Crystal Chemistry, Electronic Structures, and Spectra of Fe Sites in

Nov 29, 1990 - David M. Sherman. U.S. Geological Survey, Denver, CO 80225. Spectroscopic Characterization of Minerals and Their Surfaces. Chapter 15, ...
0 downloads 0 Views 2MB Size
Chapter 15 Crystal Chemistry, Electronic Structures, a n d Spectra o f F e Sites i n C l a y M i n e r a l s Applications to Photochemistry and Electron Transport

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

David M. Sherman U.S. Geological Survey, Denver, CO 80225 3+

3+

2+

The electronic structures of Fe and Fe -Fe bearing clays and oxides are described with reference to SCFΧα-SW molecular orbital calculations on FeO, FeO and Fe O clusters. The results are used to interpret the optical spectra of iron bearing clays and iron oxides and provide some insight onto the possible mechanisms of photochemical redox reactions associated with those minerals. 6

2

4

10

Iron bearing clays and oxide minerals, because of their partially occupied Fe(3d) orbitals, may participate in a number of redox processes in nature. For example, photochemically induced electron transfer between organic molecules and colloidal iron oxides is a significant process in natural waters (1-2). Clays are thought by many to have played a central role in the chemistry which led to the origin of life (3). Because mixed-valent iron bearing clays can both donate and accept electrons, one is tempted to speculate that such clays may have had a role in the early prebiotic pathways for electron transfer and metabolism. A basic understanding of the electronic structures of iron bearing clays and oxides is needed before one can understand the mechanisms of electron transfer and photochemical reactions associated with these minerals. This chapter will discuss the electronic structures of iron bearing clays and oxides (primarily from cluster molecular orbital calculations) and compare theoretical results with experiment. The discussion will be confined to states associated with simple Fe* and Fe* coordination sites in minerals and will not go into electronic states associated with defects. 3

2

Crystal Chemistry of Fe-Bearing Clays Before describing the electronic structures of Fe coordination sites, it is worthwhile to first outline the crystal chemistry of clay minerals and describe the kinds of coordination environments that Fe * and Fe* cations may enter. This chapter not subject to U.S. copyright Published 1990 American Chemical Society 3

2

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

15.

SHERMAN

285

Fe Sites in Clay Minerals

2:1 C l a y S t r u c t u r e s . The s t r u c t u r e o f a 2:1 c l a y such as nontronite, ( C a / 2 , N a ) F e ( S i 7 Α1 )θ2ο(ΟΗ) ηΗ2θ, i s shown i n F i g u r e 1. One s h e e t o f (Fe ,A1 ,Mg)0 (OH) o c t a h e d r a i s sandwiched between two s h e e t s o f ( S i , A l ) 0 t e t r a h e d r a . Between t h e s e 2:1 l a y e r s i s an expandable i n t e r l a y e r r e g i o n w h i c h can accomodate H 0 molecules, c a t i o n s such as Na*, K*, and C a , o r g a n i c m o l e c u l e s and even t r a n s i t i o n m e t a l aquo complexes. Most F e * and Fe * i n 2:1 c l a y s occupies the s i t e s i n the o c t a h e d r a l s h e e t . Clays i n w h i c h the o c t a h e d r a l c a t i o n has a charge o f +3 are d e s c r i b e d as being d i o c t a h e d r a l s i n c e o n l y 2/3 o f the o c t a h e d r a l s i t e s are occupied. As can be seen i n F i g u r e 1, t h e r e a r e two kinds of o c t a h e d r a l s i t e s : c i s - M 0 ( O H ) and t r a n s - M 0 ( O H ) . I n the case o f the d i o c t a h e d r a l s m e c t i t e clays such as nontronite and montmorillonite, there i s some debate as t o whether the c a t i o n s are ordered w i t h i n the o c t a h e d r a l sheet. I n the disordered structure, 2/3 o f b o t h the c i s and t r a n s s i t e s a r e o c c u p i e d . In the o r d e r e d s t r u c t u r e , shown i n F i g u r e 2, a l l o f the c i s s i t e s are o c c u p i e d and a l l o f the t r a n s s i t e s a r e v a c a n t . Mossbauer s p e c t r a o f n o n t r o n i t e s , when f i t t o two quadrupole d o u b l e t s , s u g g e s t that i r o n i s d i s o r d e r e d i n n o n t r o n i t e ( 4 ) . As shown i n F i g u r e 3, the a r e a r a t i o s o f the i n n e r and outer Fe * d o u b l e s a r e 1/3:2/3 c o n s i s t e n t w i t h t h a t e x p e c t e d f o r i r o n d i s o r d e r e d o v e r the c i s and t r a n s s i t e s . The d i s o r d e r e d arrangement a l s o a c c o u n t s f o r the low N e e l temperature (1.3K) o f n o n t r o n i t e (5). Electron diffraction measurements o f the p l a n e group o f the o c t a h e d r a l s h e e t , however, s u g g e s t an o r d e r e d s t r u c t u r e ( 6 , 7 ) . A l t e r n a t i v e i n t e r p r e t a t i o n s o f the magnetic b e h a v i o r o f n o n t r o n i t e (8) a l s o s u g g e s t an o r d e r e d s t r u c t u r e . S e v e r a l i n v e s t i g a t o r s have a t t e m p t e d t o e x p l a i n how an o r d e r e d arrangement o f Fe * c a t i o n s can y i e l d two quadrupole d o u b l e t s by i n v o k i n g n e x t - n e a r e s t n e i g h b o r e f f e c t s ( 9 - 1 2 ) . A s m a l l f r a c t i o n o f i r o n may e n t e r the t e t r a h e d r a l s i t e s in 2:1 c l a y s . I n n o n t r o n i t e , t h e r e i s o f t e n enough t e t r a h e d r a l i r o n ( c a . 5 %) t o be d e t e c t a b l e u s i n g Mossbauer s p e c t r a . The Mossbauer s p e c t r a i n F i g u r e 3, f o r example, shows a weak q u a d r u p o l e d o u b l e t due t o t e t r a h e d r a l Fe *. O p t i c a l s p e c t r a o f n o n t r o n i t e s i n the v i s i b l e r e g i o n a l s o show an a b s o r p t i o n band t h a t i s a s s i g n e d t o t e t r a h e d r a l l y c o o r d i n a t e d Fe *. T h i s i s d i s c u s s e d i n more d e t a i l below. I r o n may a l s o o c c u r as an i n t e r l a y e r s p e c i e s . Mossbauer s p e c t r a show the p r e s e n c e o f an F e * aquo complex i n the i n t e r l a y e r o f m o n t m o r i l l o n i t e ( 1 3 ) . The l a b i l e nature of this Fe * i s s u g g e s t e d by the l a r g e temperature dependence o f i t s recoil-free-fraction. I n c o n t r a s t , Fe * aquo complexes are u n l i k e l y t o o c c u r as d i s c r e t e s p e c i e s i n a clay interlayer. I n s t e a d , F e ( O H ) ( H 0 ) complexes w i l l condense t o form ferric h y d r o x y polymers w h i c h , i n a c l a y i n t e r l a y e r , might form twodimensional sheets or three-dimensional p i l l a r s . Such p i l l a r s in n o n t r o n i t e have been c h a r a c t e r i z e d by Gangas e t a l . ( 1 4 ) . i66

