Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)
Article
Copper-Catalyzed Selenylation of Imidazo[1,2a]pyridines with Selenium Powder via a Radical Pathway Pengfei Sun, Min Jiang, Wei Wei, Yuanyuan Min, Wen Zhang, Wanhui Li, Daoshan Yang, and Hua Wang J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02865 • Publication Date (Web): 21 Feb 2017 Downloaded from http://pubs.acs.org on February 22, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Copper-Catalyzed Selenylation of Imidazo[1,2-a]pyridines with Selenium Powder via a Radical Pathway Pengfei Sun,a Min Jiang,b Wei Wei,a Yuanyuan Min,c Wen Zhang,a Wanhui Li,a Daoshan Yang,*a and Hua Wang*a a
Institute of Medicine and Materials Applied Technologies, School of Chemistry and
Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China. b
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education) Department of Chemistry, Tsinghua University Beijing 100084 (China) c
Laboratory and equipment management department, Qufu Normal University, Qufu
273165, Shandong, P. R. China *E-mail:
[email protected];
[email protected] ABSTRACT: A convenient and efficient approach for the formation of nitrogen heterocycle-fused imidazo[1,2-a]pyridine and benzo[b]selenophenes has been developed through copper-catalyzed
direct
selenylation
of
readily
available
2-(2-bromophenyl)imidazo[1,2-a]pyridines via regioselective cleavage of C(sp2)−Br and
C(sp2)−H
bonds
using
readily
available
selenium
powder
as
the
selenylating reagents under ligand- and base-free conditions in air. Preliminary
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
mechanistic investigations indicated that radical species were involved in the present transformation.
INTRODUCTION: The organoselenium compounds are becoming increasingly important because of their potential biological and medical properties, for example they have antihypertensive, antiviral, anticancer, antimicrobial, and antimicrobial properties.1 In addition, they are important scaffolds in material chemistry,2 and have also been used as versatile reagents in organic synthesis and catalysis.3 This section has been changed to “Hence, developing efficient and novel methods for C-Se bonds formation has always been a research goal of a chemist. Generally, the cross-coupling of boronic acids/aryl halides with selenium sources under transition-metal-catalyzed conditions have been proven to be efficient approaches for the construction of C–Se bonds.4-7 However, the not easily available precursors and selenylation reagents might hamper their wide applications in the pharmaceutical and material industry. From an atomand step-economy stand-point, C−H bonds activation is a fundamental important process in organic chemistry.8 However, research surveys of this synthetic strategy for the C−Se bond construction is surprisingly scarce when compared to the synthesis of C−X (heteroatom) bonds.9 In these protocols, selenylating reagents mainly focus on diselenides and selenyl chlorides which are usually prepared from arylselenols with unpleasant odors and instability.10 Obviously, directly using selenium powder as selenylating reagents for the reaction is most preferred. Unfortunately, reports on the C-H selenylation through directly using selenium powder under catalytic conditions
ACS Paragon Plus Environment
Page 2 of 26
Page 3 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
are rather limited.11 The imidazo[1,2-a]pyridine framwork is found in numerousnatural products and biological molecules.12 In addition, they are also found in numerous commercially available drugs, such as alpidem,13 raloxifene,14 minodronic acid,15 and zolimidine.16 Futhermore, imidazo[1,2-a]pyridine and its analogues are widely used in the fields of optoelectronics and material sciences as charge transporters.17 Thus, the development of convenient and novel approaches for imidazo[1,2-a] pyridine synthesis and functionalization has received much attention in organic chemistry.18 On the other hand, benzo[b]selenophenes have also received much more attentions owing to their potential biological activity, optical activity, and synthetic utility.19, consequence,
seeking
for
an
efficient
method
for
the
20
As a
formation
of
benzo[b]selenophene/imidazo[1,2-a]pyridine skeletons might be meaningful in pharmaceutical and material chemistry. Recently, using controllable radical chemistry to construct diverse organic molecules has been of growing interest.21 As a continuation of our research interest in chalcogenide molecules synthesis,22 herein, we report
an
efficient
and
simple
approach
for
construction
of
benzo[b]selenophene/imidazo[1,2-a]pyridine framworks using copper catalysis through C-Br and C-H bond functionalization via a radical pathway (Scheme 1).23 Scheme 1. Different Pathways for the Synthesis of C–Se Bonds
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 26
RESULTS AND DISCUSSION In
order
to
explore
the
optimal
catalysis
conditions,
1a
(2-(2-bromophenyl)imidazo[1,2-a]pyridine) and 2 (elemental selenium) were chosen as the standard substrates to investigate the model coupling reaction. As shown in Table 1, the copper salts (10 mol % amount relative to 1a), CuCl, CuBr, CuI, Cu2O, CuO and CuCl2, were investigated in DMSO using K2CO3 (2 equiv ) as the base and 20 mol % 1,10-phenanthroline as the ligand at 130 oC (entries 1-7), validating that CuI was the most effective catalyst (entry 3). Interestingly, control experiments revealed that the ligand and base were not necessary for this transformation, and a higher yield was obtained in the absence of 1,10-phenanthroline and K2CO3 (entry 8, 9 and 10). Next, we studied the influence of solvents on the reaction, and DMF showed the higher activity (compare entries 10-14). Subsequently, we also investigated the effect of the reaction temperature, indicating 130 oC might be more suitable for this transformation (compare entries 11, 15 and 16).
ACS Paragon Plus Environment
Page 5 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Table 1. Screening the Optimal Reaction Conditions.a
Entry
Cat.
