Corrosion Protection on Copper by Polyvinylimidazole - ACS

Jul 23, 2009 - Polymeric Materials for Corrosion Control. Chapter ... used corrosion inhibitors, benzotriazole and undecylimidazole, at elevated tempe...
1 downloads 0 Views 1MB Size
24 Corrosion Protection on Copper by Polyvinylimidazole Fred P. Eng and Hatsuo Ishida

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

Macromolecular Science Department, Case Western Reserve University, Cleveland, OH 44106

Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS) is applied to the study of corrosion protection of copper by an organic coating. Poly-N-vinylimidazole (PVI(1)) and poly-4(5)-vinylimidazole (PVI(4)) are demonstrated to be effective new polymeric anti-corrosion agents for copper at elevated temperatures. Oxidation of copper is suppressed even at 4 0 0 C. PVI(1) and PVI(4) are more effective anti-oxidants than the most commonly used corrosion inhibitors, benzotriazole and undecylimidazole, at elevated temperatures. These new polymeric agents are water soluble and easy to treat the metal surface. ˚

Azole compounds such as benzotriazole, benzimidazole, indazole and i m i d a z o l e s a r e e f f i c i e n t a n t i - c o r r o s i o n agents f o r copper and c o p p e r - b a s e alloys [1-10]. Many experimental techniques [11-15] have been used t o study the corrosion i n h i b i t i o n mechanisms, however, t h e mechanisms a r e s t i l l n o t w e l l understood. It i s believed t h a t t h e complex f o r m a t i o n between c o p p e r and n i t r o g e n atoms would inhibit oxygen a d s o r p t i o n on copper surface [ 1 6 - 2 0 ] . I n h i b i t o r s mentioned above a r e s m a l l molecules i n nature. Recently, there have been great emphases i n u s i n g polymers a s corrosion i n h i b i t o r s [21-37]. However, these inhibitors, which included different heterocyclic polymers, polythiopropinate, polymaleic acid and p o l y a l k y l o l a m i d e / a l k e n y l copolymers, were developed f o r protecting steel i n s e a water [ 2 1 , 2 g J , tap water [22] and i n a c i d i c e n v i r o n m e n t s [ 2 0 , _ 2 J , 2 3 J . Relatively v e r y few or no p o l y m e r i c inhibitors f o r copper, aluminum, and i r o n [ 2 8 , 3 4 - 2 J ] have been reported, especially i n high temperature studies. In t h i s study, we w i l l p r e s e n t p o l y - N - v i n y l i m i d a z o l e ( P V I ( D ) and p o l y - 4 ( 5 ) - v i n y l i m i d a z o l e ( P V I ( 4 ) ) ( F i g u r e 1.) a s new p o l y m e r i c a n t i - c o r r o s i o n agents f o r copper i n e l e v a t e d temperature 0097-6156/86/0322-0268506.00/ 0 © 1986 American Chemical Society

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

24.

