c o n v e r s i o n electrons L - c o n v e r s i o n electrons M - c o n v e r s i o n electrons KLL-Auger electrons LMM-Auger electrons
14.4 6.3 7.3 13.6 14.3 5.4 0.53
9 27 81 9 1 63
Sn y-photons X-rays L - c o n v e r s i o n electrons L M M - A u g e r electrons
23.8 3.6 19.6 2.8
17 9 83 74
Approximate Maximum Range
250 n m 900 n m
119
2.4/im
° The maximum electron ranges are calculated using the Bethe-Bloch expression and are taken from Ref. 29.
transmitted g a m m a radiation ( F i g u r e 1 ) . I n a backscatter geometry, the r e q u i r e m e n t of a t h i n a b s o r b e r is r e m o v e d a n d t h i c k samples c a n b e e x a m i n e d i n a n o n d e s t r u c t i v e f a s h i o n . I f t h e b a c k s c a t t e r e d p h o t o n s are d e t e c t e d , i n f o r m a t i o n p e r t a i n i n g to t h e b u l k of t h e s o l i d o r r a t h e r t h i c k overlayers of a surface p h a s e w i l l b e o b t a i n e d , as t h e p a t h l e n g t h s of t h e g a m m a - a n d x - r a d i a t i o n are at least o n t h e o r d e r of m a g n i t u d e of m i c r o n s . H o w e v e r , because electrons are m u c h m o r e r a p i d l y a t t e n u a t e d i n m a t t e r , the b a c k s c a t t e r e d C E M s p e c t r u m w i l l b e w e i g h t e d t o w a r d s t h e o u t e r m o s t
Figure 1. Schematic of possible geometries for Mossbauer experiments with detection of (1) transmitted gamma-rays, (2) backscattered electrons, and (3) backscattered photons, x-rays, and/or gamma-rays
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
66
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
surface regions of the s a m p l e , as o n l y electrons p r o d u c e d close to t h e absorber surface w i l l escape the surface. T h e d e p t h s e l e c t i v i t y of a g i v e n e x p e r i m e n t w i l l therefore d e p e n d o n the e n e r g y s p e c t r u m of the electrons p r o d u c e d d u r i n g the d e c a y of t h e e x c i t e d n u c l e a r l e v e l of t h e u s e d , a n d o n t h e e n e r g y of the electrons d e t e c t e d .
isotope
A n i n d i c a t i o n of t h e
m a x i m u m ranges of the v a r i o u s electrons u s e d is g i v e n i n T a b l e I. Surface Selectivity and Sensitivity of C E M S . p r e v i o u s section t h a t C E M S
It follows f r o m the
opens u p t h e p o s s i b i l i t y of s t u d y i n g the
surface regions of l o w - a r e a solids b y M o s s b a u e r spectroscopic t e c h n i q u e s . I n the s i m p l e s t i n t e g r a l C E M S e x p e r i m e n t , first p e r f o r m e d b y S w a n s o n
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
a n d S p i j k e r m a n ( 5 ) , t h e b a c k s c a t t e r e d electrons are d e t e c t e d efficiently w i t h a 2?r c o l l e c t i o n g e o m e t r y b y m o u n t i n g t h e s a m p l e i n s i d e a H e / C H flow
p r o p o r t i o n a l counter.
significantly s m a l l e r t h a n i n t r a n s m i s s i o n e x p e r i m e n t s p e r u n i t strength.
4
H e r e the e l e c t r o n c o u n t rates a r e u s u a l l y source
H o w e v e r , s t r o n g sources c a n b e u s e d w i t h o u t fear of c a u s i n g
s a t u r a t i o n effects e i t h e r i n t h e detector or the c o u n t i n g electronics. t h i c k samples c o n t a i n i n g a n a t u r a l a b u n d a n c e of
5 7
For
F e , t h e signal-to-noise
ratios are c o m p a r a b l e to o r less t h a n those o b t a i n e d i n t r a n s m i s s i o n e x p e r i m e n t s . T h e b a c k g r o u n d arises l a r g e l y f r o m photoelectrons ejected f r o m t h e absorber enriched i n
5 7
a n d w a l l s of
the detector.
However,
if
samples
F e are u s e d , p e r c e n t a g e effects o n t h e o r d e r of h u n d r e d s
of a p e r c e n t m a y b e o b t a i n e d (6),
a n d d a t a a c c u m u l a t i o n times m a y b e
r e d u c e d to t h e o r d e r of m i n u t e s . A q u a l i t a t i v e i n d i c a t i o n of t h e surface s e l e c t i v i t y of
5 7
F e C E M S is
s h o w n i n F i g u r e 2 i n w h i c h the i n t e g r a l C E M s p e c t r u m of a n u n e n r i c h e d i r o n f o i l that h a d b e e n exposed b r i e f l y to m o i s t H C 1 v a p o r is s h o w n Apart from
t h e s i g n a l r e s u l t i n g f r o m t h e substrate, a d o u b l e t
(7). with
p a r a m e t e r s c o r r e s p o n d i n g to a h i g h - s p i n ferrous phase is c l e a r l y seen. T h i s d o u b l e t w a s not o b s e r v e d i n the t r a n s m i s s i o n m o d e after a c o m parable counting time. T h i s experiment demonstrated that
5 7
Fe
CEMS
is c a p a b l e of r e v e a l i n g t h e presence of surface phases t h a t w o u l d h a v e g o n e u n d e t e c t e d i f t r a n s m i s s i o n m e t h o d s h a d b e e n u s e d alone. f r o m this o b s e r v a t i o n , o t h e r studies u n e q u i v o c a b l y
Apart
demonstrated
the
p o t e n t i a l of C E M S as a surface t o o l i n s u c h areas as m e t a l l u r g y
(8),
ion-implantation chemistry
(9-16),
c o r r o s i o n a n d o x i d a t i o n (7,17-20),
a n d geo
(21,22).
O t h e r experiments e s t a b l i s h e d that the p r o b i n g d e p t h of
5 7
F e integral
C E M S is a p p r o x i m a t e l y 300 n m , a n d t h a t 6 6 % of t h e electrons in a H e / C H
4
c o u n t e r arise f r o m w i t h i n 54 n m of n a t u r a l i r o n foils
detected (5,19).
T h e s e n s i t i v i t y of the m e t h o d is s u c h t h a t a b o u t 10 n m of a n e w surface p h a s e m a y b e d e t e c t e d , a n d i t has b e e n d e m o n s t r a t e d t h a t i t s h o u l d b e p o s s i b l e to detect a m o n o l a y e r of substrate (23).
5 7
F e present o n a M o s s b a u e r i n e r t
A n o m a l i e s c o n c e r n i n g t h e m e a s u r e d m e a n - f r e e p a t h of
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
THICKER
Conversion
Electron
Mossbauer
67
Spectroscopy
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
m a o o
i
I
f
i t „ VI LOCI TV MM I
•
J
1 _ Surface Science
Figure 2. T / i e F e CEM spectrum of an iron foil after brief exposure to HCl (7). The inner four peaks of the spectrum of the iron substrate are seen together with a new doublet arising from the surface species. 5 7
the
5 7
F e c o n v e r s i o n a n d A u g e r electrons w e r e r e s o l v e d w i t h the d i s c o v e r y
of a n u n e x p e c t e d c o m p o n e n t i n C E M s p e c t r a (24). ( J ) t h a t t h e m e a s u r e d p r o b i n g d e p t h s of
5 7
It h a d been noted
F e C E M S were larger than
e x p e c t e d w h e n c o m p a r e d to c a l c u l a t e d v a l u e s b a s e d o n p r e v i o u s l y m e a s u r e d e l e c t r o n m a s s - a b s o r p t i o n coefficients ( 2 5 ) .
T h e o r i g i n of this " e l e c
t r o n t a i l " is c a u s e d b y t h e p r o d u c t i o n of s o - c a l l e d g a m m a - a n d x - r a y c o r r e l a t e d photoelectrons
( X P E s and G P E s , respectively), produced i n
surface regions of the absorbers b y t h e M o s s b a u e r s p e c t r u m of g a m m a a n d x-rays b a c k s c a t t e r e d f r o m d e e p w i t h i n t h e s a m p l e .
For
5 7
F e , the
X P E s a n d G P E s c o n t r i b u t e a b o u t 1 0 % to t h e t o t a l flux of b a c k s c a t t e r e d electrons
(26).
T h e presence
of a s i m i l a r c o m p o n e n t
in
1 1 9
Sn C E M
spectra r e c e n t l y has b e e n c o n f i r m e d e x p e r i m e n t a l l y ( 2 7 ) . Depth Resolution by D C E M S .
It was noted earlier that H e / C H
detectors d o n o t p e r m i t the e n e r g y s p e c t r u m of the b a c k s c a t t e r e d
4
elec
trons to b e r e s o l v e d , a n d i n t h i s sense t h e y c a n b e r e g a r d e d as i n t e g r a l detectors. H o w e v e r , i f the electrons are e n e r g y - a n a l y z e d a n d s p e c t r a are accumulated w i t h
selected
e l e c t r o n energies,
each
of
the
individual
D C E M s p e c t r a w i l l b e w e i g h t e d t o w a r d s a p a r t i c u l a r d e p t h i n the s a m p l e , thus p r o v i d i n g t h e p o s s i b i l i t y of d e p t h p r o f i l i n g t h e i m m e d i a t e surface
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
68
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
> UJ
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
m i c r o ns Figure 3. Relation between energy and range of electrons of initial energy ((a) 7.3 keV, (b) 13.6 eV, and (c) 19.6 keV) calculated using the Bethe-Bloch expression (adapted from Ref. 29) regions. T h i s i d e a is i l l u s t r a t e d i n F i g u r e 3 i n w h i c h t h e m e a n e n e r g y loss is p l o t t e d against r a n g e f o r 1 1 9
S n L - c o n v e r s i o n electrons.
5 7
F e K - a n d L - c o n v e r s i o n electrons a n d
I t s h o u l d b e n o t e d t h a t s u c h a figure c a n
o n l y b e u s e d as a v e r y first a p p r o x i m a t i o n i n the i n t e r p r e t a t i o n of C E M s p e c t r a , as n o a l l o w a n c e f o r e l e c t r o n s c a t t e r i n g o r a b s o r p t i o n is m a d e . H o w e v e r , t h e figure does g i v e a n i n d i c a t i o n of t h e d e p t h s p r o b e d i n and
1 1 9
5 7
Fe
S n w o r k i f electrons of a p a r t i c u l a r e n e r g y are d e t e c t e d .