Additive
Solvent
Yield [%]b,c
1
CuCl
L/K2CO3
DMSO
52
2
CuBr
L/K2CO3
DMSO
71
3
CuI
L/K2CO3
DMSO
74
4
Cu2O
L/K2CO3
DMSO
30
5
CuO
L/K2CO3
DMSO
42
6
CuCl2
L/K2CO3
DMSO
26
7
CuBr2
L/K2CO3
DMSO
21
8
CuI
L
DMSO
69
9
CuI
K2CO3
DMSO
Trace
10
CuI
None
DMSO
80
11
CuI
None
DMF
85
12
CuI
None
NMP
21
13
CuI
None
toluene
13d
14
CuI
None
1,4-Dioxane
30d
15
CuI
None
DMF
82e
16
CuI
None
DMF
78f
a
Reaction conditions: 1a (0.3 mmol), selenium powder 2 (0.6 mmol), catalyst (0.03 mmol), L = 1,10-phenanthroline (0.06 mmol), and K2CO3 (0.6 mmol) in 2 mL of solvent. b Isolated yield. c Under air atmosphere.d In a sealed Schlenk tube. e at 140 oC. f at 120 oC.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 26
After obtaining those optimum reaction conditions, we evaluate the generality and the scope of substrates for the copper-catalyzed regioselective selenylation reactions (Table 2). Satisfactorily, most of the investigated substrates gave moderate to good yields. Next, we also investigated the electronic effect of the transformation. To our delight, any aryl ring of imidazopyridines bearing electron-donating and -withdrawing groups could be well tolerated, showing no obvious electronic effect in this transformation. Additionally, the hindrance effect of this reaction was also not obvious, imidazopyridines bearing a methyl group at different positions could efficiently reacted
with
selenium
powder,
giving
the
corresponding
benzo[b]selenophene/imidazo[1,2-a]pyridine products in good yields (3n, 3o, 3p and 3q). Fortunately, 6-(2-bromophenyl)imidazo[2,1-b] benzo[d]thiazole was found to be suitable substrate in this transformation, giving the selenylation product in moderate yield (3u). Various substituted groups were tolerated under the current reaction conditions, including methoxy, methyl, C−Cl bond, and C−Br bond (3b, 3d, 3h, 3i and 3s).
ACS Paragon Plus Environment
Page 7 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Table
2.
The
Scope
with
Respect
to
the
2-(2-bromophenyl)imidazo[1,2-a]pyridines a, b,c
Me
N
N
N
N Se 3b (84%)
N Se 3a (85%) N
N Se 3c (82%)
Me
N
N N
Se 3d (80%)
Se 3e (78%)
Cl
N Cl
3g (86%)
Cl
N
Se Br
N N
F 3l (77%)
N F
3m (88%)
Me
F
F Br
N Se 3o (73%) N
N
N N
F Se
Se 3p (82%)
F
N
3r (76%) N
MeO
N
Se 3s (74%)
N Se
Me
S N
OMe
F
N
Se Me
3q (84%)
N
Me
N
N Se 3n (82%)
Cl
N
Se
Se 3k (78%)
N
CF3
3i (75%)
OMe
Cl
N Se
Cl
N
3j (80%)
Me
N
N Se 3h (79%)
Cl
N
Se
Br
Me
N Cl
N Se 3f (79%)
N N
Se
F
Cl
N
N
3t (75%)
a
Se 3u (50%)
Reaction conditions: 1 (0.3 mmol), selenium powder 2 (0.6 mmol), and CuI (0.03 mmol) in 2 mL of DMF. b Isolated yield. c Under air atmosphere.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 26
In order to illuminate the mechanism of the current transformation, some preliminary experiments were performed (Scheme 2). Treatment of 1a with selenium powder in the presence of two equivalent of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO). Notably, the formation of the desired product 3a was suppressed (Eq. 1. Scheme 2), implying this chemistry might be a radical pathway. Treatment of 1a and 2 under a nitrogen atmosphere (Eq. 2. Scheme 2), the selenylation product 3a was not observed, which demonstrates that dioxygen is necessary in the present transformation. Additionally, treatment of 1a with 2 in the absence of CuI, and no conversion was observed, indicating that the copper catalysis might be necessary in this reaction (Eq. 3. Scheme 2). Interestingly, the diselenide 5 was obtained in 70% yield, when the reaction of 2-phenylimidazo[1,2-a]pyridine 4 with elemental selenium 2 was performed under optimal reaction conditions (Eq. 4. Scheme 2). In order to trap the radical species, two equivalent of TEMPO was added into the current reaction solution, the formation of trapping product of vinyl radical was detected by GC−MS analysis (Eq. 5. Scheme 2, see Supporting Information for more details). Furthermore, no
desired
product
3a
was
detected
when
using
3-bromo-2-(2-bromophenyl)imidazo[1,2-a]pyridine as the substrate (Eq. 5. Scheme 2). These above preliminary experimental results strongly support that II (see Scheme 3) might be the important radical intermediate in the whole reaction.
ACS Paragon Plus Environment
Page 9 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Scheme 2. Control Experiment for Mechanistic Studies.