4

β34

β66

4

4

2

4

2

2+

3

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

4

2

4

2

2

3

3

3

3

2

2

3

2

2

4

1:1 C l a y S t r u c t u r e s . The 1:1 s t r u c t u r e s a r e the s i m p l e s t since they contain only a single octahedral s h e e t and a single tetrahedral layer. The double l a y e r s a r e h e l d t o g e t h e r by h y d r o g e n b o n d i n g . The most n o t a b l e i r o n p h y l l o s i l i c a t e s w i t h the 1:1 s t r u c t u r e a r e b e r t h i e r i n e and c r o n s t e d i t e . V e r y l i t t l e iron

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

286

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

F i g u r e 1. G e n e r a l i z e d s t r u c t u r e o f a 2:1 p h y l l o s i l i c a t e smectite clay). There a r e two d i f f e r e n t octahedral c o r r e s p o n d i n g t o c i s - M 0 ( O H ) and t r a n s - M 0 ( O H ) . ( M o d i f i e d Grimm, R.E. " C l a y M i n e r a l o g y " M c G r a w - H i l l , 1968). 4

2

4

2

(e.g., sites from

F i g u r e 2. S t r u c t u r e o f t h e o c t a h e d r a l s h e e t o f a d i o c t a h e d r a l c l a y showing the c o m p l e t e l y o r d e r e d ( c i s o n l y ) c o n f i g u r a t i o n . The d i s o r d e r e d s t r u c t u r e would have 2/3 o f the c i s - s i t e s a n d 2/3 o f the t r a n s s i t e s o c c u p i e d .

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

τ

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

287

Fe Sites in Clay Minerals

15. SHERMAN

i

1

1

1

r

J

I

I

L.

τ

1

1

Γ

J

I

I

— I

L.

π*

— I

-

1

1

1

0

-»-

1

2

Velocity (mm/sec) F i g u r e 3. Room temperature Mossbauer spectrum o f s e v e r a l n o n t r o n i t e s showing two k i n d s o f o c t a h e d r a l l y c o o r d i n a t e d Fe * and a small f r a c t i o n of Fe i n tetrahedral coordination. (Adapted from 3

3 +

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

288

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

o c c u r s i n t h e more common p h y l l o s i l i c a t e s w i t h t h e 1:1 s t r u c t u r e (e.g., k a o l i n i t e ) . E l e c t r o n i c S t r u c t u r e s o f Fe S i t e s i n C l a y s and Oxides