A degree of d e p t h p r o f i l i n g m a y b e a c h i e v e d e i t h e r w i t h detectors ( 6 )
He/CH
o r b y e v a p o r a t i n g i n e r t overlayers o n t o t h e s a m p l e
4
(28),
b u t m o r e a c c u r a t e w o r k r e q u i r e s t h e use of m o r e s o p h i s t i c a t e d e q u i p m e n t . I n a pioneering paper, Bonchev, Jordanov, a n d M i n k o v a (29)
described
t h e d e s i g n a n d use of a m a g n e t i c i r o n - f r e e b e t a - r a y s p e c t r o m e t e r i n t e r m e d i a t e i m a g e f o c u s i n g f o r use i n
1 1 9
eter h a d a n e n e r g y r e s o l u t i o n of a b o u t 5%
a n d a luminosity of about
T h e s e w o r k e r s w e r e a b l e to d e m o n s t r a t e t h a t t h e
1 1 9
2
2
8%.
S n C E M s p e c t r a of a
b r o m i n a t e d t i n m e t a l f o i l c o n s i s t e d of superpositions of peaks f r o m tt-Sn, S n 0 , S n B r , a n d S n B r .
with
S n experiments. T h e spectrom
arising
M o r e s i g n i f i c a n t l y , t h e area ratios of
4
t h e s p e c t r a l c o m p o n e n t s c h a n g e d w i t h spectrometer settings (i.e., c h a n g i n g e l e c t r o n e n e r g y ) i n a m a n n e r t h a t suggested consisted o f S n B r
4
overlaying SnBr .
a n d c o - w o r k e r s (30-33)
2
that the
overlayer
O t h e r groups, notably Baverstam
at S t o c k h o l m , c o n s t r u c t e d s i m i l a r spectrometers
a n d d e m o n s t r a t e d t h e f e a s i b i l i t y of m a k i n g d e p t h - r e s o l v e d measurements with
5 7
F e . D e v e l o p m e n t s i n t h i s area w i l l b e d e s c r i b e d i n m o r e d e t a i l i n
l a t e r sections.
Advances in Instrumentation Integral Detectors.
T h e m a j o r i t y of i n t e g r a l C E M S
experiments
p e r f o r m e d to d a t e h a v e b e e n c a r r i e d o u t u s i n g t h e u b i q u i t o u s H e / C H
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
4
3.
THICKER
Conversion
Electron
Mossbauer
69
Spectroscopy
flow p r o p o r t i o n a l counters. S u c h detectors a r e s i m p l e to c o n s t r u c t a n d a n u m b e r o f designs h a v e a p p e a r e d i n t h e l i t e r a t u r e (5,6,34-37). d e s i g n o f a t y p i c a l d e t e c t o r is i l l u s t r a t e d i n F i g u r e 4 (36).
The
A particular
f e a t u r e o f this d e t e c t o r is t h e s m a l l sensitive v o l u m e o f 2 5 0 m m
2
X 3mm,
thus e n s u r i n g t h a t t h e detector h a s v i r t u a l l y zero s e n s i t i v i t y f o r x - r a y a n d gamma-ray photons.
I n fact, f o r t h e case of
5 7
F e , a 3 - m m layer of
h e l i u m gas at o n e a t m o s p h e r e has o n l y a 0 . 0 1 % efficiency f o r t h e 6 . 3 - k e V x-rays a n d less t h a n 0 . 0 0 1 % f o r t h e 1 4 . 4 - k e V g a m m a r a y s . I n contrast, t h e b a c k s c a t t e r e d electrons a r e d e t e c t e d w i t h v i r t u a l l y 1 0 0 % efficiency i n a 27r-geometry.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
unenriched
W i t h s u c h a d e v i c e , 2 0 % effects are o b t a i n a b l e w i t h
stainless-steel f o i l s .
T h e b a c k g r o u n d l a r g e l y arises
from
p h o t o - a n d A u g e r electrons ejected f r o m t h e s a m p l e a n d detector w a l l s b y 14.4-keV g a m m a rays a n d from the « 1 0 0 - k e V
photo- a n d C o m p t o n
electrons p r o d u c e d b y t h e 1 2 2 - k e V g a m m a r a y s . S i n c e these latter h i g h e n e r g y electrons d e p o s i t l i t t l e e n e r g y i n t h e gas, t h e i r c o n t r i b u t i o n t o t h e b a c k g r o u n d m a y be suppressed b y a correct choice
of discriminator
s e t t i n g (36).
Bulletin of the Institute for Chemical Research
Figure 4. The FLe\CFL flow proportional counter for CEMS studies (36). (A) Counter frame (Lucite); (B) anode wire (tungsten); (C) Teflon; (D) stainless-steel pipe; (E) Teflon pipe; (F) steel spring; (G) sample foil; (H) gas inlet; (I) aluminum foil; (J) aluminum-evaporated Mylar foil; (K) rubber sheet; (L) brass plate. k
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
70
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
A serious d r a w b a c k of the simplest H e / C H
detectors just r e f e r r e d
4
to is t h a t it is not possible to v a r y the s a m p l e t e m p e r a t u r e a n d thus e x p l o r e t h e M o s s b a u e r p a r a m e t e r s of the s a m p l e as a f u n c t i o n of t e m p e r a t u r e . Suitably modified H e / C H
4
detectors h a v e b e e n d e s c r i b e d t h a t operate
satisfactorily at 80 K (38,39).
A t 4.2 K the C H
q u e n c h gas has to b e
t
o m i t t e d , a n d this c a n l e a d to u n d e s i r a b l e c o u n t i n g characteristics I s o z u m i (41)
r e c e n t l y has d e s c r i b e d a H e / C H
t e m p e r a t u r e s u p to 2 9 0 ° C .
4
(40).
detector that operates at
T h e detector is of c o n v e n t i o n a l d e s i g n b u t
the b o d y is of T e f l o n r a t h e r t h a n the m o r e c o m m o n l y u s e d L u c i t e . T h e entire detector is l o c a t e d i n a f u r n a c e a n d is filled w i t h H e / C H
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
use.
before
4
T h e u p p e r w o r k i n g t e m p e r a t u r e is l i m i t e d b y the p r o d u c t i o n
of
s p u r i o u s signals at 290° C c a u s e d b y e l e c t r i c d i s c h a r g e at a T e f l o n p i p e s u r r o u n d i n g the a n o d e l e a d . T h i s a u t h o r also discusses the h i g h - t e m p e r a t u r e e l e c t r i c a l characteristics of other m a t e r i a l s i n r e l a t i o n to t h e i r use i n detector c o n s t r u c t i o n . W e y e r a n d others (42,43) counter.
have described a parallel-plate avalanche
T h e c o n s t r u c t i o n is s i m i l a r to a H e / C H
4
detector except t h a t
t h e t h i n w i r e anodes are r e p l a c e d b y p a r a l l e l plates b e t w e e n w h i c h t h e gas m u l t i p l i c a t i o n takes p l a c e . 1 1 9
Sn,
1 8 1
T a , and
1 6 1
C E M spectra w e r e o b t a i n e d w i t h
Fe,
Dy.
A n a l t e r n a t i v e a p p r o a c h to gas detectors detectors
5 7
s u c h as c h a n n e l t r o n s or o p e n - e n d e d
is to use other
electron
p h o t o n - m u l t i p l i e r tubes.
If this is done, the s a m p l e a n d detector m u s t necessarily b e m o u n t e d i n a v a c u u m c h a m b e r , b u t u n d e r these c o n d i t i o n s no difficulties are e n countered i n v a r y i n g the sample temperature. O s w a l d a n d O h r i n g
(44)
h a v e d e s c r i b e d a s i m p l e a p p a r a t u s i n w h i c h t h e electrons scattered f r o m the s a m p l e surface are c o l l e c t e d i n t h e c o n e of a h o m e m a d e
channeltron
that is c a r e f u l l y s h i e l d e d f r o m the i n c i d e n t g a m m a photons.
A
40%
effect ( o n L i n e s 1 a n d 6 ) w a s o b t a i n e d u s i n g a 5 0 0 0 - A t h i c k e n r i c h e d i r o n f o i l at a c o u n t rate of several h u n d r e d s p e r s e c o n d w i t h a 5 - m C i source. based
Jones a n d c o - w o r k e r s
(45)
have described a similar apparatus
on a commercially available channeltron.
i n c l u d e d f a c i l i t i e s to c o o l the absorber to 80 K .
T h i s apparatus O n e disadvantage
also of
arrangements of this t y p e is that because of the s m a l l size of t h e c h a n n e l t r o n cone ( « l c m ) , angle are detected. scattered electrons
o n l y electrons scattered i n t o a r a t h e r s m a l l s o l i d
This situation can be i m p r o v e d b y focusing
the
into the cone of t h e c h a n n e l t r o n u s i n g a u n i f o r m
l o n g i t u d i n a l m a g n e t i c field (46)
(Figure 5).
F o r t h e case of
5 7
F e , the
7 . 3 - k e V K - c o n v e r s i o n electrons are b r o u g h t to focus i n the c h a n n e l t r o n c o n e w h i c h is l o c a t e d 245 m m f r o m t h e a b s o r b e r i n a field of «=*60 G . I t w a s f u r t h e r o b s e r v e d t h a t a p p l i c a t i o n of a s m a l l p o s i t i v e p o t e n t i a l , « 2 0 0 V , to the c h a n n e l t r o n cone i n c r e a s e d t h e u s e f u l c o u n t rate b y T h i s effect arises f r o m t h e c o l l e c t i o n of l o w - e n e r g y s e c o n d a r y
100%.
electrons
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
3.
Conversion
TRICKER
Electron
HIGH
Mossbauer
71
Spectroscopy
VOLTAGE Journal of Physics
Figure 5.