ENG AND IS H IDA

Corrosion Protection on Copper by Polyvinylimidazole

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

environments. P o l y v i n y l i m i d a z o l e s (PVIs) a r e p r e f e r e d because of the following reasons. PVIs have t h e i m i d a z o l e r i n g as t h e i r pendant group which would l e a d t o complex f o r m a t i o n with copper. F u r t h e r m o r e , t h e polymers c a n e a s i l y form t h i n f i l m s o f r e l a t i v e l y h i g h e r d u c t i l i t y t h a n s m a l l m o l e c u l e s on c o p p e r s u r f a c e s . It is known t h a t t h e h i g h e r d u c t i l i t y would enhance t h e a d h e s i o n o f t h e f i l m t o the s u b s t r a t e . L a s t l y , amorphous polymer/copper complex is expected t o have less defects w h i c h may be i m p o r t a n t i n i n f l u e n c i n g the the r a t e o f o x i d a t i o n o f copper. In t h i s elevated temperature study, commonly used copper corrosion inhibitors for copper, benzotriazole and u n d e c y l i m i d a z o l e w i l l be used f o r c o m p a r i s o n s . Benzotriazole is one o f t h e most e f f e c t i v e and w i d e l y used c o r r o s i o n i n h i b i t o r s specifically f o r copper i n both atmospheric and immersed environments for over 35 years. At the same time, undecylimidazole also exhibits superior anti-corrosion property. The r e a c t i v i t y of i m i d a z o l e w i t h copper i s very h i g h , forming a t h i c k i m i d a z o l e / c o p p e r complex f i l m w h i c h makes undecylimidazole an a t t r a c t i v e corrosion inhibitor. F o u r i e r transform i n f r a r e d r e f l e c t i o n - a b s o r p t i o n s p e c t r o s c o p y (FT-IRRAS) i s u t i l i z e d i n the experiment. FT-IRRAS i s an e x t e r n a l r e f l e c t i o n t e c h n i q u e w h i c h i s u s e f u l f o r s t u d y i n g t h i n f i l m s on m e t a l surfaces by reflecting infrared r a d i a t i o n from the metal surfaces at high,[A nearly grazing angles o f i n c i d e n c e . The t h e o r y of t h e t e c h n i q u e was developed by F r a n c i s and E l l i s o n [38] and G r e e n l e r [ 3 9 ] . Cuprous o x i d e f o r m a t i o n i s used t o f o l l o w t h e c o r r o s i o n k i n e t i c s . Experimental B o t h b e n z o t r i a z o l e and u r o c a n i c a c i d were purchased from Aldrich Chemical Co. and a z o b i s ( i s o b u t y r o n i t r i l e ) was from Eastman Kodak C o . undecylimidazole and N - v i n y l i m i d a z o l e were supplied by S h i k o k o C h e m i c a l C o . and BASF C o . , r e s p e c t i v e l y . Copper p l a t e s ( 2 . 5 x 5 . 0 x 0 . 2 cm, ASTM Β 125, type ETP) were m e c h a n i c a l l y p o l i s h e d w i t h No.5 c h r o m e o x i d e , u l t r a s o n i c a l l y washed with acetone, rinsed with d i l u t e h y d r o c h l o r i c a c i d and d i s t i l l e d water, and d r i e d w i t h a stream of nitrogen gas. Corrosion i n h i b i t o r s were d i s s o l v e d i n e i t h e r e t h a n o l o r m e t h a n o l , solution cast onto copper substrates and a i r d r i e d . F i l m t h i c k n e s s was c a l c u l a t e d based on t h e c o n c e n t r a t i o n o f t h e s o l u t i o n , d e n s i t y of t h e sample and t h e a r e a o f t h e c o p p e r s u r f a c e . I n t h i s s t u d y , 150 nm t h i c k films were used. The r e f l e c t i o n - a b s o r p t i o n (R-A) attachment (Harrick S c i e n t i f i c ) along with a gold wire g r i d p o l a r i z e r ( P e r k i n - E l m e r ) were mounted i n a D i g i l a b F T S - 1 4 F o u r i e r transform i n f r a r e d spectrometer equipped w i t h a t r i g l y c i n e s u l f a t e d e t e c t o r and purged w i t h d r y a i r . Spectra collected were the average of 200 scans a t 4 cm" resolution u s i n g an o p t i c a l v e l o c i t y o f 0.3 c m / s . The a n g l e o f i n c i d e n c e used was 75 . hxrlfi-Ga&lon oL A z o b i s ( i s o b u t y r o n i t r i l e ) Crude AIBN was first dissolved i n warm methanol ( 3 5 ° rystallized in i c e b a t h and f i n a l l y d r i e d i n a vacuum oven a t room temperature f o r two d a y s . c )

f

t

n

e

n

r e C

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

269

270

POLYMERIC MATERIALS FOR CORROSION CONTROL

Purification o£ N-Vinyl imidazole Crude brownish N-vinylimidazole was d i s t i l l e d i n vacuo ( 5 1 ° C / 2 . 5 mm Hg) t o y i e l d a pure and c o l o r l e s s l i q u i d .