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

Theoretical Preliminaries. I t i s worthwile to f i r s t o u t l i n e some e s s e n t i a l concepts before d i s c u s s i n g the e l e c t r o n i c s t r u c t u r e s o f Fe s i t e s i n c l a y s and o x i d e s . The e l e c t r o n i c s t r u c t u r e o f an atom, m o l e c u l e o r s o l i d i s obtained by s o l v i n g the Schrodinger equation

where Ê i s t h e a p p r o p r i a t e H a m i l t o n i a n o p e r a t o r , Φ i s the w a v e f u n c t i o n w h i c h d e s c r i b e s t h e system, and Ε i s t h e t o t a l energy o f t h e system when i t i s i n t h e s t a t e Φ . F o r a n y t h i n g more com­ p l e x t h a n a hydrogen atom, o f c o u r s e , t h e S c h r o d i n g e r e q u a t i o n i s a many-body problem and cannot be s o l v e d e x a c t l y . We c a n , how­ e v e r , i n t r o d u c e a n i m p o r t a n t f o r m a l i s m known a s t h e independent e l e c t r o n a p p r o x i m a t i o n and e x p r e s s o u r many-body w a v e f u n c t i o n Φ (rj , . . . ,r ) i n terms of one-electron o r b i t a l s i>1 ( r ^ ) , φ ( 2 ) » · · · » Ψη ( n ) p r o v i d e d t h a t we obey t h e P a u l i e x c l u s i o n p r i n c i p l e b y h a v i n g Φ ( r - r« . .. , r ) t a k e the form o f a S l a t e r d e t e r m i n a n t : ' ' n

r

r

2

n

*1

Φ

(*! )

V»i (r )

Φζ (^ )

φ (2)

*1 < n ) r

2

Φζ (r„ )|

r

2

-

I f we p u t t h i s d e t e r m i n e n t a l form o f t h e w a v e f u n c t i o n i n t o our o r i g i n a l S c h r o d i n g e r e q u a t i o n , we g e t a s e t o f Ν c o u p l e d d i f f e r e n ­ t i a l equations f o r the one-electron o r b i t a l s : ( - V2 + V + V c

e x

) *, (r, ) - Cf *« (r, )

(describing the electronHere, V , i s t h e coulomb p o t e n t i a l e l e c t r o n r e p u l s i o n and e l e c t r o n - n u c l e a r a t t r a c t i o n ) w h i l e V i s the exchange p o t e n t i a l w h i c h i s p u r e l y quantum m e c h a n i c a l i n o r i ­ gin. F o r t h e case o f an atom, o u r o n e - e l e c t r o n o r b i t a l s a r e t h e I s , 2 s , 2p, 3 s , 3p, 3d e t c . atomic o r b i t a l s . F o r a m o l e c u l e , o u r o n e - e l e c t r o n φ 's a r e m o l e c u l a r o r b i t a l s w h i c h a r e l i n e a r combi­ n a t i o n s o f atomic o n e - e l e c t r o n o r b i t a l s , : cc

e x

Φϊ - c φ + c φ 1

}

For a c r y s t a l , our o n e - e l e c t r o n φ functions :

2

2

's t a k e t h e form o f B l o c h

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

wave

15. SHERMAN

Fe Sites in Clay Minerals i>

k

(r ) - u

k

289

( r )exp ( i k r )