N N Br
+ Se 2
DMF, 130 oC, air TEMPO
N
DMF, 130 oC, N2
N
without CuI N
+ Se 2
DMF, 130 oC, air
1a
(2)
N
Se 3a trace
1a
N
Br
N
CuI
+ Se 2
(1)
N
Se 3a trace
1a
N
Br
N
CuI
(3)
N
Se 3a Not observed N N
N N H
+ Se 2
DMF, 130 oC, air
(4)
Se Se
CuI N
N
4
5 (70%)
Me
N N N Br
1c
Me CuI + Se o 2 DMF, 130 C, air, 3h TEMPO (2 equiv) Examined by ESI-MS
N (5)
Br O N 6 Detected by ESI-MS
Br
N
N N
+ Se 2
CuI DMF, 130 oC, air
Br 7
Se 3a 0%
N
(7)
To gain more insights into this selenylation process, a series of mechanistic studies by Electron spin resonance (ESR) spectra was performed. Firstly, a mixture of CuI, 1a and selenium powder 2 in DMF was tested at room temperature and 130 °C,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
respectively (Fig. 1a). As a result, an ESR signal (g = 2.001) was detected at 130 °C (Fig. 2a, brownness line). In addition, the same signal was also obtained in the absence of selenium powder 2 at 130 °C (Fig. 1a, light green line). Moreover, when α-phenyl-N-tert-butyl nitrone (PBN), a well known free-radical spin-trapping agent, was added to the solution of CuI and 1a, a signal of the trapping radical was observed (g = 2.004, AN = 1.46 mT, AH = 0.24 mT) under the standard conditions (Fig. 1b, red line); however, no radical signal was detected under a nitrogen atmosphere (Fig. 1b, green line). To our delight, a stronger signal was observed when selenium powder 2 was added to the above solution (Fig. 1b, royalblue line). It should be noted that Cu(II) signal (g//=2.28, g⊥=2.07) was observed under the standard conditions. However, treatment of CuI and air only, no Cu(II) signal was detected (Fig. S3, ESI†). Those data illustrated that a radical specie could be generated in the presence of 1a and CuI under aerobic conditions.
ACS Paragon Plus Environment
Page 10 of 26
Page 11 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Figure 1. (a) Electron Spin Resonance (ESR) Spectra of the Different Reaction Conditions. (b) ESR Spectra of PBN-Radical Adduct.
Based on the above preliminary results, a plausible mechanism would be herein presented (Scheme 3). Firstly, the Cu(I) is oxidized to Cu(II) by oxygen in air. The single electron transfer takes place between 1a and Cu(II) that generates radical cation I. The intermediate I loses a proton leading to vinyl radical intermediate II, which reacts with elemental selenium to give a selenium free radical III.
Subsequently, the
radical III undergoes an intramolecular cyclization to generate radical intermediate IV. Finally, Cu(I)-mediated bromine abstraction of radical intermediate IV takes place, releasing the product 3a, Br-, and Cu(II).
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 26
Scheme 3. Plausible Mechanism O2
Cu (II)
N
Cu(I)
N
N Br
N + Br
1a
I
N Se . 3a Br
H+
N N N
Cu (II)
Br
II Se 2
Cu (I) N
N
Br
Se IV
.
N
.
N
Br Se III
We have developed an novel and convenient method for the construction of imidazo[1,2-a]pyridine/benzo[b]selenophene skeletons through a copper-catalyzed direct selenylation of readily available 2-(2-bromophenyl)imidazo[1,2-a]pyridines via regioselective cleavage of C(sp2)−Br and C(sp2)−H bonds. The protocol develops a novel model of C–Se bond formation in organic chemistry. Despite some great advantages, this protocol could encounter certain limitations, including high reaction temperature, long reaction time, and metal salt catalysts. As a consequence, it still has much room for improvement.
EXPERIMENTAL SECTION
ACS Paragon Plus Environment
Page 13 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
General. All reagents used in the manuscript were purchased from the chemical companies. They are all used directly without purification. Imidazo[1,2-a]pyridines were prepared according to previous literatures.24 200-300 mesh silica gel was used as the stationaly phase in column chromatography. 1H NMR spectra were obtained on a BRUKER 500 spectrometer (500 MHz).
13
C NMR spectra were also obtained on a BRUKER 500
spectrometer (500 MHz). Tetramethylsilane (TMS) was used as the internal standard in CDCl3 or DMSO-d6 . EPR spectra were recorded on a JES FA200 (JEOL Co.) spectrometer. HRMS and Mass analyses were recorded by ESI on a TOF mass spectrometer. General experimental procedures. CuI (0.03 mmol), substituted 2-(2-bromophenyl)imidazo[1,2-a]pyridines (1) (0.3 mmol), Se (0.6 mmol), and DMF (2 mL) were added in an over-dried Schlenk tube (25 mL) in sequence. Then the reaction solution was heated at 130oC for 30 h under an air atmosphere. When the time is up, a small portion of silica gel was added to the resulting solution, and the solvent was evaporated by using a rotary evaporator. Finally, the desired product 3 was obtained through column chromatography operation (petroleum ether/ethyl acetate = 10:1–6:1). Compound 3a: Eluent petroleum ether/ethyl acetate (6:1). Yellow solid, 69 mg, 85% yield, mp 205-206 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.27 (d, 1H, J = 10.0 Hz), 7.98 (d, 1H, J = 5.0 Hz), 7.84 (d, 1H, J = 10.0 Hz), 7.72 (d, 1H, J = 10.0 Hz), 7.48 (t, 1H, J = 10.0 Hz), 7.32 (t, 1H, J = 10.0 Hz), 7.19 (t, 1H, J = 10.0 Hz), 6.81 (t, 1H, J =