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

S y n t h e s i s q £ P o l y - N - V i n y U m J - d a z o j l e [40] A solution of N-vinylimidazole (30 g , 0.32 mol) and a z o b i s ( i s o b u t y r o n i t r i l e ) ( 0 . 2 6 g , 0.0016 mol) i n benzene (200 ml) was heated a t 68°C w i t h stirring under n i t r o g e n f o r two d a y s . The w h i t e p r e c i p i t a t e d polymer was c o l l e c t e d by f i l t r a t i o n , washed four times with benzene (20 ml) and d r i e d i n a vacuum oven (30 mm Hg) a t 40°C f o r three days. The y i e l d was 30 g (100$ conversion). The weightjjaverage molecular weights o f t h e polymer ranged from 5.5x10 t o 1.3x10 [40]. The p o l y m e r , as suggested by NMR s t u d i e s , was a t a c t i c [ 4 1 ] . D e n s i t y measured was 1.246 g / m l . S y n t h e s i s p £ 4 ( 5 ) - V i n y l i m i d a z o l e [42] - U r o c a n i c a c i d ( 7 . 6 g , 0.055 mol) was d e c a r b o x y l a t e d a t t h e m e l t i n g p o i n t i n vacuo i n a d i s t i l l i n g apparatus with a s i l i c o n e o i l bath of temperature 280°C. A h e a t i n g t a p e w i t h t e m p e r a t u r e s e t a t 140°C was wrapped around t h e c o n d e n s e r t o p r e v e n t t h e d i s t i l l a t e from solidifying before reaching the r e c e i v e r . A v i s c o u s and c o l o r l e s s l i q u i d was c o l l e c t e d ; t h e y i e l d was 2.0 g ( 2 6 $ ) . The p r o d u c t s o l i d i f i e d upon c o o l i n g t o room t e m p e r a t u r e . SyjxJ&eiOs p £ P o l y - 4 ( 5 ) - V i n y l i m i d a z o l e [42] A solution of 4(5)-vinylimidazole (1.50 g, 0.016 mol) and a z o b i s ( i s o b u t y r o n i t r i l e ) (5 mg, 0.030 mmol) i n benzene (200 ml) was heated a t r e f l u x w i t h s t i r r i n g under n i t r o g e n f o r t h r e e d a y s . A f t e r w a r d , t h e w h i t e polymer was c o l l e c t e d by f i l t r a t i o n , washed with benzene (20 ml) f o u r t i m e s and d r i e d i n vacuum oven (30 mm Hg) a t 40°C f o r t h r e e d a y s . The y i e l d was 0 . 9 g (60$ c o n v e r s i o n ) . D e n s i t y measured was 1.246 g / m l . S y n t h e s i s q£ Es>lx^rVlDyI3jRXte2S>lelCepi>$rSlI) Complex - To PVI(1) ( 1 . 7 mg)/methanol (5 ml) s o l u t i o n was added c u p r i c c h l o r i d e ( 0 . 7 mg, 0.0041 mmol). A f t e r t h e m i x t u r e s o l u t i o n was a l l o w e d to stand a t room t e m p e r a t u r e o v e r n i g h t , b l u e c r s t a l s appeared a t t h e bottom o f t h e r e a c t i o n f l a s k . Blue c r y s t a l s o f PVI(1)/copper(II) complex were t h e n c o l l e c t e d and washed r e p e a t e d l y w i t h m e t h a n o l . &a&he£Jtè p X P p l v ^ ( l ) - y ^ ^ Gqm&SL - To a PVI(4) ( 2 . 0 mg)/methanol (5 ml) s o l u t i o n was added c u p r i c c h l o r i d e ( 1 . 0 mg, 0.0059 mmol). A f t e r the mixture s o l u t i o n was allowed t o stand a t room t e m p e r a t u r e o v e r n i g h t , g r e e n c r y s t a l s appeared a t t h e bottom o f the beaker. Green c r y s t a l s of PVI(4)/copper(II) complex were then collected and washed repeatedly with methanol. RejLul^s a n d Pi£pu£&ipji M o l e c u l a r S l x ^ t u j - e p f PVJ7 CppperiII)

Cpmpjex^

F i g u r e 2 shows t h e r e f l e c t i o n s p e c t r a o f P V I ^ D and PVI(4) coated on c o p p e r mirrors. The peak a t 3140 cm~ i s a s s i g n e d t o t h e NH s t r e t c h i n g mode. Peaks a t 3115, 2950, 2940 and 2850 cm

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

a

24.

Corrosion Protection on Copper by Polyvinylimidazole

ENG AND ISHIDA

( CHo - CH ) l η

( CHo - CH )

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

POLY-N-VINYLIMIDAZOLE

POLY-'KSÎ VINYLIMIDAZOLE

PVI(l)

PVIW) Fig.