where u ( r ) has the t r a n s l a t i o n a l p e r i o d i c i t y Τ o f the crystal l a t t i c e u ( r ) - u ( r + Τ ) . The o n e - e l e c t r o n o r b i t a l f o r m a l ­ ism i s not o n l y the b a s i s f o r c o m p u t a t i o n a l quantum c h e m i s t r y but a l s o u n d e r l i e s our t h i n k i n g when a t t e m p t i n g t o u n d e r s t a n d c h e m i c a l phenomena i n terms o f quantum mechanics. For example, i n our o n e - e l e c t r o n o r b i t a l f o r m a l i s m we can t h i n k o f c h e m i c a l bonds as r e s u l t i n g from the o v e r l a p o f o n e - e l e c t r o n a t o m i c o r b i t a l s . How­ e v e r , we must u l t i m a t e l y r e t u r n t o the c o m p l i c a t e d n o t i o n o f mult i e l e c t r o n i c w a v e f u n c t i o n s i f we a r e t o c o r r e c t l y u n d e r s t a n d the e l e c t r o n i c s t a t e s o f an atom, m o l e c u l e o r s o l i d . Because c l a y m i n e r a l s and i r o n o x i d e s are s o l i d s , i t seems t h a t t h e i r e l e c t r o n i c s t r u c t u r e s s h o u l d be g i v e n i n terms o f B l o c h w a v e f u n c t i o n s . However, band s t r u c t u r e c a l c u l a t i o n s on something as complex as a t y p i c a l c l a y would be i m p r a c t i c a l . More fundamen­ t a l l y , however, i s t h a t the e l e c t r o n s o f i n t e r e s t i n s i l i c a t e s and o x i d e s , namely those i n the Fe(3d) o r b i t a l s , are q u i t e l o c a l i z e d . ( T h i s r e f l e c t s the p a r t i a l i o n i c c h a r a c t e r o f the b o n d i n g i n these m i n e r a l s . ) B l o c h w a v e f u n c t i o n s are awkward t o use when a t t e m p t i n g t o d e s c r i b e e l e c t r o n i c t r a n s i t i o n s between l o c a l i z e d s t a t e s . A d i f f e r e n t approach would be t o l o o k a t the e l e c t r o n i c s t r u c t u r e o f a s m a l l c l u s t e r o f atoms r e p r e s e n t i n g some s t r u c t u r a l u n i t i n the c r y s t a l by u s i n g m o l e c u l a r o r b i t a l t h e o r y . T h i s approach has i t s p r e c e d e n t i n l i g a n d f i e l d t h e o r y and s h o u l d be useful to the extent that the Fe(3d) e l e c t r o n s are l o c a l i z e d . W i t h i n c r e a s i n g c l u s t e r s i z e , the m o l e c u l a r o r b i t a l d e s c r i p t i o n w i l l converge to the band s t r u c t u r e o f the c r y s t a l . The m o l e c u l a r o r b i t a l v i e w can a c c o u n t f o r b o t h l o c a l i z e d ( i o n i c ) e l e c t r o n s and ( i f the cluster is s u f f i c i e n t l y large) delocalized (metallic) electrons. Some a p p l i c a t i o n s o f m o l e c u l a r o r b i t a l t h e o r y t o the c h e m i s t r y o f clay m i n e r a l s have been done. For example, A r o n o w i t z e t a l . (15) modeled the e l e c t r o n i c s t r u c t u r e s o f c l a y s u s i n g e x t e n d e d H u c k e l m o l e c u l a r o r b i t a l c a l c u l a t i o n s on a c l u s t e r a p p r o a c h i n g the f u l l u n i t c e l l . Those c a l c u l a t i o n s were a b l e t o p r e d i c t t r e n d s i n i s o ­ morphic s u b s t i t u t i o n o f o c t a h e d r a l A l by F e , Mg , F e , Na , C a and K . We are p r i m a r i l y i n t e r e s t e d i n the Fe(3d) electrons. The u n p a i r e d e l e c t r o n s o f i r o n make the e l e c t r o n i c s t r u c t u r e s o f i r o n b e a r i n g c l a y s too complex t o t r e a t w i t h s i m p l e extended H u c k e l c a l c u l a t i o n s on l a r g e c l u s t e r s . More s o p h i s t i c a t e d approx­ i m a t i o n s are p o s s i b l e ( i n p a r t i c u l a r the Self-consistent field Χα-Scattered Wave method) but t h e s e w i l l r e q u i r e us t o l i m i t the c l u s t e r s i z e . However, the Fe(3d) e l e c t r o n s t e n d t o be almost e n t i r e l y l o c a l i z e d t o the Fe atom and i t s immediate c o o r d i n a t i o n s i t e . Hence we s h o u l d be a b l e t o d e s c r i b e the Fe(3d) e l e c t r o n i c states i n terms o f the m o l e c u l a r o r b i t a l s o f s i m p l e F e 0 , FeO (OH) , and F e 0 c l u s t e r s . There are situations (Fe -*Fe charge t r a n s f e r , i n p a r t i c u l a r ) i n w h i c h the Fe(3d) e l e c t r o n s are d e l o c a l i z e d o v e r more t h a n one F e 0 c o o r d i n a t i o n polyhedron. To u n d e r s t a n d s u c h d e l o c a l i z e d s t a t e s , we w i l l have t o use l a r g e r c l u s t e r s . C a l c u l a t i o n s on ( F e O ) " dimers have been done and w i l l be d e s c r i b e d h e r e . As computers become f a s t e r , s o p h i s t i c a t e d c a l c u l a t i o n s on even l a r g e r c l u s t e r s w i l l become p r a c t i c a b l e . A c c u r a t e m o l e c u l a r o r b i t a l c a l c u l a t i o n s on t r a n s i t i o n metal k

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

k

k

3 +

2 +

3 +

2+

2 +

+

+

6

2+

A

2

4

6

1 5

2

1 0

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

3+

290

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

o x i d e c l u s t e r s cannot be e a s i l y done u s i n g c u r r e n t H a r t r e e - F o c k type ab i n i t i o methods b a s e d on the l i n e a r c o m b i n a t i o n o f atomic orbital (LCAO) f o r m a l i s m . A v e r y s u c c e s f u l approach, however, i s the Χα-scattered wave method. Here, t h e c o m p l i c a t e d exchange p o t e n t i a l i s s i m p l i f i e d b y u s i n g the Χα a p p r o x i m a t i o n (16) w h i l e the m o l e c u l a r o r b i t a l s a r e o b t a i n e d u s i n g the s c a t t e r e d wave f o r ­ malism ( 1 7 ) . 3