Schematic
of low-temperature CEMS neltron detector (46)
apparatus using a chan-
f r o m t h e w a l l s of the detector p r o d u c e d b y c o n v e r s i o n electrons t h a t miss t h e detector. a 100-mCi
5 7
Co
C o u n t rates o f 20,000 c o u n t s / m i n w e r e o b t a i n e d w i t h source
with 10%
effects f o r n a t u r a l i r o n f o i l s .
An
a d d i t i o n a l a n d significant feature of the d e v i c e is t h a t the s a m p l e m a y b e c o o l e d to 4.2 K . A s i m i l a r a p p a r a t u s has b e e n d e s c r i b e d b y T i b y
(47).
A n e x t r e m e l y v e r s a t i l e d e v i c e f o r C E M S w o r k has b e e n d e s c r i b e d Carbuccichio (48).
by
T h e electrons are d e t e c t e d u s i n g a n E M I 9 6 4 3 / 2 B
o p e n - e n d e d p h o t o n - m u l t i p l i e r t u b e . T h e d e v i c e i n c o r p o r a t e s f a c i l i t i e s for e l e c t r o n d e t e c t i o n as w e l l as f o r i n - s i t u t r e a t m e n t of the s a m p l e , c o n t r o l l i n g t h e s a m p l e t e m p e r a t u r e i n t h e r a n g e 80 to 800 K a n d h a v i n g a n e x t e r n a l l y m o u n t e d detector to c o u n t b a c k s c a t t e r e d p h o t o n s . T h e c a p a b i l i t i e s of t h e a p p a r a t u s are i l l u s t r a t e d i n F i g u r e 6, w h e r e the C E M S a n d b a c k s c a t t e r e d x - r a y s p e c t r a of a l i g h t l y o x i d i z e d u n e n r i c h e d i r o n f o i l are s h o w n . CEM
s p e c t r u m reveals t h e presence of a t h i n ( « 1 0 0
overlayer.
nm)
iron
The oxide
T h e c o u n t i n g times w e r e 5 a n d 3 d a y s f o r t h e C E M a n d
x-ray spectra, respectively, u s i n g a 5 - m C i Beta-Ray Spectrometers
5 7
C o source.
for D C E M S Studies.
selective m e a s u r e m e n t s , a n u m b e r of
groups
T o perform depth-
(30-33,45,49-52)
have
c o n s t r u c t e d m a g n e t i c b e t a - r a y spectrometers s i m i l a r to t h a t d e s c r i b e d b y Bonchev
(29)
( r e f e r r e d to e a r l i e r ) .
resolutions o f « 5 %
S u c h spectrometers
a n d transmission of « 8 % .
have
energy
B e c a u s e the e l e c t r o n
s p e c t r u m is n o w e n e r g y - r e s o l v e d , t h e c o u n t rates are l o w e r t h a n those o b t a i n e d w i t h i n t e g r a l detectors, a n d t h e use of e n r i c h e d samples is
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
72
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
-6
-4
-2
0
2
4
velocity (mm I sec) Nuclear Instruments and Methods
Figure 6. Room-temperature Mossbauer spectra of 6.3-keV x-rays (a) and electrons (b) for a natural iron sample previously heated for 10 min in air at 350° C, obtained using the apparatus of Carbucicchio (48). (I) Sextet due to metallic iron; (II) sextet due to Fe O ; (III and IV) sextets due to Fe O . 2
s
s
h
u n a v o i d a b l e i f d a t a a c q u i s i t i o n t i m e s are to
be
realistic.
A
typical
m a g n e t i c b e t a - r a y spectrometer is s h o w n s c h e m a t i c a l l y i n F i g u r e 7.
In
the d e v i c e , t h e electrons of different energies e m i t t e d f r o m the s a m p l e surface are b r o u g h t to focus o n the detector b y c h a n g i n g t h e c u r r e n t flowing
i n t h e coils.
T h e e l e c t r o n s p e c t r u m of a n i r o n f o i l i n t h e " i n
r e s o n a n c e " c o n d i t i o n is s h o w n i n F i g u r e 8 w h e r e i t c a n b e seen t h a t t h e 1 3 . 6 - k e V L - a n d K - c o n v e r s i o n electrons are c l e a r l y r e s o l v e d f r o m another. C E M s p e c t r a of a eter settings ^7
fluorinated
one
iron foil obtained w i t h spectrom
k e V a n d ^ 1 3 . 6 k e V are s h o w n i n F i g u r e 9. I t c a n b e
seen t h a t t h e d o u b l e t a r i s i n g f r o m the surface p h a s e is r e l a t i v e l y m o r e
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
Conversion
THICKER
Electron
Mossbauer
Spectroscopy
73
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
MOVING SAMPLE
VACUUM
['* ton) *
'
A • LEAD APERTURES Applications of Surface Science
Figure 7. Essential features of a magnetic beta-ray spectrometer (45). The radius of the magnetic coils is 10 cm and the sample detector distance is 26 cm.
Applications of Surface Science
Figure 8. Electron energy spectrum obtained from a 90%-enriched Fe foil illuminated by a moving Co source using a magnetic beta-ray spectrometer (45) 57
57
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
74
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L
—I •8
l 0
1
*4
,
VELOCITY
1 -4 mm s
APPLICATIONS
L 8 1
Figure 9. The Fe DCEM spectra of a fluorinated iron foil using mainly (a) K-conversion electrons (lower) and (b) L-conversion electrons (upper) 57
(45). The surface phase is manifest as a doublet with one resolved peak at « 0 mms' and another obscured by Line 3 of the iron substrate spectrum. Note the enhanced intensity doublet in the spectrum obtained with the K-conversion electrons compared to the spectrum obtained with the L-conversion electrons. 1
intense i n t h e K - c o n v e r s i o n e l e c t r o n s p e c t r u m t h a n i n t h e L - c o n v e r s i o n electron spectrum.
I t is of interest to note t h a t t h e ratios of t h e a r e a
of t h e substrate-to-surface s i g n a l i n t h e L - c o n v e r s i o n e l e c t r o n s p e c t r u m is c o m p a r a b l e to t h a t o b t a i n e d u s i n g a H e / C H
4
detector, thus e m p h a
s i z i n g t h e c o n t r i b u t i o n of t h e L - c o n v e r s i o n electrons, t h e X P E s , a n d t h e G P E s i n t h e latter s p e c t r u m .
F u r t h e r degrees of d e p t h r e s o l u t i o n m a y
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
TRiCKER
Conversion
Electron
Mossbauer
Spectroscopy
b e o b t a i n e d b y r e c o r d i n g s p e c t r a at spectrometer K-edge.
75
settings a l o n g t h e
A s a n e x a m p l e of t h i s m o d e of o p e r a t i o n , F i g u r e 10 shows t h e
spectra of a stainless-steel f o i l c o v e r e d w i t h 36 n m of i r o n r e c o r d e d at v a r i o u s spectrometer settings b y B a v e r s t a m et a l . ( 3 2 ) .
T h e change i n
surface-to-substrate s i g n a l is c l e a r l y seen to b e a f u n c t i o n of the spec t r o m e t e r setting. T h e d e t a i l e d analysis of s p e c t r a of this t y p e w i l l
be
d e s c r i b e d later. O v e r the p a s t f e w years, significant a d v a n c e s h a v e b e e n m a d e i n t h e d e s i g n a n d c o n s t r u c t i o n of electrostatic b e t a - r a y spectrometers, n o t a b l y T h e y have described
(53)
the design a n d
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
b y the Stockholm group.
(c) Nuclear Instruments and Methods
Figure 10. The Fe DCEM spectra of a 360-A thick layer of iron on a stainless-steel substrate obtained at various electron energies along the K-edge (32). Note the relative enhancement of the iron signal relative to the stainless-steel signal as the electron energy is increased (bottom to top). 57
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
76
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Nuclear Instruments and Methods
Figure 11. Drawing of the main parts of the electrostatic spectrometer (53): (C ) inner cylinder (radius = 54 mm); (C ) outer cylinder (radius = 158 mm); (G) thin grids; (A) absorber (i.e., electron source) (B) detector baffle; (D) detector t
2
c o n s t r u c t i o n of a n electrostatic c y l i n d r i c a l m i r r o r spectrometer 11) o p e r a t i n g at a 2 . 5 % e n e r g y r e s o l u t i o n , a 6 % 5 - m m d i a m e t e r e l e c t r o n source.
(Figure
luminosity, and w i t h a
T h e d e s i g n of t h e spectrometer
was
o p t i m i z e d u s i n g a c o m p u t e r p r o g r a m , a n d i t is p r i m a r i l y i n t e n d e d for depth-resolution w o r k w i t h
5 7
Fe.
T h e e l e c t r o n s p e c t r u m of a n i r o n f o i l
i n t h e " i n r e s o n a n c e " c o n d i t i o n is s h o w n i n F i g u r e 12, w h e r e i t c a n b e seen t h a t t h e 5.6-eV A u g e r p e a k is c l e a r l y r e s o l v e d f r o m t h e K-conversion electron peak.
7.3-keV
E x p e r i m e n t s w i t h this a p p a r a t u s w i l l
be
d i s c u s s e d i n a l a t e r section. B e n c z e r - K o l l e r a n d K o l k (54)
have built a h i g h transmission spheri
c a l electrostatic spectrometer w i t h a t r a n s m i s s i o n of 7 %
a n d an energy
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
TRiCKER
Conversion
r e s o l u t i o n of 1 . 5 %
Electron
Mossbauer
77
Spectroscopy
at 14.4 k e V f o r a 1-cm d i a m e t e r source. T h i s spec
t r o m e t e r is p r i m a r i l y i n t e n d e d f o r t h e m e a s u r e m e n t of
5 7
Fe
L - and
M - i n t e r n a l c o n v e r s i o n coefficients, w h e r e g o o d r e s o l u t i o n o f t h e M - a n d L - c o n v e r s i o n e l e c t r o n p e a k s is necessary. T o r i y a m a a n d c o - w o r k e r s
(55)
have described a retarding-field electron spectrometer w i t h a n energy range 0-20 k e V .
U s i n g a h o t f i l a m e n t as a source of
electrons, t h e
r e s o l u t i o n w a s 0 . 1 % at 1 % t r a n s m i s s i o n . H o w e v e r , f o r c o n v e r s i o n elec trons t h e t r a n s m i s s i o n w a s f o u n d to b e a n o r d e r of m a g n i t u d e w o r s e . T h e system i n c o r p o r a t e d a v a c u u m e v a p o r a t o r for s a m p l e p r e p a r a t i o n .