1.

Polyvinylimidazoles.

1500 1110 0.0545

WRVENUMBERS Fig.

2.

R-A S p e c t r a o f PVI(1)

and P V I ( 4 ) .

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

271

272

POLYMERIC MATERIALS FOR CORROSION CONTROL

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

are t h e CH s t r e t c h i n g modes o f t h e i m i d a z o l e ring and t h e aliphatic chain. Peaks a t 1585, 1500 and 1485 c m " a r e due t o t h e ring stretching. Finally, peaks at 1115 and 1110 cm" a r e a s s i g n e d t o t h e CH i n - p l a n e b e n d i n g o f t h e i m i d a z o l e r i n g . From t h e s t u d y o f the synthesized model compounds of PVI(1)/copper(II) and P V I ( 4 ) / c o p p e r ( I I ) , i t was found t h a t b o t h polymers were c a p a b l e o f f o r m i n g complex w i t h c o p p e r . Solubility tests indicated that t h e complexes were n o t s o l u b l e i n w a t e r , m e t h a n o l , o r any o t h e r common o r g a n i c s o l v e n t s . Then t h e complex formation between t h e PVI t h i n f i l m and c o p p e r m i r r o r s u r f a c e was s t u d i e d b o t h a t room and e l e v a t e d t e m p e r a t u r e s . F i r s t , 150 nm PVI films were deposited on t h e c o p p e r m i r r o r s and t h e r e f l e c t i o n s p e c t r a were t a k e n . After various temperature treatments, the c o p p e r m i r r o r s were washed w i t h m e t h a n o l , d r i e d and t h e r e f l e c t i o n s p e c t r a were t a k e n a g a i n . A r e a o f peaks a t 1115 and 1110 cm" was used to follow the k i n e t i c s o f t h e complex f o r m a t i o n . The assumption of this experiment was t h a t since PVI/copper(II) complexes were n o t s o l u b l e i n m e t h a n o l , t h e r e f o r e t h e amount o f m a t e r i a l remained on t h e c o p p e r surface would be due t o t h e complex formed. A t room t e m p e r a t u r e , PVI(1) formed complex i n s t a n t l y w i t h c o p p e r once t h e p o l y m e r i c f i l m was s o l u t i o n cast onto the copper surface and d r i e d . However, PVI(4) d i d n o t i m m e d i a t e l y complex w i t h t h e c o p p e r . F i g u r e 3 shows t h a t after h e a t i n g a t 6 0 ° C f o r 15 m i n , o n l y 7 % o f t h e PVI(4) f i l m complexed with the copper. I t was n o t u n t i l t h e t e m p e r a t u r e r e a c h e d 1 2 0 ° C before 92 % o f t h e PVI(4) complexed w i t h c o p p e r . T h i s phenomenon i s l i k e l y caused by t h e c o n f o r m a t i o n a l e f f e c t s o f t h e p o l y m e r . In each o f the imidazole rings, there i s a NH group c a u s i n g t h e imidazole rings to i n t e r a c t w i t h one a n o t h e r through hydrogen bonding intraand i n t e r m o l e c u l a r l y . Such i n t e r a c t i o n s cause a s h r i n k a g e , r e s u l t i n g i n t h e exposure o f a l i p h a t i c c h a i n s and t h e burying o f the imidazole groups. As a consequence, steric hindrance prevents nitrogen atom from c o m p l e x i n g w i t h copper. Thus, t h e r a t e o f complex f o r m a t i o n w i t h c o p p e r i o n s i s s t r o n g l y i n f l u e n c e d by t h e s t r e n g t h o f hydrogen b o n d i n g . i ^ A ^ j A f i P A 9f BBD&ïri&zs&SLt. Vntiecyliiniitezplé âDd 300°C)