E l e c t r o n i c S t r u c t u r e o f Fe * i n O c t a h e d r a l C o o r d i n a t i o n . F i g u r e 4 shows t h e m o l e c u l a r o r b i t a l diagram f o r a ( F e 0 ) " c l u s t e r w i t h and Fe-0 bond l e n g t h o f 200 pm. The e l e c t r o n i c s t r u c t u r e o f t h e same c l u s t e r w i t h a somewhat l o n g e r Fe-0 bond l e n g t h i s d i s c u s s e d i n d e t a i l elswhere ( 1 8 ) . The 0(2p) l i k e m o l e c u l a r orbitals are Fe-0 b o n d i n g w h i l e t h e Fe(3d) l i k e m o l e c u l a r o r b i t a l s a r e Fe-0 a n t i b o n d i n g . Some o f the o r b i t a l s a r e l a b e l e d a c c o r d i n g t o t h e i r a s s o c i a t e d i r r e d u c i b l e r e p r e s e n t a t i o n o f the 0 p o i n t group. The orbitals ofe symmetry a r e σ-bonding ( 3 e ) o r σ-antibonding (4e.). The o r b i t a l s w i t h t symmetry a r e π-bonding ( l t ) o r πantibonding ( 2 t ) . The c a l c u l a t i o n was done u s i n g a s p i n u n r e s t r i c t e d exchange p o t e n t i a l . T h i s g i v e s s e p a r a t e exchange p o t e n t i a l f o r spin-up (α-spin) and spin-down (0-spin) e l e c t r o n s and i s essential f o r describing the electronic structures o f o p e n - s h e l l c o n f i g u r a t i o n s . Note t h a t the s p i n - u n r e s t r i c t e d molec­ u l a r o r b i t a l r e s u l t s c o r r e c t l y show t h a t Fe * w i l l be i n the h i g h s p i n c o n f i g u r a t i o n i n i t s ground s t a t e . Low s p i n Fe * o r Fe** has n o t been observed i n any s i l i c a t e o r o x i d e m i n e r a l . Presumea b l y , one must a t t a i n p r e s s u r e s comparable t o t o those i n the lower mantle f o r the s p i n p a i r i n g t r a n s i t i o n t o o c c u r . Two k i n d s o f e l e c t r o n i c t r a n s i t i o n s can be d e s c r i b e d u s i n g t h i s s i m p l e c l u s t e r : d-d o r " l i g a n d f i e l d " t r a n s i t i o n s and l i g a n d - t o - m e t a l charge t r a n s f e r (LMCT) t r a n s i t i o n s . These a r e also the only e l e c t r o n i c t r a n s i t i o n s o f i r o n ( I I I ) clays that can be i n d u c e d by s u n l i g h t on the E a r t h ' s s u r f a c e . As d i s c u s s e d i n (18), the o n e - e l e c t r o n o r b i t a l s g i v e o n l y a p a r t i a l d e s c r i p t i o n o f the d i f f e r e n t l i g a n d f i e l d s t a t e s o f the Fe * c a t i o n . The l i g a n d to m e t a l charge t r a n s f e r t r a n s i t i o n s , however, seem t o be w e l l d e s c r i b e d i n terms o f the o n e - e l e c t r o n o r b i t a l s o f t h e ( F e 0 ) ' cluster. The l o w e s t energy LMCT t r a n s i t i o n , from the 0(2p) band to the 2 t ( 0 ) o r b i t a l , i s c a l c u l a t e d t o l i e n e a r 38,000 cm" . T h i s energy agrees w r i l w i t h t h a t found i n t h e s p e c t r a o f i r o n ( I I I ) - b e a r i n g c l a y s (4,19,20). Spectra o f several clay m i n e r a l s w i t h d i l u t e c o n c e n t r a t i o n s o f l a t t i c e Fe * show an 0 " -•Fe * band and a r e g i v e n i n F i g u r e 5. The e n e r g i e s o f the s t a t e s a r i s i n g from the d i f f e r e n t confi­ g u r a t i o n s over the Fe(3d) o n e - e l e c t r o n o r b i t a l s ( 4 e and 2 t ^ ) c a n n o t be d i r e c t l y c a l c u l a t e d from t h e m o l e c u l a r o r b i t a l diagram. This i s because a g i v e n o n e - e l e c t r o n o r b i t a l c o n f i g u r a t i o n corresponds t o s e v e r a l m u l t i e l e c t r o n i c s t a t e s . F o r example, t h e o n e - e l e c t r o n o r b i t a l t r a n s i t i o n 4 e ( a ) -» 2 t ( a ) corresponds t o b o t h the A -* T and A -» T spectroscopic transitions that a r e observed i n the v i s i b l e and near i n f r a r e d s p e c t r a o f i r o n ( I I I ) c l a y s . We can, however, u n d e r s t a n d the s t a t e s a r i s i n g from t h e d - o r b i t a l e l e c t r o n i c c o n f i g u r a t i o n s using l i g a n d f i e l d theory. L i g a n d f i e l d t h e o r y e x p r e s s e s the s t a t e e n e r g i e s i n terms o f t h e 9

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

6

h

g

g

2 g

2 g

2 g

3

3

3

9

6

1

2g

3

2

3

g

g

6

4

1g

6

1g

g

2 g

4

1g

2g

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

15.