Advances in Theoretical Aspects and Data Reduction Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
A m a j o r o b j e c t i v e i n t h e field of C E M S is t h e e x t r a c t i o n of i n f o r m a t i o n f r o m t h e r a w d a t a c o n c e r n i n g t h e w a y i n w h i c h the M o s s b a u e r p a r a m K conv
5000
5500
6000
(Volts) Nuclear Instruments and Methods
Figure 12. Experimental (- • -) and computer-simulated ( ) line profiles from a thin Co source with radius = 5 mm, obtained using the spectrometer shown in Figure 11 (53). 57
The inserted figure shows the spectrometer profile used for convolution with the simulated K-conversion-electron energy-loss distribution; it is constructed on the basis of the computed spectrometer profile. A source thickness of 47 fig/cm (corresponding to 600 A of iron) was used in the electron scattering simulation. 2
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
78
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
eters v a r y as a f u n c t i o n of d e p t h . T h e s e p a r a m e t e r s m a y t h e n b e r e l a t e d to t h e v a r i a t i o n s of the p r o p e r t i e s of t h e s a m p l e w i t h d e p t h a n d / o r the n a t u r e a n d d i s t r i b u t i o n of surface phases. w i t n e s s e d significant advances
T h e past f e w
i n this area a n d these
years
have
advances
have
u n d e r p i n n e d the essentially p r a g m a t i c a n d e m p i r i c a l a p p r o a c h to d a t a r e d u c t i o n a d o p t e d b y m a n y w o r k e r s . T h i s section is a g a i n d i v i d e d i n t o t w o parts d e a l i n g w i t h d a t a o b t a i n e d w i t h i n t e g r a l d e t e c t i o n a n d e n e r g y r e s o l v e d studies.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
I n t e g r a l C E M S Studies.
M a n y of t h e p r a c t i c a l p r o b l e m s
amenable
to s t u d y b y C E M S i n v o l v e the c h a r a c t e r i z a t i o n of r a t h e r discrete
over-
layers of, for example, a corrosion p r o d u c t , o n a t h i c k substrate.
It is
c l e a r l y i m p o r t a n t to d e v e l o p m e t h o d s
whereby
the thickness of
substrates m a y be extracted f r o m i n t e g r a l C E M S measurements.
such Much
of the w o r k i n this area so f a r has a s s u m e d a s i m p l e e x p o n e n t i a l l a w f o r the a t t e n u a t i o n of electrons i n m a t t e r .
Bainbridge (56)
has
extended
t h e early w o r k of K r a k o w s k i a n d M i l l e r ( 5 7 ) a n d has d e r i v e d expressions f r o m w h i c h t h e thickness of i n d i v i d u a l layers w i t h i n a m u l t i p l e x film m a y be extracted f r o m e x p e r i m e n t a l s p e c t r a , p r o v i d i n g the c o m p o s i t i o n o r d e r of these layers is k n o w n . H e discusses t h e case of
5 7
and
F e C E M S and
o n l y i n c l u d e s the K - c o n v e r s i o n electrons i n his analysis. H u f f m a n n (58, 5 9 ) has d e r i v e d s i m i l a r expressions to extract q u a n t i t i e s of interest f r o m CEM
spectra.
Both
5 7
F e and
1 1 9
Sn C E M S
were considered,
a n d the
effects of c o n v e r s i o n a n d A u g e r electrons w e r e i n c l u d e d i n t h e t h e o r y . To
use theories
absorption
of
this t y p e , a k n o w l e d g e
coefficients
is necessary.
(fi)
of t h e
appropriate
Mass absorption
mass
coefficients
s h o u l d t h e o r e t i c a l l y b e d e r i v a b l e f r o m first p r i n c i p l e s , b u t i n p r a c t i c e are m o r e often c a l c u l a t e d f r o m e m p i r i c a l l a w s s u c h as those of C o s s l e t t a n d T h o m a s (25).
A n a l t e r n a t i v e a p p r o a c h is to d e r i v e t h e m f r o m c a l i b r a t i o n
experiments i n v o l v i n g C E M S
studies of substrates c o a t e d w i t h k n o w n
thicknesses of w e l l - c h a r a c t e r i z e d overlayers. S u c h experiments h a v e b e e n p e r f o r m e d b y T h o m a s et a l . (19)
for t h e case of
5 7
F e C E M S b y t h e use
of stainless-steel substrates c o a t e d w i t h k n o w n thicknesses of i r o n u s i n g a He/CH (substrate
4
detector.
T h e a r e a r a t i o of the o v e r l a y e r to t o t a l s i g n a l
and overlayer)
was
thickness, a n d a v a l u e of fi =
measured
1.3 X
as a f u n c t i o n of
10 c m g 4
2
_ 1
overlayer
was derived. T h i s
is r o u g h l y h a l f t h a t e x p e c t e d f o r t h e K - c o n v e r s i o n electrons f r o m the f o r m u l a of C o s s l e t t a n d T h o m a s ( 2 5 ) .
figure
calculated
U s i n g this v a l u e , a c u r v e
r e l a t i n g the o x i d e o v e r l a y e r thickness o n a n i r o n substrate to the s p e c t r a l area ratios c a n b e c a l c u l a t e d p r o v i d e d t h a t p is insensitive to c h a n g e i n a t o m i c n u m b e r (19,60). performed similar
5 7
G r a h a m , M i t c h e l l , a n d C h a n n i n g (61)
have
F e C E M S c a l i b r a t i o n experiments b y g r o w i n g m a g
netite films i n the r a n g e 2 6 5 - 4 2 5 0 A o n n a t u r a l i r o n substrates. T h e o x i d e thicknesses w e r e m o n i t o r e d d u r i n g g r o w t h b y
measuring the
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
oxygen
3.
Conversion
TRICKER
Electron
Mossbauer
79
Spectroscopy
u p t a k e of t h e foils a n d c a l c u l a t e d b y a s s u m i n g s m o o t h surfaces. percentage
(P)
o x i d e w a s d e t e r m i n e d as a f u n c t i o n of thickness (d) a l a w of the f o r m d(k) data were
The
of the t o t a l C E M s p e c t r u m a r e a c o n t r i b u t e d b y
compared
Bainbridge (56).
=
the
a n d f o u n d to f o l l o w
- 1 . 9 5 X 1 0 In ( 1 - 0 . 0 1 P ) . T h e e x p e r i m e n t a l 3
w i t h the predictions
of
Huffmann
C a l c u l a t i o n s of P b a s e d o n p-values
(58,59)
and
calculated from
the expression of C o s s l e t t a n d T h o m a s ( 1 9 ) a n d t h e H u f f m a n n t r e a t m e n t ( 5 8 , 5 9 ) y i e l d e d v a l u e s of P 3 0 to 4 0 % data. 1.10 X
10
c m V
4
a n d 1.73 X
electron, respectively.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
higher than the experimental
B e t t e r fits to t h e d a t a w e r e o b t a i n e d w i t h v a l u e s of fi e q u a l to 10
4
c m V
for the 7.3-keV a n d 5.4-keV
H u f f m a n n a n d P o d g u r s k i (62)
have
performed
s i m i l a r experiments b u t i n v o k e d changes i n surface roughness to e x p l a i n t h e n o n l i n e a r i t y of plots of o v e r l a y e r thickness d e r i v e d f r o m the
CEMS
d a t a vs. t h e o x y g e n u p t a k e m e a s u r e m e n t s . S u b s e q u e n t to these studies, a c o m p r e h e n s i v e s t u d y of the i n t e n s i t y a n d e n e r g y d i s t r i b u t i o n of i n i t i a l l y m o n o c h r o m a t i c from an absorber
surface
L i l j e q u i s t et a l . ( 2 6 ) .
was made
5 7
emanating by
T h e t o t a l t r a n s m i s s i o n as w e l l as t h e t r a n s m i s s i o n
into various angular and energy depths i n a
electrons
using M o n t e C a r l o methods
i n t e r v a l s of
electrons
F e absorber w e r e c a l c u l a t e d . T h e
from
different
L - , Auger, G P E , and
X P E electrons w e r e a l l i n c l u d e d i n t h e c a l c u l a t i o n s . T h e s c a t t e r i n g a n d energy loss of the electrons w e r e c o m p u t e d for i r o n , F e 0 , a n d a l u m i n u m . 2
3
It w a s f o u n d that t h e difference i n the results w a s n e g l i g i b l e a n d t h a t t h e d e p t h m a y b e m e a s u r e d as m a s s / u n i t area.
T h e results of t h e i r
c a l c u l a t i o n s w e r e c o m p a r e d w i t h the e x p e r i m e n t a l l y m e a s u r e d area ratios of the stainless-steel i r o n s a n d w i c h d e s c r i b e d
earlier.
T h e results are
i l l u s t r a t e d i n F i g u r e s 13 a n d 14, w h e r e i t c a n b e seen t h a t a n excellent fit to t h e
data was
obtained.
a c c o u n t f o r a l l t h e electrons designed
to
These
figures
emphasize
the
need
c o n t r i b u t i n g to t h e s i g n a l i n a n y
extract i n f o r m a t i o n f r o m
integral
5 7
Fe
CEMS
to
theory
data.
In
a d d i t i o n , these figures s h o w t h a t t h e use of a n y t h e o r y that neglects t h e c o n t r i b u t i o n s f r o m L - c o n v e r s i o n , G P E , a n d X P E electrons to t h e t o t a l flux, w h e n c o m b i n e d w i t h the p v a l u e s of C o s s l e t t a n d T h o m a s ( 2 5 )
will
l e a d to p o o r estimations of o v e r l a y e r t h i c k n e s s , regardless of e i t h e r t h e correctness of the //.-values or t h e a p p r o p r i a t e n e s s of t h e e x p o n e n t i a l l a w . The
apparent
discrepancies
between
the /i-values
derived
from
the
c a l i b r a t i o n experiments just d e s c r i b e d arise f r o m t h e f a c t t h a t the v a l u e measured by Thomas
et a l . (19)
is s i m p l y a n effective
value for a l l
electrons d e t e c t e d , w h e r e a s t h e v a l u e s d e r i v e d b y G r a h a m et a l .