pyjs

(150

£o_

F i g u r e 4 shows t h e r e f l e c t i o n s p e c t r a o f u n d e c y l i m i d a z o l e on copper heated at 150° C f o r various lengths o f time. Complex f o r m a t i o n was o b s e r v e d w i t h o u t any heat t r e a t m e n t (spectrum at 0 min) [433· Degradation o f u n d e c y l i m i d a z o l e was o b s e r v e d a s t h e i n t e n s i t y o f t h e peaks i n t h e 2900 cm" r e g i o n d e c r e a s e d g r a d u a l l y with prolonged^ h e a t i n g . A t t h e same t i m e , new bands appeared around 1600 cm" . Further degradation also resulted in nitrile formation as i n d i c a t e d by t h e peak a t 2183 c m " . Increase_of c o p p e r o x i d e f o r m a t i o n w i t h h e a t i n g time was o b s e r v e d a t 650 cm" . At 1 5 0 ° b e n z o t r i a z o l e showed complete d e g r a d a t i o n a f t e r o n l y 15 min o f h e a t i n g ( F i g u r e 5 . ) . Degraded p r o d u c t showed an i n t e n s e peak a t 740 c m " . Copper o x i d e f o r m a t i o n a l s o o c c u r r e d a f t e r 15 min and was even more prominent a f t e r 2 h o u r s . As f o r PVI(1) and PVI(4) (Figures 6 and 7 . ) , no d e g r a d a t i o n was d e t e c t e d a f t e r 1 c

>

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

TEMP (C) F i g . 3. P V I ( 4 ) / C U ( I I ) F o r m a t i o n v e r s u s Heated f o r 15 M i n u t e s .

UNDECYLIMIDAZOLE

Various

Temperatures

i58o

ON COPPER

1423

655 1162

22

H

3

H

1

H

5

ΔΑ 0.0552

0.0425

MIN

λ 0 MIN

7

f ! U V ^ ^ N _ ^ J \ ^ j

3000

2000

looo

o.i

CM"

I

F i g . 4. 150° C.

R-A S p e c t r a o f u n d e c y l i m i d a z o l e

w i t h Heat Treatment a t

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

POLYMERIC MATERIALS FOR CORROSION CONTROL

BENZOTRIRZOLE (BTR) ON CU ητ

150 C

2Η fui

ι

ΔA 0.0210

Π

^ ^ ^ ^ ^

11* • J ' V A ^ V *

0.0172

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

1.5 Η

0.0301

0.25 Η 0.0712

WRVENUMBERS Fig.



R-A S p e c t r a o f BTA w i t h Heat Treatment

a t 150° C.

PVI(l) ON CU RT 150 C o.owi

0.0519

WRVENUMBERS Fig.

6.

R-A S p e c t r a o f P V I ( 1 ) w i t h Heat Treatment

a t 150° C.

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

24.

ENG AND IS H IDA

Corrosion Protection on Copper by Polyvinylimidazole

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

hour o f h e a t i n g . Even a f t e r 27 o r 30 h o u r s , little degradation was seen a s t h e emergence o f t h e n i t r i l e peak a t 2200 cm" and c a r b o n y l peaks a t 1600 cm" r e g i o n was r e l a t i v e l y small. No c o p p e r o x i d e was o b s e r v e d a t any t i m e f o r e i t h e r p o l y m e r . When t h e t e m p e r a t u r e was r a i s e d t o 2 1 0 ° C , u n d e c y l i m i d a z o l e was c o m p l e t e l y d e g r a d a t e d a f t e r 15 min ( F i g u r e 8 . ) . No i m i d a z o l e r i n g s t r u c t u r e was o b s e r v e d . The n i t r i l e peak a t 2190 cm" was pronounced, and t h e c o p p e r o x i d e f o r m a t i o n was i n t e n s e . On t h e o t h e r h a n d , P V I ( 1 ) and PVI(4) d e g r a d a t i o n was r e l a t i v e l y m i l d a t 210°C a f t e r 15 min ( F i g u r e s 9 and 1 0 . ) . I t was n o t u n t i l t h e t e m p e r a t u r e was r a i s e d t o 2 5 0 ° C and h i g h e r t h a t major d e g r a d a t i o n of t h e polymers was o b s e r v e d . Even i n s u c h d e g r a d i n g c o n d i t i o n s , no c o p p e r o x i d e was d e t e c t e d a t 210 o r 2 5 0 ° C . A t 3 0 0 ° C , where the polymers s u f f e r e d r e l a t i v e l y s e v e r e d e g r a d a t i o n , o x i d a t i o n o f c o p p e r was s t i l l s u p p r e s s e d .