Fe Sties in day Minerah

SHERMAN

(Fe0 ) ~ 6

9

R(Fe-O)»200

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

Spin Up

-25

291

pm

^

L

F i g u r e 4. Spin-unrestricted m o l e c u l a r o r b i t a l diagram f o r an ( F e 0 ) " c l u s t e r w i t h R(Fe-0)-200 pm. The o r b i t a l s i n d i c a t e d by dashed l i n e s are u n o c c u p i e d . Note t h a t o r b i t a l energy d i f f e r e n c e s do not c o r r e s p o n d e x a c t l y t o the e n e r g i e s r e q u i r e d f o r e l e c t r o n i c t r a n s i t i o n s between t h e s e o r b i t a l s . S i n c e an electronic transi­ t i o n w i l l change the e l e c t r o n i c c o n f i g u r a t i o n , i t w i l l a l s o change the i n t e r e l e c t r o n i c p o t e n t i a l . To d e t e r m i n e e l e c t r o n i c t r a n s i t i o n e n e r g i e s , one must p e r f o r m a " t r a n s i t i o n s t a t e " c a l c u l a t i o n ( 1 6 ) . The " t r a n s i t i o n s t a t e " approach w i l l a c c o u n t f o r the orbital energy r e l a x a t i o n about the new e l e c t r o n i c c o n f i g u r a t i o n . For sim­ p l i c i t y , o n l y the most i m p o r t a n t Fe-0 b o n d i n g and antibonding o r b i t a l s are l a b e l l e d . The r e m a i n i n g o r b i t a l s ( 6 a , 5 t , 6 t , l t , and l i ) are m o s t l y 0(2p) non-bonding. 9

6

1 g

2 u

t

1 u

g

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

1 u

292

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

J τ

I

I

7



1

,

F i g u r e 5. Near u l t r a v i o l e t t o v i s i b l e r e g i o n s p e c t r a o f k a o l i n i t e , p y r o p h y l l i t e , and s a p o n i t e showing a n a b s o r p t i o n band n e a r 40,000 cm" due t o 0 "-»Fe charge t r a n s f e r . (Data from r e f e r e n c e 2 5 ) . 1

2

3+

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

293

Fe Sites in day Minerals

15. SHERMAN

t h r e e p a r a m e t e r s lODq, Β and C. lODq i s a measure o f the s p l i t ­ t i n g between t h e 4 e and 2 t o r b i t a l s ; Β and C a r e r e l a t e d t o the coulomb and exchange i n t e g r a l s . I n p r i n c i p l e , we c a n c a l c u l a t e t h e s e parameters from the o n e - e l e c t r o n o r b i t a l s . However t h e y a r e u s u a l l y d e t e r m i n e d from o p t i c a l s p e c t r a . The e n e r g i e s o f the Fe(3d) s t a t e s i n terms o f the l i g a n d f i e l d p a r a m e t e r s a r e g i v e n i n T a b l e 1. g

2 g

3

T a b l e 1.

E n e r g i e s f o r the Fe * L i g a n d F i e l d S t a t e s (21,22)

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

State

Energy

2

Fe t r a n s i t i o n , i t f o l l o w s t h a t i r o n o x i d e s and s i l i c a t e s s h o u l d n o t be h i g h l y p h o t o r e a c t i v e under s u n l i g h t a t the E a r t h ' s s u r f a c e . As d i s c u s s e d below, some p h o t o c h e m i c a l r e a c ­ t i v i t y i s o b s e r v e d w i t h h e m a t i t e (a-Fe 03) a t e n e r g i e s b e g i n i n g n e a r 20,000 cm" ( e . g . , 34-35). P h o t o e l e c t r o c h e m i c a l r e a c t i o n s i n d u c e d by v i s i b l e l i g h t a r e m o s t - l i k e l y a s s o c i a t e d w i t h the tail o f the 0 "-*Fe charge t r a n s f e r band t h a t extends i n t o the v i s i b l e r e g i o n o f the spectrum. The quantum e f f i c i e n c y o f these r e a c t i o n s 3

1

3

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

3 +

+

4 +

3 +

3 +

3

3

3 +

2

2

3

3+

2

1

2

3+

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

296

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

increase r a p i d l y ultraviolet.