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
10.0 Hz).
Page 14 of 26
13
C NMR (CDCl3, 125 MHz, ppm) δ 149.5, 148.0, 140.3, 140.0, 127.0,
125.9, 125.8, 124.6, 124.4, 123.0, 118.4, 118.3, 112.2. HRMS m/z calcd. for C13H8N2NaSe [M+Na]+: 294.9745, found: 294.9750. Compound 3b: Eluent petroleum ether/ethyl acetate (6:1). Yellow solid, 72 mg, 84% yield, mp 210-211 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.27 (d, 1H, J = 10.0 Hz), 7.88-7.84 (m, 2H), 7.66 (d, 1H, J = 10.0 Hz), 7.51 (t, 1H, J = 10.0 Hz), 7.34 (t, 1H, J = 10.0 Hz), 7.10 (d, 1H, J = 10.0 Hz), 2.38 (s, 3H). 13C NMR (CDCl3, 125 MHz, ppm) δ 148.5, 147.8, 140.2, 131.1, 128.9, 127.7, 127.0, 125.9, 125.7, 123.0, 122.4, 122.1, 117.6. HRMS m/z calcd. for C14H10N2NaSe [M+Na]+: 308.9901 , found:308.9895 Compound 3c: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 71mg, 82% yield, mp 183-185 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.36 (d, 1H, J = 10.0 Hz), 7.90 (d, 1H, J = 10.0 Hz), 7.87 (d, 1H, J = 5.0 Hz), 7.51 (t, 1H, J = 10.0 Hz), 7.34 (t, 1H, J = 10.0 Hz), 7.01 (d, 1H, J = 5.0 Hz), 6.78 (d, 1H, J = 5.0 Hz), 2.74 (s, 3H). 13C NMR (CDCl3, 125 MHz, ppm) δ 150.0, 147.7, 140.1, 131.2, 128.3, 127.0, 125.7, 125.6, 123.3, 123.2, 122.6, 118.9, 112.2, 17.4. HRMS m/z calcd. for C14H10N2NaSe [M+Na]+: 308.9901, found: 308.9895. Compound 3d: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 73 mg, 80% yield, mp 178-180 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.28 (d, 1H, J = 10.0 Hz), 8.15 (s, 1H), 7.88 (d, 1H, J = 10.0 Hz), 7.65 (d, 1H, J = 5.0 Hz), 7.53 (t, 1H, J = 10.0 Hz), 7.38 (t, 1H, J = 10.0 Hz), 7.32 (dd, 1H, J = 10.0 Hz).
13
C NMR (CDCl3, 125
MHz, ppm) δ 148.9, 140.3, 130.9, 130.6, 128.8, 127.0, 126.3, 126.1, 125.8, 123.3, 122.5, 120.5, 118.5. HRMS m/z calcd. for C13H7ClN2NaSe [M+Na]+: 328.9355,
ACS Paragon Plus Environment
Page 15 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
found: 328.9362. Compound 3e: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 82 mg, 78% yield, mp 161-162 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.27 (d, 1H, J = 10.0 Hz), 8.24 (s, 1H), 7.88 (d, 1H, J = 10.0 Hz), 7.72 (d, 1H, J = 10.0 Hz), 7.54 (t, 1H, J = 10.0 Hz), 7.38 (t, 1H, J = 10.0 Hz), 7.23 (dd, 1H, J = 10.0 Hz).
13
C NMR (CDCl3, 125
MHz, ppm) δ 148.8, 147.9, 140.3, 130.6, 127.7, 127.4, 127.0, 126.3, 126.1, 124.6, 123.3, 118.8, 106.8. HRMS m/z calcd. for C13H7BrN2NaSe [M+Na]+: 372.8850, found: 372.8858, 374.8862. Compound 3f: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 76 mg, 79% yield, mp 180-182 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.14 (d, 1H, J = 10.0 Hz), 8.83 (s, 1H), 7.64 (d, 1H, J = 10.0 Hz), 7.47 (d, 1H, J = 10.0 Hz), 7.11 (d, 1H, J = 10.0 Hz), 2.38(s, 3H). 13C NMR (CDCl3, 125 MHz, ppm) δ 148.7, 146.8, 140.9, 131.1, 129.6, 128.8, 127.9, 126.6, 126.4, 123.4, 122.3, 122.2, 117.6, 18.2. HRMS m/z calcd. for C14H9ClN2NaSe [M+Na]+: 342.9512, found: 342.9517. Compound 3g: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 87 mg, 86% yield, mp 270-271 oC. 1H NMR (DMSO-d6, 500 MHz, ppm) δ 9.33 (s, 1H), 8.36 (s, 1H), 8.06 (d, 1H, J = 10.0 Hz), 7.57 (d, 1H, J = 10.0 Hz), 7.55 (d, 1H, J = 10.0 Hz), 7.40 (d, 1H, J = 10.0 Hz).
13
C NMR (DMSO-d6, 125 MHz, ppm) δ 147.8, 147.9,
142.9, 130.4, 129.6, 127.8, 126.4, 126.3, 125.1, 123.5, 120.8, 119.4, 118.6. HRMS m/z calcd. for C13H6Cl2N2NaSe [M+Na]+: 362.8965, found: 362.8972. Compound 3h: Eluent petroleum ether/ethyl acetate (8:1). White solid, 91 mg, 79% yield, mp 262-263 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.25 (s, 1H), 8.17 (d, 1H, J
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 26
= 10.0 Hz), 8.88 (s, 1H), 7.67 (d, 1H, J = 10.0 Hz), 7.50 (d, 1H, J = 10.0 Hz), 7.33 (d, 1H, J = 10.0 Hz).
13
C NMR (CDCl3, 125 MHz, ppm) δ 148.1, 147.9, 141.0, 131.8,
130.9, 129.1, 128.8, 128.1, 126.7, 126.6, 124.6, 123.7, 118.8, 107.1. HRMS m/z calcd. for C13H6BrClN2NaSe [M+Na]+: 406.8460, found:406.8466,408.8469. Compound 3i: Eluent petroleum ether/ethyl acetate (10:1). White solid, 84 mg, 75% yield, mp 180-182 oC. 1H NMR (DMSO-d6, 500 MHz, ppm) δ 9.75 (s, 1H), 8.37 (s, 1H), 8.08 (d, 1H, J = 10.0 Hz), 7.89 (d, 1H, J = 10.0 Hz), 7.57-7.54 (m, 2H).