Sigh

TweiatottS. S£uHy QL PIIs 1338 to U50°CJ

F i g u r e 11 shows t h e r e f l e c t i o n s p e c t r a o f b a r e c o p p e r m i r r o r s heated a t h i g h t e m p e r a t u r e s f o r 15 m i n . A1| 330 C , cuprous o x i d e was d e t e c t e d by t h e band absorbed a t 655 cm" . However, at 3^0 and 400 C , two bands were observed near 611 and 655 c m " . According to the theory of reflection-absorption infrared s p e c t r o s c o p y d e v e l o p e d by G r e e n l e r e t a l . [ 4 4 ] , bands 611 and 655 cm" are assigned to the transverse optical and l o n g i t u d i n a ^ o p t i c a l modes o f t h e h i g h f r e q u e n c y phonon o b s e r v e d nearC 609 c m " i n j j i e l e c t r i c s p e c t r a o f cuprous oxide [ 4 5 ] . The band around 611 cm" was o b s e r v e d by B o e r i o and Armogan [46] w i t h o x i d e s h a v i n g a t h i c k n e s s o f about 200 nm o r t h i c k e r . F i g u r e 12 shows t h e r e s u l t s o f P V I ( 1 ) a f t e r b e i n g heated at v a r i o u s h i g h t e m p e r a t u r e s f o r 15 m i n . The bands o f c u p r o u s o x i d e s formed on b a r e c o p p e r m i r r o r s a t c o r r e s p o n d i n g t e m p e r a t u r e s a r e superimposed on t h e P V I ( 1 ) s p e c t r a f o r d i r e c t c o m p a r i s o n s . The s c a l e o f t h e two t y p e s o f s p e c t r a is shown by t h e difference between t h e maximum and minimum a b s o r b a n c e , A . Note t h a t no c u p r o u s o x i d e f o r m a t i o n was o b s e r v e d a t 330 o r 4 0 0 ° C . In f a c t , at 400 C t h e polymer c o a t e d s u r f a c e o f t h e c o p p e r m i r r o r s remained m o s t l y s h i n y whereas t h e b a r e r e f e r e n c e c o p p e r s u r f a c e t u r n e d d u l l with a layer o f r e d d i s h - b l a c k s c a l e on i t . A t 410°C o r h i g h e r , t h e polymer was no l o n g e r p r o t e c t i n g t h e c o p p e r s u r f a c e . The two c u p r o u s bands n e a r 611 and 655 c m " began t o emerge. Even s o , a t 450 C , t h e amount o f o x i d e s formed was much l e s s t h a n t h a t o f b a r e copper. Similar results were obtained f o r PVI(4) ( F i g u r e 1g.) where no s i g n i f i c a n t c u p r o u s o x i d e was o b s e r v e d a t o r below 400 C . Figure 14 summarizes the h i g h temperature study w i t h a p l o t o f r e l a t i v e cuprous oxide formation versus temperatures. As t h e t e m p e r a t u r e went u p , t h e amount o f c u p r o u s o x i d e formed on b a r e copper a l s o i n c r e a s e d . However, f o r t h e polymer samples, it is interesting t o note that t h e t r a n s i t i o n from no o x i d e t o o x i d e formation a t 410°C i s r e l a t i v e l y s h a r p .

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

275

276

POLYMERIC MATERIALS FOR CORROSION CONTROL

PVI Î4) ON CU ΔA n T 1 5 0c

V \ 0.0499

JT

fA

j vv

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

0.0369

A

θθί|37

**/^ rs.

0.0586

I

^

/

ι

4000

3500

Λ

1

1

1

3000

2500

2000

1

1

I

1500

1000

500

WRVENUMBERS Fig.

7.

R-A S p e c t r a o f PVI(4) w i t h Heat Treatment a t 1 5 0 ° C .

UNDECYLIMIDAZOLE ON COPPER ( 2 1 0 C FOR 1 5 M I N )

3000 ι F i g . 8. 210° C.

.

.

.

2000 . ι .

.

550 I

.

1000 . I .

cm*' .