as the p h o t o n energy i s moved towards t h e near-

3

E l e c t r o n i c S t r u c t u r e o f Fe * i n T e t r a h e d r a l C o o r d i n a t i o n . As men­ tionedearlier, some Fe * i n c l a y s may s u b s t i t u t e f o r S i i n t h e t e t r a h e d r a l sheet. I n t h e case o f n o n t r o n i t e , t h e f r a c t i o n o f t e t r a h e d r a l l y c o o r d i n a t e d i r o n i s o n l y a few p e r c e n t . Other p h y l l o s i l i c a t e s (such as c r o n s t e d i t e ) c a n have a c o n s i d e r a b l e f r a c t i o n of i r o n i n t e t r a h e d r a l coordination. The e l e c t r o n i c s t r u c t u r e o f Fe * i n t e t r a h e d r a l c o o r d i n a t i o n (18) i s g i v e n b y t h e m o l e c u l a r o r b i t a l diagram f o r an ( F e 0 ) c l u s t e r i n F i g u r e 7. As b e f o r e , t h e Fe(3d) o r b i t a l a r e Fe-0 a n t i b o n d i n g w h i l e t h e 0(2p) o r b i t a l s a r e Fe-0 b o n d i n g and 0 nonbonding. The l o w e s t energy LMCT t r a n s i t i o n i s c a l c u l a t e d t o o c c u r a t 40,400 cm" when t h e Fe-0 bond l e n g t h i s 186.5 pm. The l i g a n d f i e l d t r a n s i t i o n s o f t e t r a h e d r a l l y coordinated Fe * are Laporte-allowed. C o n s e q u e n t l y , s m a l l amounts o f t e t r a h e d r a l l y c o o r d i n a t e d Fe * may have a l a r g e e f f e c t on t h e s p e c t r a o f i r o n - b e a r i n g c l a y s . I n t h e o p t i c a l spectrum o f non­ t r o n i t e ( 4 ) , t h e s m a l l amount o f t e t r a h e d r a l Fe * g i v e s an i n t e n s e a b s o r p t i o n band n e a r 23,000 cm' t h a t i s a s s i g n e d t o the A ^ A^E transition. 3

3

4

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

1

3

3

3

1

6

2

E l e c t r o n i c S t r u c t u r e o f Fe * i n O c t a h e d r a l C o o r d i n a t i o n . F i g u r e 8 gives a molecular o r b i t a l diagram f o r an ( F e 0 ) " c l u s t e r w i t h R(Fe-O) - 216 pm. The o v e r a l l t o p o l o g y o f t h e o r b i t a l s i s the same as i n t h e analogous Fe * c l u s t e r . The o n e - e l e c t r o n o r b i t a l t r a n s i t i o n 2t (0)-»4e (0) c o r r e s p o n d s t o t h e T -* E absorption band o b s e r v e d i n t h e o p t i c a l s p e c t r a o f Fe * s i l i c a t e s n e a r 10,00 " dimer shown i n F i g u r e 11. T h i s dimer c o n s i s t s o f Fe ana F e c a t i o n s occupying octahedral coordination s i t e s s h a r i n g a common edge. The dimer h a s C symmetry (Fe s i t e s i n e q u i v a l e n t ) . I f we c o n s i d e r t h e two s i t e s A and B, we c a n c o n s i d e r two z e r o t h - o r d e r s t a t e s c o r r e s p o n d i n g t o t h e two p o s s i b l e charge configurations : 3

2

2 +

3 +

2 v

W

W

What we a r e i n t e r e s t e d i n i s t h e e n e r g i e s o f these s t a t e s a l o n g a c o n f i g u r a t i o n a l c o o r d i n a t e q. Here, q i s a normal mode o f A " c l u s t e r , the Fe *(2t (0)) o r b i ­ t a l s are Fe *-Fe bonding w h i l e the Fe *(2t (0)) o r b i t a l s are Fe -Fe * antibonding ( a l l o f the F e ( 3 d ) - l i k e molecular orbitals a r e Fe-0 a n t i b o n d i n g , o f c o u r s e ) . To d e t e r m i n e t h e k i n d o f a c t i v a t i o n energies a s s o c i a t e d w i t h thermally induced IVCT wcjuld r e q u i r e t h a t we c a l c u l a t e t h e t o t a l energy o f t h e (Fe 0- > 1 5

2

2

3+

2

2g

1 0

3

2g

2+

3

2

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

0

304

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

Φ >%

O) Φ

c

-20

~2 Έ k_ Ο

(-

-25

F i g u r e 12. M o l e c u l a r o r b i t a l diagram f o r an Fe^O^ c l u s t e r used t o u n d e r s t a n d t h e o r b i t a l s i n v o l v e d i n Fe *-*Fe^ charge t r a n s f e r . The a b s o r p t i o n band o b s e r v e d n e a r 13,000 cm" i n t h e s p e c t r a o f mixed-valence silicates i s due t o t h e t r a n s i t i o n from t h e Fe (t g)->Fe (t g) o r b i t a l s . A t r a n s i t i o n state c a l c u l a t i o n f o r t h a t energy i n t h e c l u s t e r p r e s e n t e d h e r e g i v e s 10,570 cm" i n f a i r agreement w i t h e x p e r i m e n t . 2

1

2+

3+

2

2

1

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

15. SHERMAN

305

Fe Sites in Clay Minerals

c l u s t e r a l o n g t o q c o o r d i n a t e . Such c a l c u l a t i o n s cannot be accu­ r a t e l y done u s i n g t h e SCF-Xa-SW method b u t might be p o s s i b l e u s i n g the D i s c r e t e V a r i a t i o n a l Χα approach. I t appears, however, t h a t most i r o n p h y l l o s i l i c a t e s a r e b e s t d e s c r i b e d by t h e s i t u a t i o n i n F i g u r e l i b where t h e two Fe s i t e s a r e e n e r g e t i c a l l y d i f f e r e n t . I n a d d i t i o n t o t h e a c t i v a t i o n b a r r i e r , e l e c t r o n s must a l s o overcome the s i t e p o t e n t i a l energy d i f f e r e n c e (Ε ) f o r e l e c t r o n t r a n s f e r t o o c c u r . F o r t h i s r e a s o n , t h e r m a l l y i n d u c e d IVCT i s seldom observed i n these m i n e r a l s . We c a n c o n s i d e r t h e Fe(3d) e l e c t r o n s t o be t r a p p e d a t t h e i r p a r e n t Fe s i t e . λ