(61)
are effective values a r i s i n g f r o m t h e expressions u s e d . H o w e v e r , there is a r e a l d i s c r e p a n c y b e t w e e n the o x i d e thicknesses d e r i v e d b y t h e m e t h o d of T h o m a s et a l . ( 2 5 ) a n d those d e r i v e d b y G r a h a m et a l . ( 6 1 ) .
The origin
of this d i s c r e p a n c y is not u n d e r s t o o d a n d w a r r a n t s f u r t h e r i n v e s t i g a t i o n .
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
80
MOSSBAUER SPECTROSCOPY AND ITS CHEMICAL APPLICATIONS
Nuclear Instruments and Methods
Figure 13. Relative contribution from various electrons in the integral CEM spectrum of an iron overlayer on a stainless-steel substrate as a function of overlayer thickness (d is the thickness of the iron overlayer) (26). Fe
I n r e l a t i o n s h i p to F i g u r e 13, i t is of interest to note t h e e n h a n c e d d e p t h s e l e c t i v i t y g a i n e d b y d e t e c t i n g the K - c o n v e r s i o n electrons alone r a t h e r t h a n w i t h t h e i n t e g r a t e d signals, as m e n t i o n e d e a r l i e r i n c o n n e c t i o n w i t h the s p e c t r a of
fluorinated
iron foils.
T h e size of t h e resonant M o s s b a u e r effects o n /?-Sn, C a S n 0 , a n d 3
Sn0
2
have been measured using
retical values ( 2 7 ) .
1 1 9
S n C E M S a n d compared w i t h theo
T h e m e a s u r e d p e r c e n t a g e effects w e r e 4 6 % , 5 2 0 % ,
a n d 5 1 0 % f o r £-Sn, S n 0 , a n d C a S n 0 , r e s p e c t i v e l y . 2
3
Good
agreement
w a s o b t a i n e d b e t w e e n e x p e r i m e n t a n d t h e o r y , i f the effects of n o n i s o tropic scattering of
photoelectrons
anomalously large percentage
are i n c l u d e d i n the theory.
effect of 9 5 0 %
for S n 0
2
measured
The by
Y a g n i k et a l . ( 6 3 )
w a s s h o w n t o arise f r o m a n i n a d e q u a t e c u r v e - f i t t i n g
procedure
by
caused
neglect
of
quadrupole
l i n e b r o a d e n i n g of
the
resonance. Depth-Resolved C E M S Studies. ratios of t h e c o m p o n e n t s
A s pointed out earlier, the area
of C E M spectra of i n h o m o g e n e o u s
absorbers
r e c o r d e d at different spectrometer settings w i l l v a r y a n d c o n t a i n i n f o r m a -
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
3.
THICKER
Conversion
Electron
Mossbauer
81
Spectroscopy
Nuclear Instruments and Methods
Figure 14.
Relative stainless-steel signal in an iron-on-steel CEMS gral) measurement (26).
(inte-
Dots show experimental results from Thomas et al. Full curve (a) shows the result predicted by the present theory. Dashed curve (b) shows the predicted result if the XPE and GPE electrons are neglectd. Full curve (c) shows the predicted result if the APK interval is selected in the detector (all angles). Dashed curve (d) shows the same result if the GPE and L-conversion electrons are neglected. d*> is the thickness of the iron layer.
t i o n r e l a t i n g to the d e p t h d i s t r i b u t i o n of t h e M o s s b a u e r p a r a m e t e r s . B a v e r s t a m et a l . (32)
h a v e s h o w n t h a t t h e n u m b e r of counts r e c o r d e d i n
t h e n t h c h a n n e l i n a M o s s b a u e r s p e c t r u m b y means of scattered electrons at a spectrometer s e t t i n g c o r r e s p o n d i n g to a n energy E m a y b e w r i t t e n as w(E,x)P(x) dx
T(E) w h e r e w(E,x)
n
is a ( w e i g h t ) f u n c t i o n g i v i n g the p r o b a b i l i t y of a n e l e c t r o n
o r i g i n a t i n g at d e p t h x to b e d e t e c t e d i f the spectrometer s e t t i n g is £ . P(x)
n
is t h e e m i s s i o n p r o b a b i l i t y f o r electrons at d e p t h x w h e n
g a m m a source v e l o c i t y corresponds not
w(E,x) electrons
only
describes
to the n t h c h a n n e l .
the intensity a n d energy
the
The function d i s t r i b u t i o n of
e m a n a t i n g f r o m t h e surface, b u t also c o n t a i n s i n f o r m a t i o n
r e l a t i n g t o t h e response
of
the detection
device.
Using
a
magnetic
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
82
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
b e t a - r a y spectrometer,
B a v e r s t a m et a l . (33)
c a r r i e d o u t a series
of
experiments i n v o l v i n g the s c a t t e r i n g of electrons w i t h energies close to 7.3 k e V t h r o u g h t h i n i r o n G i v e n w(E,x),
w(E,x).
films,
P(x)
n
i n o r d e r to d e t e r m i n e t h e
function
can now, i n principle, be extracted f r o m
a series of C E M spectra a c c u m u l a t e d at different s p e c t r o m e t e r settings Ej as
£
T(Ej) =
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
n
where P
i n
[ J^
w{E x)dx^
1
h
P
j —1,2, 3,...
i n
is u n k n o w n , / the n u m b e r o f s p e c t r a r e c o r d e d , I t h e n u m b e r of
layers separated, a n d U t h e l i m i t s of these layers. A p r a c t i c a l e x a m p l e of this t e c h n i q u e is s h o w n i n F i g u r e 15. H e r e the separate signals a r i s i n g f r o m the substrate a n d o v e r l a y e r h a v e b e e n e x t r a c t e d f r o m t h e series of spectra s h o w n i n F i g u r e 10.
T h e d e p t h r e s o l u t i o n of the m e t h o d w a s
e s t i m a t e d to be a b o u t 50 A f o r t h e i r m a g n e t i c b e t a - r a y
spectrometer
w h i c h h a d a 5 % energy resolution. M o r e r e c e n t l y these w o r k e r s (26)
have calculated weight functions
( F i g u r e 16) u s i n g the M o n t e C a r l o - t y p e c a l c u l a t i o n s d e s c r i b e d p r e v i o u s l y , i n the energy i n t e r v a l 6.3-7.3 k e V c o r r e s p o n d i n g to a l m o s t p u r e K - c o n v e r s i o n electrons. T h e s o l i d l i n e i n F i g u r e 13 is i n fact c o m p u t e d o n the basis of these f u n c t i o n s c o n v o l u t e d w i t h a s u i t a b l e s p e c t r o m e t e r
line
shape. T h e i n t e r p r e t a t i o n a n d p r a c t i c a l analysis of d e p t h - s e l e c t i v e C E M spectra also h a v e b e e n d i s c u s s e d u s i n g a s i m p l i f i e d t h e o r y (64).
Expedi
ent analysis i n terms of a b s o r b e r s t r u c t u r e has d e m o n s t r a t e d t h a t D C E M S reveals m o r e f u n d a m e n t a l i n f o r m a t i o n t h a n i n t e g r a l C E M S . B o n c h e v a n d c o - w o r k e r s (64) to the i n t e r p r e t a t i o n of
1 1 9
have developed an empirical approach
S n data. T h e method was based on the experi
m e n t a l d e t e r m i n a t i o n of the c h a n g e i n energy d i s t r i b u t i o n of L - c o n v e r s i o n electrons e m i t t e d f r o m a source t h a t w a s p r o g r e s s i v e l y c o v e r e d w i t h t h i n a b s o r b i n g layers of c o p p e r i n t h e r a n g e 0.02-0.25 m g c m " . U s i n g these 2
d a t a the d i s t r i b u t i o n of
1 1 9
S n i n u n k n o w n samples m a y b e d e t e r m i n e d
either b y s u i t a b l y c o n s t r u c t e d n o m o g r a m s o r b y s o l v i n g a series of l i n e a r equations w i t h e x p e r i m e n t a l l y d e t e r m i n e d coefficients. I n a l a t e r extension of this w o r k , B o n c h e v a n d c o - w o r k e r s (66,67)
i n v e s t i g a t e d the i n f l u e n c e
of a t o m i c n u m b e r , c r y s t a l s t r u c t u r e , a n d a p p l i e d e l e c t r i c field o n the d i s t r i b u t i o n of layers.
It
1 1 9
was
S n c o n v e r s i o n electrons after passage t h r o u g h s u i t a b l e demonstrated
that e l e c t r o n
energy
distribution was
d e p e n d e n t o n a t o m i c n u m b e r b y p e r f o r m i n g experiments w i t h overlayers of b e r y l l i u m , c o p p e r , s i l v e r , a n d g o l d . 67)
Furthermore, it was noted
(66,
that t h e results c o u l d not b e e x p l a i n e d i n terms of present theories
of the i n t e r a c t i o n s of l o w - e n e r g y electrons w i t h m a t t e r .
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Figure
15.
Nuclear Instruments and Methods
The "depth-selected" spectra corresponding to the layer (a) 0-375 A and (b) from 350 A and inward in the absorber extracted from the spectra shown in Figure 10 (32)
(b)
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
84
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
INTENSITY
(FeA) Journal of Vacuum Science and Technology
Figure 16. "Weight functions" corresponding to the settings, 5400, 5600, and 5800 V in the Stockholm group's electron spectrometer (104). These functions give the relative probabilities to detect electrons of initial energy 7.3 keV, ejected at different depths in iron and at different electron spectrometer settings.
Applications of Fe CEMS 57
T h e p o t e n t i a l of
5 7
Fe CEMS
a p p l i c a t i o n s to t h e s o l u t i o n of
real
p r o b l e m s c o n n e c t e d w i t h t h e p r o p e r t i e s of surfaces has b e e n r e a l i z e d o v e r t h e p a s t f e w years. T h e a b i l i t y of the t e c h n i q u e to p r o b e t h e surface regions of l o w - a r e a solids i n s i t u a n d i n a n o n d e s t r u c t i v e m a n n e r has m a d e t h e m e t h o d p a r t i c u l a r l y s u i t a b l e f o r the e x a m i n a t i o n of t e c h n i c a l p r o b l e m s s u c h as those e n c o u n t e r e d i n m e t a l l u r g i c a l studies
(68,69).