R-A S p e c t r a o f U n d e c y l i m i d a z o l e w i t h Heat Treatment a t

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

ENG AND IS HI DA

Corrosion Protection on Copper by Polyvinylimidazole 277

PVI(1) ON CU

300 C FOR 15 MIN

JLA-

250 C FOR 15 MIN

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

210 C FOR 15 MIN

150 C FOR 15 MIN

PRIOR HERT TREATMENT

4000

3500

3000

2500

2000

1500

1000

500

F i g . 9 . R-A S p e c t r a o f PVI(1) w i t h Heat Treatment a t V a r i o u s Temperatures.

Δ

PVI(4) ON CU

A

0.0450

300 C FOR 15 MIN

0.0510

PRU

4000

RERTMENT

I

I

3500

3000

2500 2000 WRVENUMBERS

0.0424

1500

1000

500

F i g . 10. R-A S p e c t r a o f PVI(4) w i t h Heat Treatment a t V a r i o u s Temperatures.

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

POLYMERIC MATERIALS FOR CORROSION CONTROL

WRVENUMBERS F i g . 11. R-A S p e c t r a o f B a r e Copper w i t h H i g h Temperature Treatments.

I 750

.

1

1

1

1

700

650

600

550

WRVENUMBERS

12. R-A S p e c t r a o f P V I ( 1 ) w i t h H i g h Temperature

1 500

Treatments.

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Corrosion Protection on Copper by Polyvinylimidazole 279

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

ENG AND ISHIDA

F i g . 14. R e l a t i v e Amount o f Oxides Formed on B a r e , P V I ( 1 ) and P V I ( 4 ) Copper v e r s u s V a r i o u s H i g h T e m p e r a t u r e s .

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

280

POLYMERIC MATERIALS FOR CORROSION CONTROL

Summary P o l y v i n y l i m i d a z o l e s a r e e f f e c t i v e a n t i - o x i d a n t s f o r copper a t elevated temperatures. Below 250° C, there i s no major degradation o f t h e coated polyvinylimidazole films on c o p p e r . Furthermore, degraded polyvinylimidazole films can suppress o x i d a t i o n even a t 4 0 0 ° C . Finally, p o l y v i n y l i m i d a z o l e s a r e more effective anti-oxidants than b e n z o t r i a z o l e and i m i d a z o l e s a t elevated temperatures. I t i s a l s o demonstrated t h a t FT-IRRAS i s a useful technique t o s t u d y d e g r a d a t i o n o f p o l y m e r i c c o a t i n g s and c o r r o s i o n o f metal simultaneously.

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

Acknowledgment, The a u t h o r s g r a t e f u l l y acknowledge t h e f i n a n c i a l s u p p o r t o f the International Copper R e s e a r c h A s s o c i a t i o n , Inc. and t h e I n t e r n a t i o n a l B u s i n e s s Machines C o r p o r a t i o n .

Literature Cited 1.

J . B . Cotton, Proc. 2nd Int. Congr. Metallic Corrosion, NACE, New York (1963).

2.

J . B . Cotton and I.R. Scholes, Brit. Corros. J., 2, 1 (1967).

3.

S. Yoshida and H. Ishida, J . Materials S c i . , 19, 2323 (1984).

4.

I. Dugdale and J.B. Cotton, Corros. S c i . , 3, 69 (1963).

5.

R. Walker, Anti-Corrosion, 17, 9 (1970).

6.

S.M. Mayanna and T.H.V. Setty, Corros. S c i . , 15, 625 (1975).

7.

S. Yoshida and H. Ishida, J . Chem. Phys., 78, 6960 (1983).

8.

N.K. Patel, J . Franco and I.S. Patel, J . Ind. Chem. Soc., 54, 815 (1977).

9.

G.W. Poling, INCRA Project No. 185, February (1979).

10.

G.N. Ekilik, V.P. Grigorev and V.V. Ekilik, Zashch. Met., 14, 357 (1978).

11.

D. Chadwick and T. Hashemi, J. Electron. Spectrosc. Relat. Phenom., 10, 79 (1977).

12.

D. Chadwick and T. Hashemi, Corros. S c i . , 18, 39 (1978).

13.

A.R. Siedle, R.A. Velapoldi and N. Erickson, Appl. Surf. S c i . , 3, 229 (1979).

14.

S. Thiboult, Corros. S c i . , 17, 701 (1977).

15.