13
C
NMR (DMSO-d6, 125 MHz, ppm) δ 149.2, 148.6, 143.3, 130.6, 129.4, 127.8, 127.3 (q, JF-C = 6.3 Hz), 126.3, 125.8 (q, JF-C = 336.3 Hz), 123.7, 120.7, 118.6, 114.9 (q, JF-C = 41.3 Hz). HRMS m/z calcd. for C14H6ClF3N2NaSe [M+Na]+: 396.9229, found: 396.9219. Compound 3j: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 76 mg, 80% yield, mp 196-198 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.25 (d, 1H, J = 10.0 Hz), 7.94 (d, 1H, J = 10.0 Hz), 7.86 (s, 1H), 7.49 (d, 1H, J = 10.0 Hz), 7.08 (d, 1H, J = 10.0 Hz), 6.85 (t, 1H, J = 10.0 Hz), 2.73 (s, 1H). 13C NMR (CDCl3, 125 MHz, ppm) δ 150.1, 146.5, 140.9, 131.1, 129.6, 128.4, 126.6, 126.4, 123.7, 123.6, 122.5, 118.7, 112.5, 18.5. HRMS m/z calcd. for C14H9ClN2NaSe [M+Na]+: 342.9512, found: 342.9517. Compound 3k: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 78 mg, 78% yield, mp 221-222 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.08 (d, 1H, J = 10.0 Hz), 7.85 (d, 1H, J = 10.0 Hz), 7.82 (s, 1H), 7.46 (d, 1H, J = 10.0 Hz), 7.00 (s, 1H), 6.62 (d, 1H, J = 10.0 Hz), 3.90 (s, 1H).
13
C NMR (CDCl3, 125 MHz, ppm) δ 158.0, 151.2,
ACS Paragon Plus Environment
Page 17 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
146.8, 140.8, 130.7, 129.7, 126.5, 126.4, 125.0, 123.2, 117.0, 107.7, 95.6, 55.6. HRMS m/z calcd. for C14H9ClN2NaOSe [M+Na]+: 358.9461, found: 358.9468. Compound 3l: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 63 mg, 73% yield, mp 189-191 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.22 (dd, 1H, J = 10.0 Hz), 8.07 (d, 1H, J = 10.0 Hz), 7.77 (d, 1H, J = 10.0 Hz), 7.61 (d, 1H, J = 10.0 Hz), 7.29-7.25 (m, 2H), 6.93 (t, 1H, J = 10.0 Hz).
13
C NMR (CDCl3, 125 MHz, ppm) δ
161.8, 159.9, 149.6, 147.2, 140.9 (d, JF-C = 8.8 Hz), 130.9, 127.4, 124.5 (d, JF-C = 7.5 Hz), 123.7(d, JF-C = 8.8 Hz), 118.4, 114.0 (d, JF-C = 25.0 Hz), 113.7 (d, JF-C = 23.7 Hz), 112.4. HRMS m/z calcd. for C13H7FN2NaSe [M+Na]+: 312.9651, found: 312.9648. Compound 3m: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 85 mg, 88% yield, mp 167-179 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.29 (dd, 1H, J = 10.0 Hz), 8.12 (s, 1H), 7.69 (d, 1H, J = 10.0 Hz), 7.59 (d, 1H, J = 10.0 Hz), 7.29-7.25 (m, 2H). 13
C NMR (CDCl3, 125 MHz, ppm) δ 162.0, 160.1, 148.1(d, JF-C = 21.3 Hz), 147.9,
141.0 (d, JF-C = 10.0 Hz), 127.0 (d, JF-C = 10.3 Hz), 125.8, 123.8 (d, JF-C = 8.8 Hz), 122.3, 120.6, 118.5, 114.3 (d, JF-C = 22.5 Hz), 113.8 (d, JF-C = 25.0 Hz). HRMS m/z calcd. for C13H6ClFN2NaSe [M+Na]+: 346.9261, found: 346.9263. Compound 3n: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 90 mg, 82% yield, mp 225-227 oC. 1H NMR (DMSO-d6, 500 MHz, ppm) δ 9.39 (s, 1H), 8.15-8.07 (m, 2H), 7.71 (d, 1H, J = 10.0 Hz), 7.46 (d, 1H, J = 10.0 Hz), 7.38 (t, 1H, J = 10.0 Hz). 13C NMR (DMSO-d6, 125 MHz, ppm) δ 161.7, 159.4, 148.0, 142.8 (d, JF-C =25.2 Hz), 128.1, 127.5, 127.0, 123.5 (d, JF-C =11.2 Hz), 119.5, 118.8, 114.9 (d, JF-C =31.3
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hz), 114.1 (d, JF-C =28.8 Hz), 106.2. HRMS m/z calcd. for C13H6BrFN2NaSe [M+Na]+: 390.8756, found: 390.8750, 392.8739. Compound 3o: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 66 mg, 73% yield, mp 182-184 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.30 (dd, 1H, J = 10.0 Hz), 7.95 (d, 1H, J = 10.0 Hz), 7.60 (d, 1H, J = 10.0 Hz), 7.26 (t, 1H, J = 10.0 Hz), 7.08 (t, 1H, J = 10.0 Hz), 6.86 (t, 1H, J = 10.0 Hz), 2.74 (s, 3H). 13C NMR (CDCl3, 125 MHz, ppm) δ 161.7, 159.8, 150.0, 146.5, 140.8 (d, JF-C = 8.8 Hz), 128.3, 127.5, 123.8 (d, JF-C = 8.8 Hz), 123.5, 122.5, 113.9 (d, JF-C =22.5 Hz), 113.7 (d, JF-C =25.0 Hz), 112.4, 17.4. HRMS m/z calcd. for C14H9FN2NaSe [M+Na]+: 326.9807, found: 326.9813. Compound 3p: Eluent petroleum ether/ethyl acetate (8:1). Yellow solid, 74 mg, 82% yield, mp 165-166 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.20 (dd, 1H, J = 10.0 Hz), 7.93 (d, 1H, J = 5.0 Hz), 7.58 (d, 1H, J = 10.0 Hz), 7.49 (s, 1H), 7.25 (t, 1H, J = 10.0 Hz), 7.73 (d, 1H, J = 10.0 Hz), 2.47 (s, 3H).