T h e m a j o r i t y of a p p l i c a t i o n s to date h a v e u s e d i n t e g r a l C E M S t e c h n i q u e s , often c o m b i n e d w i t h the x - r a y s c a t t e r i n g M o s s b a u e r m e t h o d , thus a l l o w i n g t h e o u t e r f e w m i c r o n s of t h e surface to b e p r o b e d a n d t h e d i s t r i b u t i o n of the surface phases d e t e r m i n e d . V a r i o u s a p p l i c a t i o n s of t h e t e c h n i q u e s are n o w d e s c r i b e d i n m o r e d e t a i l . Aqueous Oxidation Corrosion of Iron and Steels.
Early work fully
e s t a b l i s h e d t h e p o t e n t i a l of C E M S as a p o w e r f u l t e c h n i q u e f o r t h e s t u d y of t h e i n i t i a l stages of t h e c o r r o s i o n of i r o n a n d steels. co-workers
(18)
Simmons a n d
h a v e s t u d i e d t h e o x i d a t i o n of e n r i c h e d i r o n foils at
2 2 5 ° C , 3 5 0 ° C , a n d 4 5 0 ° C , a n d f u l l y d e m o n s t r a t e d the a b i l i t y of
the
t e c h n i q u e to i d e n t i f y n e w surface phases s u c h as F e 0
2
3
f o r m e d at surfaces i n t h e t h i c k n e s s r a n g e of
five
4
and
Fe 0
to s e v e r a l tens
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3
of
3.
Conversion
TRICKER
nanometers.
Electron
Mossbauer
S i m i l a r studies (19,20)
85
Spectroscopy
have been performed w i t h natural
i r o n substrates, a n d F e 0 , a - F e 0 , a n d w u s t i t e w e r e a l l i d e n t i f i e d as 3
4
2
3
oxidation products. I n a d d i t i o n to this phase i d e n t i f i c a t i o n aspect of C E M S , the d a t a r e d u c t i o n m e t h o d s d e s c r i b e d e a r l i e r h a v e b e e n u s e d to d e r i v e k i n e t i c p a r a m e t e r s for o x i d a t i o n processes f r o m a k n o w l e d g e
of
total
thicknesses d e r i v e d f r o m s p e c t r a l area m e a s u r e m e n t s (18,20,60). m a t i o n c o n c e r n i n g the d e p t h d i s t r i b u t i o n ( z o n i n g ) can be gained.
oxide Infor
of o x i d e layers also
I n cases w h e r e t h e o x i d e thickness is t h e o r d e r of t h e
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
p r o b i n g d e p t h of C E M S , this m a y b e d o n e b y either m a k i n g use of the l i m i t e d e n e r g y r e s o l u t i o n of H e / C H
4
beta-ray spectrometer
F o r t h i c k e r layers i n f o r m a t i o n m a y
(50,52,70).
detectors
(6)
or b y t h e use of a
be d r a w n f r o m a c o m b i n a t i o n of C E M S a n d b a c k s c a t t e r e d x-ray M o s s b a u e r spectra. A n i n t e r e s t i n g e x a m p l e of this l a t t e r a p p r o a c h is s h o w n i n F i g u r e 17, w h i c h relates to a s t u d y (71)
of the o x i d a t i o n of a
9%
c h r o m e - s t e e l i n C 0 . S p e c t r u m a is the i n t e g r a l C E M s p e c t r u m of t h e 2
o r i g i n a l steel. fields
H e r e there are at least five different i n t e r n a l h y p e r f i n e
at the i r o n sites a r i s i n g f r o m d i f f e r i n g n u m b e r s of i r o n - c h r o m i u m
n e i g h b o r s i n the d i s o r d e r e d alloys. S p e c t r a b a n d c a r e C E M spectra of the c o r r o s i o n p r o d u c t .
T h i s p r o d u c t consists of a n o u t e r l a y e r of m a g n e
t i t e a n d a n i n n e r l a y e r of F e i + ^ C r ^ a A i (1.4 < x < 1.8).
a n i r o n - c h r o m i u m s p i n e l of
composition
D u r i n g the o x i d a t i o n , i r o n diffuses o u t to
t h e o x i d e / g a s i n t e r f a c e to g i v e F e 0 3
4
a n d c h r o m i u m r e m a i n s b e h i n d to
g i v e t h e m i x e d s p i n e l . B e n e a t h t h e l o w e r o x i d e l a y e r is a r e g i o n t h a t is c h r o m i u m depleted.
T h i s is c l e a r l y r e v e a l e d i n the b a c k s c a t t e r e d x - r a y
s p e c t r u m d w h e r e t h e outmost 2 0 pm or so of the s a m p l e are p r o b e d . T h i s s p e c t r u m is c o n s i d e r a b l y s h a r p e r t h a n t h a t of the o r i g i n a l steel, i n d i c a t i n g a r e d u c t i o n i n the v a r i e t y of i r o n e n v i r o n m e n t s c a u s e d b y the c h r o m i u m d e p l e t i o n . T h e f e a s i b i l i t y of d e p t h - p r o b i n g t h e o u t e r 100 n m of o x i d e o r o x y h y d r o x i d e o v e r l a y e r s o n i r o n b y D C E M S at a r e s o l u t i o n o n t h e o r d e r of 5 n m also has b e e n d e m o n s t r a t e d (50, 52,
70).
I n t h e area of aqueous c o r r o s i o n , G u t l i c h a n d c o - w o r k e r s (72)
have
s t u d i e d the f o r m a t i o n of p r o t e c t i v e o x i d e coatings o n steam generator tubes i n the presence o f w a t e r at h i g h t e m p e r a t u r e s a n d pressures.
Magnetite
w a s the o n l y o x i d e phase d e t e c t e d at t h e surface of a m a r t e n s i t i c i r o n c h r o m i u m steel a n d o n a n a u s t e n i t i c i r o n - c h r o m i u m - n i c k e l steel, w h e r e a s a n i r o n - n i c k e l f e r r i t e w a s f o r m e d o n a n I n c o l o y 800 steel after t r e a t m e n t . T h e t i m e d e p e n d e n c e of t h e o x i d e g r o w t h w a s m o n i t o r e d a n d
oxide
thicknesses w e r e d e r i v e d u s i n g t h e m e t h o d of T h o m a s et a l . (19).
An
analysis of these d a t a r e v e a l e d that the o x i d a t i o n process is most p r o b a b l y c o n t r o l l e d b y s h o r t - c i r c u i t d i f f u s i o n . I n a later p a p e r (73)
these w o r k e r s
e x t e n d e d this r e s e a r c h to s t u d y the i n f l u e n c e of the presence of P 0 2
Si0
2
i n the w a t e r u p o n c o r r o s i o n .
T i b y (47)
5
r e c e n t l y has m a d e
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
and an
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
86
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
I
1 -6
-8
1 -4
i -2
i i i 0 2 4 Velocity (mm/s)
i 6
i 8
1
1 10
Non-Destructive Testing
Figure 17. Mossbauer scattering spectra of 9% chromium-steel after oxidation in CO (68): (a) original steel (CEM); (b) outer oxide layer (CEM); (c) inner oxide layer (CEM); (d) first 20 pm below inner oxide layer using the scattered x-rays t
a p p l i c a t i o n of i n t e g r a l C E M S to the s t u d y of c o r r o s i o n p r o d u c t s f o r m e d d u r i n g the aqueous c o r r o s i o n of i r o n , at v a r i o u s p H a n d i n t h e presence of d i s s o l v e d salts, u s i n g t h e v a r i a b l e t e m p e r a t u r e d e v i c e d e s c r i b e d i n a p r e v i o u s section. T h e aqueous c o r r o s i o n of i r o n m a y l e a d to a v a r i e t y of products that include 0 - F e O O H , y - F e O O H , a - F e O O H , y - F e 0 , « - F e 0 , 2
and F e 0 . 3
4
3
2
I f o n l y r o o m - t e m p e r a t u r e C E M spectra are r e c o r d e d ,
3
diffi
culties m a y b e e n c o u n t e r e d i n the a s s i g n m e n t of spectra t h a t c o n t a i n only quadrupole y-FeOOH
or
doublets,
even
s i n c e these
superparamagnetic
may
arise f r o m
p a r t i c l e s of
e i t h e r /?-
either
or
a-FeOOH,
y - F e 0 ,
Journal of Inorganic and Nuclear Chemistry
Figure 20. (a) Transmission and (b) CEM spectra of a vivianite single crystal before heating (100). The spectrum after heating for 1 h at 120° C indicates conversion of the bulk ((c) is the transmission spectrum) to a mainly ferric-containing species, whereas the CEM spectrum (d) suggests that the surface is mainly ferrous in nature.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
Conversion
TRICKER
Electron
Mossbauer
95
Spectroscopy
context i t is k n o w n t h a t c e r t a i n l o w e r i r o n ( I I ) p h o s p h a t e h y d r a t e s a r e resistant to o x i d a t i o n Iron-57 C E M S
(101). also has b e e n u s e d i n c o m b i n a t i o n w i t h
scanning
e l e c t r o n m i c r o s c o p y a n d x - r a y s c a t t e r i n g M o s s b a u e r s p e c t r o s c o p y to s t u d y t h e n a t u r e of r e d a n d b l a c k glazes o n G r e e k - a n d I n d i a n - p a i n t e d w a r e C E M S w a s s h o w n to b e p a r t i c u l a r l y u s e f u l i n t h e s t u d y o f I n d i a n
(102).
p o t t e r y w h e r e t h e glazes a r e e x t r e m e l y t h i n . Applications of D C E M S . y-FeOOH
( 4 9 ) , iron oxide
i m p l a n t e d a l u m i n u m (90)
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
measure
the magnetic
A p a r t f r o m its a p p l i c a t i o n t o studies of a n d oxyhydroxide
just d e s c r i b e d ,
field
n e a r t h e surface
and iron-
(50,52,70),
DCEMS
has been used
of i r o n
to
It was
(103).
d e m o n s t r a t e d t h a t t h e i n t e r n a l m a g n e t i c h y p e r f i n e field i n t h e o u t e r m o s t 50 A of t h e f o i l w a s 5 % s m a l l e r t h a n the b u l k v a l u e .