N.D. Hobbins and R.F. Roberts, Surf. Technol., 9, 235 (1979).

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

24.

ENG AND ISHIDA

Corrosion Protection on Copper by Polyvinylimidazole

16.

G.W. Poling, Corros. S c i . , 10, 359 (1970).

17.

J . Benard, Acta Metal., 8, 272 (1960).

18.

F. Mansfeld, T. Smith and E.P. Parry, Corros., 27, 289 (1971).

19.

R.F. Roberts, J . Electron Spectrosc. Relat. Phenom., 4, 273 (1974).

20.

D. Chadwick and T. Hashimi, Corros. S c i . , 18, 457 (1979).

21.

J.W. Truesdell and M.R. Van de Mark, J. Electrochem. Soc., 129., 2673 (1982).

22.

Katayama Chemical Works Co., L t d . , Tokkyo Koho JP 57,185,988 (1982).

23.

S.D. Zeinalov, M.M. Talybov, S.A. Mamedov and N.M. Gasanov, Korroz. Zashch. Neftegazov. Prom-sti., 3, 7 (1983).

24.

P. Guerit, P. Du Manoir and J. Oliver, Ger. Offen. DE 3,220,931 (1982).

25.

Katayama Chemical Works Co., L t d . , Jpn. Kokai Tokkyo Koho JP 58 58,285 (1983).

26.

Katayama Chemical Works Co., L t d . , Jpn. Kokai Tokkyo Koho JP 58 67,873 (1983).

27.

A. Lupu, R. Avram, P. Popescu, M.V. Spiliadis and V.P. Pietris, Rom. RO 79,222 (1982).

28.

M. Fradique, Eur. Pat. Appl. EP 79,236 (1983).

29.

J . C . Lumaret, S. Gosset, M. Huchette, Ger. Offen. DE 3,232,396 (1983).

30.

S.S. Abd El Rehim, F.M. Tohamy and M.M. Seleet, Surf. Technol., 21, 169 (1984).

31.

A.P. Brynza, L . I . Gerasyutina, V.P. Fedash and E. Ya. Baibarova, Zashch. Met., 19, 961 (1983).

32.

Kurita Water Industries, L t d . , Jpn. Kokai Tokkyo Koho JP 58 164,790 (1983).

33.

Sanyo Chemical Industries, L t d . , Jpn. Kokai Tokkyo Koho JP 59 23,885 (1984).

34.

R. Annand, D. Redmore and B. Rushton, US 3,450,646 (1969).

35.

R. Annand, D. Redmore and B. Rushton, US 3,509,046 (1970).

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

28

Downloaded by YORK UNIV on November 22, 2012 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch024

282

POLYMERIC MATERIALS FOR CORROSION CONTROL

36.

J . Ehreke and W. Stichel, GWF, Gas-Wasserfach: Wasser/Abwasser, 124, 473 (1983).

37.

M.G. Bondar, N. Ya. Kirillova, L . I . Makhonina, V . I . Martynenko, V . I . Nazarova, A.G. Ovcharov and V.P. Reshetov, USSR SU 1,067,086 (1984).

38.

S.A. Francis and A.H. Ellison, J. Opt. Soc. Am., 49, 130 (1959).

39.

R.G. Greenler, J. Chem. Phys., 44, 310 (1966).

40.

J . S . Tan and A.R. Sochor, Macromolecules, 14, 1700 (1981).

41.

P.M. Henrichs, L.R. Whitlock, A.R. Sochor and J . S . Tan, Macromolecules, 13, 1375 (1980).

42.

C.G. Overberger and N. Vorchheimer, J. Am. Chem. S o c ., 85, 951 (1963).

43.

S. Yoshida and H. Ishida, J . Chem. Phys., 78, 6960 (1983).

44.

R.G. Greenler, R.R. Rahn and J . P . Schwartz, J . Catal., 23, 42 (1971).

45.

P. Dawson, M.M. Hargreave and G.R. Wilkinson, J. Phys. Chem. Solids, 34, 2201 (1973).

46.

F . J . Boerio and L . Armogan, Appl. Spectrosc., 32, 509 (1978).

RECEIVED March 14, 1986

In Polymeric Materials for Corrosion Control; Dickie, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.