13
C NMR (CDCl3, 125 MHz, ppm) δ
161.6, 159.7, 150.1, 146.9, 140.8 (d, JF-C = 8.8 Hz), 135.6, 130.9, 123.7, 123.5(d, JF-C = 8.8 Hz), 116.7, 115.0, 113.9 (d, JF-C = 23.8 Hz), 113.7 (d, JF-C = 23.8 Hz), 21.6. HRMS m/z calcd. for C14H9FN2NaSe [M+Na]+: 326.9807, found: 326.9813. Compound 3q: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 76 mg, 84% yield, mp 138-140 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.16 (dd, 1H, J = 10.0 Hz), 7.79 (s, 1H), 7.62 (d, 1H, J = 10.0 Hz), 7.56 (d, 1H, J = 10.0 Hz), 7.23 (t, 1H, J = 10.0 Hz), 7.08 (d, 1H, J = 10.0 Hz), 2.36 (s, 3H).
13
C NMR (CDCl3, 125 MHz, ppm) δ
161.7, 159.7, 148.6, 146.9, 140.8 (d, JF-C = 23.8 Hz), 127.7, 127.5 (d, JF-C = 8.8 Hz), 123.5 (d, JF-C = 8.8 Hz), 122.1 (d, JF-C = 10.0 Hz), 117.5, 117.0, 114.0 (d, JF-C = 22.5
ACS Paragon Plus Environment
Page 18 of 26
Page 19 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Hz), 113.7 (d, JF-C = 25.0 Hz), 18.2. HRMS m/z calcd. for C14H9FN2NaSe [M+Na]+: 326.9807, found: 326.9813. Compound 3r: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 69 mg, 76% yield, mp 221-223 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.16 (dd, 1H, J = 10.0 Hz), 7.79 (s, 1H), 7.62 (d, 1H, J = 10.0 Hz), 7.56 (d, 1H, J = 10.0 Hz), 7.23 (t, 1H, J = 10.0 Hz), 7.08 (d, 1H, J = 10.0 Hz), 2.36 (s, 3H).
13
C NMR (CDCl3, 125 MHz, ppm) δ
161.7, 159.7, 148.6, 146.9, 140.8 (d, JF-C = 23.8 Hz), 127.7, 127.5 (d, JF-C = 8.8 Hz), 123.5 (d, JF-C = 8.8 Hz), 122.1 (d, JF-C = 10.0 Hz), 117.5, 117.0, 114.0 (d, JF-C = 22.5 Hz), 113.7 (d, JF-C = 25.0 Hz), 18.2. HRMS m/z calcd. for C14H9FN2NaSe [M+Na]+: 326.9807, found: 326.9813. Compound 3s: Eluent petroleum ether/ethyl acetate (6:1). Yellow solid, 71 mg, 74% yield, mp 189-191oC. 1H NMR (DMSO-d6, 500 MHz, ppm) δ 8.15 (dd, 1H, J = 10.0 Hz), 7.89 (d, 1H, J = 5.0 Hz), 7.59 (d, 1H, J = 10.0 Hz), 7.25 (t, 1H, J = 10.0 Hz), 7.04 (s, 1H), 6.65 (d, 1H, J = 10.0 Hz), 3.92 (s, 3H). 13C NMR (DMSO-d6, 125 MHz, ppm) δ 161.5, 159.5, 151.2, 140.7 (d, JF-C = 8.8 Hz), 130.9, 128.8, 127.6, 124.9, 123.3 (d, JF-C =8.8 Hz), 114.0 (d, JF-C = 23.8 Hz), 113.2 (d, JF-C = 25.0 Hz), 107.6, 95.6, 55.6 HRMS m/z calcd. for C14H9FN2NaOSe [M+Na]+: 342.9756, found: 342.9752. Compound 3t: Eluent petroleum ether/ethyl acetate (6:1). Yellow solid, 68 mg, 75% yield, mp 176-178 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.86 (d, 1H, J = 10.0 Hz), 8.04 (d, 1H, J = 10.0 Hz), 7.71 (d, 1H, J = 10.0 Hz), 7.63 (s, 1H), 7.35 (t, 1H, J = 10.0 Hz), 7.05-7.00 (m, 2H), 3.89 (s, 3H).
13
C NMR (CDCl3, 125 MHz, ppm) δ 158.6,
149.2, 147.8, 132.1, 131.9, 128.9, 127.0, 125.4, 120.1, 117.9, 114.5, 112.5, 106.4,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
55.9. HRMS m/z calcd. for C14H10N2NaOSe [M+Na]+: 324.9851, found:324.9859. Compound 3u: Eluent petroleum ether/ethyl acetate (25:1). Red solid, 49 mg, 50% yield, mp 193-195 oC. 1H NMR (CDCl3, 500 MHz, ppm) δ 8.19 (d, 1H, J =10.0 Hz), 7.90 (d, 1H, J = 5.0 Hz), 7.79 (d, 1H, J = 5.0 Hz), 7.60-7.51 (m, 3H), 7.42 (t, 1H, J = 10.0 Hz), 7.33 (t, 1H, J = 10.0 Hz).