T h e Stockholm
g r o u p has u s e d t h e electrostatic b e t a - r a y s p e c t r o m e t e r d e s c r i b e d e a r l i e r to e x a m i n e t h e surface c o n d i t i o n of i r o n samples i n a n o i l - d i f f u s i o n p u m p e d v a c u u m system (104). of F e C 0
3
A f t e r a n n e a l i n g at 7 5 0 ° C , t h e p r e s e n c e
w a s d e t e c t e d i n the surface r e g i o n s o f t h e s a m p l e .
were analyzed using the w e i g h t functions computed
T h e data
according to the
m e t h o d d e s c r i b e d i n a n e a r l i e r section. I t w a s f o u n d t h a t t h e c o n c e n t r a t i o n of F e C 0 d e c r e a s e d l i n e a r l y f r o m t h e surface d o w n to 1100 A , w h e r e 3
as a M o s s b a u e r i n e r t p h a s e i n c r e a s e d i n c o n c e n t r a t i o n f r o m t h e surface d o w n to at least 1200 A . I n a c l e a n e r t u r b o - p u m p e d v a c u u m s y s t e m , austenite w a s p r o d u c e d
at t h e surface o f a n i r o n f o i l after
repeated
o x i d a t i o n / r e d u c t i o n cycles o v e r a p e r i o d of o n e m o n t h . A n a l y s i s of these d a t a s h o w e d t h a t t h e austenite is c o n f i n e d to w i t h i n 500 A of t h e surface. I t w o u l d a p p e a r t h a t e v e n i n t h e c l e a n v a c u u m system c a r b o n c o n t a m i n a t i o n of samples c a n o c c u r after l o n g p e r i o d s of t i m e . A D C E M S s t u d y ( 5 2 ) of t h e n a t u r e of t h e c o r r o s i o n p r o d u c t f o r m e d o n i r o n after exposure to a h u m i d a t m o s p h e r e also has b e e n d e s c r i b e d . I t w a s d e m o n s t r a t e d t h a t after 4 8 h a n o n u n i f o r m l a y e r o f y - F e O O H a b o u t 300 n m t h i c k w a s f o r m e d .
I t also w a s s h o w n t h a t a l a y e r of F e ( P 0 ) 2 * 3
4
8 H 0 , « 4 0 n m t h i c k f o r m e d at a n i r o n s u r f a c e after i m m e r s i o n i n 0 . 1 M 2
H P0 3
4
f o r 20 s.
Applications of Sn CEMS 119
I n a d d i t i o n t o t h e a p p l i c a t i o n of
1 1 9
Sn DCEMS
to the study of
b r o m i n a t e d t i n foils d e s c r i b e d e a r l i e r , o t h e r a p p l i c a t i o n s o f h a v e b e e n m a d e . Y a g n i k a n d c o - w o r k e r s (63) for unenriched S n 0 range of the
1 1 9
2
absorbers.
1 1 9
Sn CEMS
o b t a i n e d v e r y l a r g e effects
Sano a n d c o - w o r k e r s (105)
estimated the
S n L - c o n v e r s i o n electrons t o b e 1.17 rfc 0.20 m g cm* a n d
also u s e d t h e t e c h n i q u e to s t u d y t h e a q u e o u s c o r r o s i o n of t i n (106).
In
this latter study the corrosion products f o r m e d o n t i n m e t a l i m m e r s e d i n
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
96
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
20 r
Sn0 —
2
Metallic Sn FeSn
2
I— z
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
LU O
I
I
I
-12
-
I 8
-
I
I
I
4
I
0
I
I 4
V (MM/S) Journal of the Electrochemical Society
Figure 21. The Sn CEM spectra of tinplate samples with coatings of 0.15 Ib/bb (top) and 0.22 Ib/bb (bottom,) (106). The approximate contributions of the oxide, metal, and alloy (FeSn ) layers are indicated separately in the top spectrum. 119
2
6.7M H N 0 , 5.7M HC1, and 9.0M H S 0 3
2
4
w e r e d e t e r m i n e d to b e S n 0 • 2
n H 0 ; S n ( O H ) C l , and S n S 0 , respectively. H u f f m a n n a n d D u n m y r e 2
4
2
6
4
have made detailed
(106)
1 1 9
S n C E M S studies of t i n p l a t e . T y p i c a l s p e c t r a
of t i n p l a t e o n i r o n are s h o w n i n F i g u r e 21 w h e r e t h e c o n t r i b u t i o n s f r o m metallic Sn, S n 0 , and F e S n 2
2
c a n b e c l e a r l y seen. T h e o v e r l a y e r t h i c k
nesses w e r e d e t e r m i n e d a n d s h o w n to b e i n g o o d a g r e e m e n t w i t h t h e results o b t a i n e d f r o m s t a n d a r d s t r i p p i n g t e c h n i q u e s . A c o m b i n e d and
1 1 9
S n C E M S s t u d y (108)
ESCA
w a s m a d e o f t h e o x i d a t i o n of t i n . T i n m e t a l
w a s exposed to d r y o x y g e n at 1000°C, a n d i t w a s d e m o n s t r a t e d t h a t u n d e r these c o n d i t i o n s r e d S n O w a s f o r m e d at t h e t i n surface. a n d L l a b a d o r (52) DCEM SnF
4
made a D C E M S
study of a
Schunk, Friedt,
fluorinated
tin foil;
spectra r e c o r d e d at v a r i o u s e n e r g y settings d e m o n s t r a t e d t h a t
and S n F
2
w e r e f o r m e d at the surface.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
3.
TRICKER
Conversion
Electron
Mossbauer
Spectroscopy
97
Conclusions It is c l e a r f r o m t h e d i v e r s i t y of a p p l i c a t i o n s d e s c r i b e d h e r e t h a t C E M S , e v e n i n its s i m p l e s t m o d e of o p e r a t i o n , has b e g u n t o m a k e a significant i m p a c t i n m a n y areas of p u r e a n d a p p l i e d r e s e a r c h .
I t is
e x p e c t e d that t h e recent a d v a n c e s i n d a t a r e d u c t i o n , t h e o r y , a n d i n s t r u m e n t a t i o n , e s p e c i a l l y w i t h r e g a r d to t h e c o n t r o l of s a m p l e t e m p e r a t u r e and
d e p t h selection, w i l l b e u s e d a d v a n t a g e o u s l y i n f u t u r e studies o f
academic a n d technological problems.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
Literature Cited 1. Tricker, M. J. "Surface and Defect Properties of Solids"; Chemical So ciety Specialist Periodical Report: London, 1977; Vol. 6, p. 106. 2. Berry, F. J. Trans. Metall. Chem. 1979, 4, 209. 3. Mahieu, B. Rev. Quest. Sci. 1979, 150, 187. 4. Greenwood, N. N.; Gibb, T. C. "Mössbauer Spectroscopy"; Chapman & Hall: London, 1971. 5. Swanson, K. R.; Spijkerman, J. J. J. Appl. Phys. 1970, 41, 3155. 6. Tricker, M. J.; Freeman, A. G.; Winterbottom, A. P.; Thomas, J. M. Nucl. Instr. Methods 1976, 135, 117. 7. Tricker, M. J.; Thomas, J. M.; Winterbottom, A. P. Surf. Sci. 1974, 45, 601. 8. Swartzendruber, L. J.; Bennett, L. H. Scr. Metall. 1972, 6, 737. 9. Stanek, J.; Sawicki, J. A.; Sawicka, B. D. Nucl. Instr. Methods 1975, 130, 613. 10. Sawicka, B. D . Sawicki, J. A.; Stanek, J. Nukleonika 1966, 21, 949. 11. Sawicka, B. D.; Sawicki, J. A.; Stanek, J. Phys. Lett. 1976, 59A, 59. 12. Sawicki, J. A.; Sawicka, B. D.; Stanek, J.; Kowalsk, J. Phys. Status Solidi B 1976, 77, K1. 13. Sawicki, J. A.; Sawicka, B. G.; Lazarski, A.; Maydell, E.; Ondrusz, E . M. Phys. Status Solidi B 1973, 57, K143. 14. Sawicki, J. A.; Sawicka, B. D.; Lazarski, A.; Ondrusz, E. M. Phys. Status Solidi B 1973, 18, 85. 15. Sawicka, B. D.; Orwiega, M.; Sawicki, J. A. Hyperfine Interact. 1978, 5, 147. 16. Tricker, M. J.; Thorpe, R. K.; Freeman, J. H.; Gard, G. A. Phys. Status Solidi A 1976, 33, K97. 17. Onodera, H.; Yamamoto, H.; Watanabi, H.; Ebiko, H. J. Appl. Phys., Jpn. 1972, 11, 1380. 18. Simmons, G. W.; Kellerman, E.; Leidheiser, H. Corrosion (Houston) 1973, 29, 227. 19. Thomas, J. M.; Tricker, M. J.; Winterbottom, A. P. J. Chem. Soc. Faraday 2, 1975, 71, 1708. 20. Sette-Camara, A.; Keune, W. Corros. Sci. 1975, 15, 441. 21. Forester, D. W. Proc. Lunar Sci. Conf., 4th 1973, 3, 2697. 23. Petreva, M.; Gonser, U.; Hasmann, U.; Keune, W.; Lauer, J. J. Phys. (Paris) Colloq. 1976, C6, 295. 24. Tricker, M. J.; Ash, L. A.; Cranshaw, T. E. Nucl. Instr. Methods 1977, 143, 307. 25. Cosslett, V. E.; Thomas, R. N. Br. J. Appl. Phys. 1964, 15, 883. 26. Liljequist, D.; Ehdahl, T.; Bäverstam, U. Nucl. Inst. Methods 1978, 155, 529. ;