13
C NMR (CDCl3, 125 MHz, ppm) δ 150.87,
149.0, 139.4, 131.4, 130.9, 130.6, 129.6, 126.9, 126.4, 125.9, 124.9, 124.7, 124.4, 122.2, 112.6. HRMS m/z calcd. for C15H8N2NaSSe [M+Na]+: 350.9466, found: 350.9462. Compound 5: Eluent petroleum ether/ethyl acetate (10:1). Yellow solid, 57 mg, 70%. 1
H NMR (CDCl3, 500 MHz, ppm) δ 8.39 (d, 1H, J = 5.0 Hz), 8.22 (d, 2H, J = 10.0
Hz), 7.79 (d, 1H, J = 10.0 Hz), 7.57-7.53 (m, 2H), 7.51-7.47 (m, 2H), 7.13 (t, 1H, J = 5.0 Hz). 13C NMR (CDCl3, 125 MHz, ppm) δ 146.9, 131.2, 130.2, 129.7, 129.0, 128.8, 127.4, 125.6, 118.2, 114.8. HRMS m/z calcd. for C26H19N4Se2 [M+H]+:546.9935, found: 546.9941.
ASSOCIATED CONTENT Supporting Information The Suporting Information is available free of charge on The ACS Publications website at: DOI: Detailed EPR experiments of the reaction system; Copies of 1H and 13C NMR spectra for all compounds.
AUTHOR INFORMATION Corresponding Author
ACS Paragon Plus Environment
Page 20 of 26
Page 21 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
* E-mail:
[email protected] * E-mail:
[email protected] Notes The authors declare no competing financial interest. ACKNOWLEGEMENTS This work was supported by the the Taishan Scholar Foundation of Shandong Province, National Natural Science Foundation of China (Nos. 21302110, 21302109 and 21675099), and the Natural Science Foundation of Shandong Province (ZR2016JL012 and ZR2015JL004). We thank Jiehua Ding in our laboratory for reproducing the experimental results of 3a and 3f.
REFERENCES (1) For some examples, see: (a) Parnham, M. J.; Graf, E. Prog. Drug. Res. 1991, 36, 9. (b) Woods, J. A.; Hadfield, J. A.; McGown, A. T.; Fox, B. W. Bioorg. Med. Chem. 1993, 1, 333. (c) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255. (d) Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C. W.; Paine-Murrieta, G. D.; Powis, G. Anticancer Res. 1997, 17, 4599. (e) Millois, C.; Diaz, P. Org. Lett. 2000, 2, 1705. (f) Meotti, F. C.; Silva, D. O.; Santos, A. R. S.; Zeni, G.; Rocha, J. B. T.; Nogueira, C. W. Environ. Toxicol. Pharmacol. 2003, 37, 37. (2) For some examples, see: (a) Rampon, D. S.; Rodembusch, F. S.; Schneider, J. M. F. M.; Bechtold, I. H.; Gonclves, P. F. B.; Merlo, A.; Schneider, P. H. J. Mater. Chem. 2010, 20, 715. (b) Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422. (c) Patra, A.; Wijsboom, Y. H.; Zade, S. S.; Li, M.; Sheynin, Y.; Leitus, G.; Bendikov, M. J.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Am. Chem. Soc. 2008, 130, 6734. (d) Li, M.; Sheynin, Y.; Patra, A.; Bendikov, M. Chem. Mater. 2009, 21, 2482. (e) Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-M.; Li, J.-H.; Yang, Y. Macromolecules. 2008, 41, 6012. (3) For some examples, see: (a) Singh, F. V.; Wirth, T. Org. Lett. 2011, 13, 6504. (b) Alberto, E. E.; Braga, A. L.; Detty, M. R. Tetrahedron. 2012, 68, 10476. (c) Perin, G.; Lenardã, E. J.; Jacob, R. G.; Panatieri, R. B. Chem. Rev. 2009, 109, 1277. (d) Braga, A. L.; Lütke, D. S.; Vargas, F. Curr. Org. Chem. 2006, 10, 1921. (4) (a) Foa, M.; Santi, R.; Garavaglia, F. J. Organomet. Chem. 1981, 206, C29. (b) Zhao, H.; Hao, W.; Xi, Z.; Cai, M. New J. Chem. 2011, 35, 2661. (c) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.-i.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385. (d) Lai, C.; Backes, B. J. Tetrahedron Lett. 2007, 48, 3033. (5) (a) Singh, D.; Alberto, E. E.; Rodrigues, O. E. D.; Braga, A. L. Green Chem. 2009, 11, 1521. (b) Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardao, E. J.; Jacob, R. G.; Savegnago, L.; Alves, D. Green Chem. 2012, 14, 1030. (c) Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. Tetrahedron. 2010, 66, 8583. (d) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 951. (e) Chatterjee, T.; Ranu. B. C. J. Org. Chem. 2013, 78, 7145. (6) Wang, M.; Ren, K.; Wang, L. Adv. Synth. Catal. 2009, 351, 1586. (7) (a) Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol, H. J. Org. Chem. 1986, 51, 875. (b) Percec, V.; Bae, J.; Hill, D. H. J. Org. Chem. 1995, 60, 6895. (c) Baldovino-Pantaleon, O.; Hernandez-Ortega, S.; MoralesMorales, D. Adv. Synth. Catal. 2006, 348, 236. (d) Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9,
ACS Paragon Plus Environment
Page 22 of 26
Page 23 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
3495. (8) For recent reviews, see: (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (c) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (e) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (f) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (9) (a) Qiu, R.; Reddy, V. P.; Iwasaki, T.; Kambe, N. J. Org. Chem. 2015, 80, 367. (b) Yan, G.; Borah, A. J.; Wang, L. Org. Biomol. Chem. 2014, 12, 9557. (c) Zhu, L.; Qiu, R.; Cao, X.; Xiao, S.; Xu, X.; Au, C.-T.; Yin, S.-F. Org. Lett. 2015, 17, 5528. (d) Yu, S.; Wan, B.; Li, X. Org. Lett. 2015, 17, 58. (e) Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Org. Lett. 2014, 16, 4920. (f) Ricordi, V. G.; Thurow, S.; Penteado, F.; Schumacher, R. F.; Perin, G.; Lenardao, E. J.; Alves, D. Adv. Synth. Catal. 2015, 357933. (g) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330. (h) Xie, W.; Li, B.; Wang, B. J. Org. Chem. 2016, 81, 396. (10) (a) Chen, C.; Hou, C.; Wang, Y.; Hor, T. S. A.; Weng, Z. Org. Lett. 2014, 16, 524. (b) Balkrishna, S. J.; Bhakuni, B. S.; Chopra, D.; Kumar, S. Org. Lett. 2010, 12, 5394. (c) Luo, D.; Wu, G.; Yang, H.; Liu, M.; Gao, W.; Huang, X.; Chen, J.; Wu, H. J. Org. Chem. 2016, 81, 4485. (d) Lefebvre, Q.; Pluta, R.; Rueping, M. Chem. Commun. 2015, 51, 4394. (e) Wu, B.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 10496.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 26
(11) (a) Wu, B.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 10496. (b) Wu, B.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 10496. (c) Lefebvre, Q.; Pluta, R.; Rueping, M. Chem. Commun. 2015, 51, 4394. (12) Bagdi, A. K.; Santa, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555. (13) Cai, D.; Byth, K. F.; Shapiro, G. I. Cancer Res. 2006, 66, 435. (14) Berson, A.; Descatoire, V.; Sutton, A.; Fau, D.; Maulny, B.; Vadrot, N.; Feldmann, G.; Berthon, B.; Tordjmann, T.; Pessayre, D.; Pharmacol, J. Exp. Ther. 2001, 299, 793. (15) Sorbera, L. A.; Castaner, J.; Leeson, P. A. Drugs Future. 2002, 27, 935. (16) Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8, 305. (17) (a) Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. J. Org. Chem. 2013, 78, 2482. (b) Furukawa, S.; Shono, H.; Mutai, T.; Araki, K. ACS Appl. Mater. Interfaces. 2014, 6, 16065. (18) For selected examples, see: (a) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678.
(b) He, C.; Hao, J.; Xu, H.; Mo, Y.;
Liu, H.; Han, J.; Lei, A. Chem. Commun. 2012, 48, 11073. (c) K. Monir, A. Bagdi, S. Mishra, A. Majee, A. Hajra, Adv. Synth. Catal. 2014, 356, 1105. (d) J. Yu, Y. Jin, H. Zhang, X. Yang, H. Fu, Chem.- Eur. J. 2013, 19, 16804. (e)
R. R. Donthiri, V.
Pappula, N. N. K. Reddy, D. Bairagi, S. Adimurthy, J. Org. Chem. 2014, 79, 11277. (19) (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596. (b) Maity, P.; Kundu, D.; Roy, R.; Ranu, B. C. Org. Lett. 2014, 16, 4122.
ACS Paragon Plus Environment
Page 25 of 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(20) (a) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T. J. Am. Chem. Soc. 2004, 126, 5084. (b) Ballantyne, A. M.; Chen, L.; Nelson, J.; Bradley, D. D. C.; Astuti, Y.; Maurano, A.; Shuttle, C. G.; Durrant, J. R.; Heeney, M.; Duffy, W.; McCulloch, I. Adv. Mater. 2007, 19, 4544. (c) Kim, K.-H.; Park, S.; Yu, H.; Kang, H.; Song, I.; Oh, J. H.; Kim, B. J. Chem. Mater. 2014, 26, 6963. (21) (a) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev. 2015, 44, 1070. (b) Zhang, C.; Tang C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (c) Narayanam, J. M. R.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102. (d) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771. (e) Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263. (f) Chatgilialoglu, C.; Crich, D.; Komatsu. M.; Ryu, I. Chem. Rev. 1999, 99, 1991. (22) (a) Yang, D.; Yan, K.; Wei, W.; Zhao, J.; Zhang, M.; Sheng, X.; Li, G.; Lu, S. and Wang, H. J. Org. Chem. 2015, 80, 6083. (b) Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L. ; Wang, H. J. Org. Chem. 2015, 80, 11073. (c) Yan, K.; Yang, D.; Wei, W.; Sun, P.; Lu, Y.; Wang, H. Org. Chem. Front. 2016, 3, 556. (d) Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green Chem. 2016, 18, 5630. (e) Yan, K.; Yang, D.; Wei, W.; Zhao, J.; Shuai, Y.; Tian, L.; Wang, H. Org. Biomol. Chem. 2015, 13, 7323. (f) Yan, K.; Yang, D.; Sun, P.; Wei, W.; Liu, Y.; Li, G.; Lu, S.; Wang, H. Tetrahedron Lett. 2015, 56, 4792. (23) (a) Guo, X.-X.; Gu, D-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. (b) Huang, H.;
Dang, P.; Wu, L.; Liang, Y.; Liu, J. Tetrahedron Lett. 2016, 57, 574. (c)
Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. J. Org. Chem. 2016, 81, 5263. (d) Iwasaki, M.;
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Org. Lett. 2014, 16, 4920. (e) Luo, D.; Wu, G.; Yang, H.; Liu, M.; Gao, W.; Huang, X.; Chen, J.; Wu, H. J. Org. Chem. 2016, 81, 4485. (f) Xie, W.; Li, B.; Wang, B. J. Org. Chem. 2016, 81, 396. (24) Pericherla, K.; aswan, P.; Khedar, K P.; Khungar, B.; Parang, K.; Kumar. A. RSC Adv. 2013, 3, 18923.
ACS Paragon Plus Environment
Page 26 of 26