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
98
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
27. McCarthy, P. J.; Deeny, F. A. Nucl. Instr. Methods 1979, 159, 381. 28. Tricker, M. J.; Ash, L. A.; Jones, W. Surf. Sci. 1979, 79, L333. 29. Bonchev, Z. W.; Jordanov, A.; Minkova, A. Nucl. Instr. Methods 1969, 70, 36. 30. Bäverstam, U.; Bohm, C.; Ekdahl, T.; Liljequist, D.; Ringström, B. "Mössbauer Effect Methodology"; Plenum: New York, 1974; Vol. 9, p. 259. 31. Bäverstam, U.; Ekdahl, T.; Bohm, C.; Ringström, B.; Stefansson, V.; Liljequist, D. Nucl. Instr. Methods 1974, 115, 373. 32. Bäverstam, U.; Ekdahl, T.; Bohm, C.; Liljequist, D.; Ringström, B. Nucl. Instr. Methods 1974, 118, 313. 33. Bäverstam, U.; Bohm, C.; Ringström, B.; Ekdahl, T. Nucl. Instr. Methods 1973, 108, 439. 34. Fenger, J. Nucl. Instr. Methods 1973, 106, 203. 35. Spijkermann, J. J. "Mössbauer Effect Methodology"; Plenum: New York, 1971; Vol. 8, p. 85. 36. Takafuchi, M.; Isozumi, Y.; Katano, R. Bull. Inst. Chem. Res., Kyoto Univ. 1973, 51, 13. 37. Isozumi, Y.; Lee, D. I.; Kadar, I. Nucl. Instr. Methods 1974, 120, 23. 38. Sawicki, J. A.; Sawicka, B. D.; Stanek, J. Nucl. Instr. Methods 1976, 138, 565. 39. Isozumi, Y ; Takafuchi, M. Bull. Inst. Chem. Res., Kyoto Univ. 1975, 53, 63. 40. Sawicki, J. A.; Stanek, J.; Sawicki, B. D.; Kowalski, J., Internal Report No. 1009/PL, Inst, of Nuclear Physics, Cracow, Poland, 1978. 41. Isozumi, Y ; Kurahado, M.; Kabano, R. Nucl. Instr. Methods 1979, 166, 407. 42. Weyer, A. "Mössbauer Field Methodology"; Plenum: New York, 1976; Vol. 10, p. 301. 43. Salomon, D.; West, P. J.; Weyer, G. Hyperfine Interact. 1977, 5, 61. 44. Oswald, R.; Ohring, M. J. Vac. Sci. Technol. 1976, 13, 40. 45. Jones, W.; Thomas, J. M.; Thorpe, R. K.; Tricker, M. J. Appl. Surf. Sci. 1978, 1, 388. 46. Massenet, O. J. Phys. (Paris) Colloa. 1979, C1, 26. 47. Tiby, C., Diplomarbeit (Thesis), Johannes Gutenburg, Universität, Mainz, 1979. 48. Carbucicchio, M. Nucl. Instr. Methods 1977, 144, 225. 49. Minkova, A. Schunck, J. P. C. R. Acad. Bulg. Sci. 1975, 28, 1171. 50. Toriyama, T.; Saneyashi, K.; Hisatake, K. J. Phys. (Paris), Suppl. C2 1979, 14. 51. Gruzin, P. L.; Petrikin, V.; Stukan, R. A. Prib. Tekh. Eksp. 1975, 48. 52. Schunk, J. P.; Friedt, J. M . Llabador, Y. Rev. Phys. Appl. 1975, 10, 121. 53. Bäverstam, U.; Bodlund-Ringström, B.; Bohm, C.; Ekdahl, T.; Liljequist, D. Nucl. Instr. Methods 1978, 154, 401. 54. Benczer-Koller, N.; Kolk, B., AIP Conf. Proc. 1977, 38, 107; Chem. Abstr. 88.43634. 55. Toriyama, T.; Saneyashi, K.; Hisatake, K. J. Phys. (Paris) Colloq. 1979, 14. 56. Bainbridge, J. Nucl. Instr. Methods 1975, 128, 531. 57. Krakowski, R. A.; Miller, R. B. Nucl. Instr. Methods 1972, 100, 93. 58. Huffmann, G. P. Nucl. Instr. Methods 1976, 137, 267. 59. Huffmann, G. P. "Mössbauer Effect Methodology"; Plenum: New York, 1976; Vol. 10. 60. Tricker, M. J. J. Mater. Sci. 1979, 14, 995. 61. Graham, M. J.; Mitchell, D. F.; Channing, D. A. Oxid. Met. 1978, 12, 247. ;
;
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
3.
Conversion
TRICKER
Electron
Mossbauer
Spectroscopy
99
62. Huffmann, G . P.; Podgurski, H . H. Oxid. Met. 1976, 10, 377. 63. Yagnik, C. H.; Mazak, R. A . ; Collins, R. L. Nucl. Instr. Methods 1974, 114, 1. 64. Liljequist, D . ; Bodlund-Ringström, B. Nucl. Instr. Methods 1979, 160, 131. 65. Bonchev, Ts.; Minkova, A.; Grozdanov, M . Nucl. Instr. Methods 1977, 147, 481. 66. Grozdanov, M . ; Bonchev, Ts.; Likov, A. Nucl. Instr. Methods 1979, 165, 231. 67. Bonchev, Ts.; Grozdanov, M . ; Shev, L . Nucl. Instr. Methods 1979, 165, 237. 68. Longworth, G., Non-Destr. Test. 1977, 242. 69. Rao, K. R. P. M . Trans. Ind. Inst. Metall. 1979, 32, 10. 70. Ekdahl, T.; Ringström, B.; Bäverstam, U . "Report No. 74," Univ. Stock holm Inst. Phys., 1974, p. 14. 71. Pritchard, A . M . ; Truswell, A . E . "Corrosion of Steels in CO . Interna tional Conference, Reading, September 1974"; Holmes, D . R.; Hill, P. B.; Wyatt, L . M . , Eds.; British Nuclear Energy Society, p. 234. 72. Ensling, J.; Fleisch, J.; Grimm, R.; Grüber, J.; Gütlich, P. Corros. Sci. 1978, 18, 797. 73. Ensling, J.; Gütlich, P.; Riess, R. Werkst. Korros. 1978, 29, 250. 74. Berry, F . J. J. Chem. Soc. Dalton Trans. 1979, 1736. 75. Berry, F . J.; Maddock, A. G . J. Chem. Soc. Chem. Commun. 1978, 308. 76. Ujihara, Y.; Handa, A.; Abe, Y.; Okabe, I. Nippon Kagaku Kaishi 1979, 234. 77. Ujihara,Y.;Handa, A. J. Phys. (Paris) Colloq. 1979,C1,586. 78. Longworth, G.; Hartley, N . E. W . Thin Solid Films 1978, 48, 95. 79. Principi, G . ; Mattaezzi, P.; Ramous, E . ; Longworth, G . J. Mater. Sci., in press. 80. Sedunov, V . K.; Men'shikova, T . Ya.; Mitrofanov, K. P.; Reiman, S. I.; Rokhlov, N . I. Mater. Sci. Heat Treatment 1977, 19, 742. 81. Swartzendruber, L . J.; Bennett, L . H.; Schoefer, E . A.; Delong, W . T . ; Campbell, H . C . Weld. J. (Miami), Suppl. 1974, 53, 1. 82. Swartzendruber, L . J.; Siegal, E . , Magnetism and Magnetic Materials, AIP Conf. Proc. No. 18, 1974, 735. 83. Cranshaw, T . E.; Campany, R. G . J. Phys. (Paris), Colloq. 1979, C2, 589. 84. Schwartz, L . H.; Kim, K. J. Metall. Trans. 1976, 1567. 85. Goodwin, J. G.; Parravano, G . J. Phys. Chem. 1978, 82, 1040. 86. Yagnik, C . M . ; Collins, R. L.; Mazak, R. A.; Boer, W . H. Proc. 10th Symp. on NDT, San Antonio, April 1975, 194. 87. Mercader, R. C.; Cranshaw, T. E . J. Phys. F. 1975, 5, L124. 88. Sawicka, B. D.; Sawicki, J. A. J. Phys. (Paris) Colloq. 1979, C2, 576. 89. Sassa, K . Ishida, Y.; Kaneko, K. J. Phys. (Paris) Colloq. 1979, C2, 556. 90. Jones, W.; Tricker, M . J.; Gard, G . A. J. Mater. Sci. 1979, 14, 751. 91. Longworth, G.; Jain, R. J. Phys. F. 1978, 8, 351. 92. Jain, R.; Longworth, G . J. Phys. F. 1978, 8, 363. 93. Longworth, G.; Jain, R. J. Phys. F. 1978, 8, 993. 94. Atkinson, R.; Longworth, G . J. Phys. F., in press. 95. Yamakowa, K.; Fujita, F . E. J. Phys. (Paris) Colloq. 1979, C2, 101. 96. Massenet, O.; Daver, H . Solid State Commun. 1977, 21, 37. 97. Tominaga, T.; Sato, H. Radiochem. Radioanal. Lett. 1978, 33, 53. 98. Sawicki, J. A . ; Sawicki, B. D . ; Gzowski, O. Phys. Status Solidi A, in press. 99. Skrimshire, C . P.; Longworth, G . ; Dearnaley, G . J. Phys. D. 1979, 12, 1951. 100. Tricker, M . J.; Ash, L . A.; Jones, W . J. Inorg. Nucl. Chem. 1979, 41, 891. 101. Mattievich, E.; Danon, J. J. Inorg. Nucl. Chem. 1977, 39, 569. 2
;
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
100
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
102. Longworth, G.; Tite, M . S. J. Phys. (Paris) Colloq. 1979, 4 6 0 . 103. Bäverstam, U . ; Ekdahl, T . ; Ringström, B. J. Phys. (Paris) Colloq. 1974, C6, 6 8 5 . 104. Bodlung-Ringström, B.; Bäverstam, U . ; Bohm, C . J. Vac. Sci. Technol. 1979, 16, 1 0 1 3 . 105. Endo, K.; Shilbuya, K.; Sano, H . Radiochem. Radioanal. Lett. 1977, 2 8 , 363.
106. Shibuya, M . ; Endo, K.; Sano, H . Bull. Chem. Soc. Jpn. 1978, 51, 1 3 6 3 . 107. Huffmann, G . P.; Dunmyre, G . R. J. Electrochem. Soc. 1978, 125, 1652. 108. Lau, C . L.; Wertheim, G . K. J. Vac. Sci. Technol. 1978, 6 2 2 .
Downloaded by UNIV OF MONTANA on April 4, 2015 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch003
R E C E I V E D June 2 7 , 1980.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.