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

A p p l i c a t i o n s t o Photochemistry,

E l e c t r o n t r a n s p o r t and R e a c t i v i t y

The t r a p p e d and l o c a l i z e d n a t u r e o f t h e Fe(3d) e l e c t r o n s i n c l a y s and i r o n o x i d e s would suggest t h a t t h e Fe(3d) o r b i t a l s i n l a t t i c e i r o n p l a y no d i r e c t r o l e i n heterogeneous ( i . e . , m i n e r a l - s o l u t i o n ) e l e c t r o n t r a n s f e r processes. The o n l y i r o n t h a t may a c t as an e l e c t r o n a c c e p t o r o r donor i s t h a t i r o n on t h e m i n e r a l s u r f a c e . On t h e o t h e r hand, e l e c t r o n s e x c i t e d from t h e 0(2p) v a l e n c e band i n t o t h e Fe(3d) o r b i t a l s by u l t r a v i o l e t r a d i a t i o n w o u l d r e s u l t i n (presumably m o b i l e ) h o l e s i n t h e 0(2p) band. To u n d e r s t a n d t h e o r b i t a l pathways b y w h i c h such h o l e s may be t r a n s p o r t e d would require molecular o r b i t a l c a l c u l a t i o n s on much l a r g e r c l u s t e r s . I n p a s s i n g i t s h o u l d be mentioned t h a t Marusak e t a l . (34) o b t a i n e d an i n t e r e s t i n g r e s u l t when measuring t h e photoconduc­ t i v i t y o f h e m a t i t e ( a - F e 0 ) . A peak i n t h e p h o t o c o n d u c t i v i t y spectrum was found a t an energy c o r r e s p o n d i n g t o the A -» T2 t r a n s i t i o n n e a r 15,000 cm" . T h i s t r a n s i t i o n r e s u l t s i n a onêe l e c t r o n o r b i t a l c o n f i g u r a t i o n ( t ~ > ( e ) w h i c h means t h a t b o t h the t ( 0 ) and e ( a ) Fe(3d) bands are p a r t i a l l y occupied. The c o n d u c t i v i t y i m p l i e s t h a t e l e c t r o n s i n one o f these bands must be m o b i l e ( p r o b a b l y t h e one i n t h e t ( 0 ) band) and t h a t e l e c t r o n t r a n s p o r t can occur v i a the charge-transfer t r a n s i t i o n 2

3

4

A

1g

1

1

g

2 g

g

2 g

3

4

2+

+

Fe3+(6 ) + F e * ( T ) - Fe (5T ) + F e * ( E ) Alg

2g

2g

g

R e g a r d l e s s o f t h e e l e c t r o n t r a n s f e r mechanism, l i g h t - i n d u c e d e l e c t r o n t r a n s f e r processes on i r o n ( I I I ) c l a y s must i n v o l v e t h e 0 "->Fe charge t r a n s f e r t r a n s i t i o n i n t h e u l t r a v i o l e t . On t h e E a r t h ' s s u r f a c e , the s o l a r s p e c t r a l i r r a d i a n c e c u r v e ( F i g u r e 13) c u t s o f f a t a maximum energy o f -33,000 cm' (0.3 m i c r o n s ) . This l i m i t s t h e k i n d s o f p h o t o c h e m i c a l p r o c e s s e s we may e x p e c t i n t h e n a t u r a l environment. The energy o f t h e 0 '->Fe charge t r a n s f e r t r a n s i t i o n (38,000 cm' ) i s o u t s i d e t h e p r e s e n t spectrum o f s o l a r r a d i a t i o n i n c i d e n t on t h e E a r t h ' s s u r f a c e . Nevertheless, the w i d t h o f t h e charge t r a n s f e r a b s o r p t i o n band i s s u f f i c i e n t l y b r o a d (-10,000 cm" h a l f - w i d t h ) t o a l l o w some p h o t o c h e m i c a l a c t i v i t y due t o s u n l i g h t on t h e E a r t h ' s s u r f a c e (1,2,35,36). For F e i n o c t a h e d r a l c o o r d i n a t i o n , we do n o t e x p e c t photoo x i d a t i o n o f o r g a n i c m o l e c u l e s v i a 0 "-»Fe * charge t r a n s f e r . How­ ever, the p o s s i b i l i t y o f photoreduction o f organics v i a t r a n s i ­ t i o n s from t h e Fe(3d) o r b i t a l s t o t h e F e ( 4 s ) o r b i t a l s o r F e ( 4 s ) c o n d u c t i o n band s h o u l d be c o n s i d e r e d . The lowest energy Fe(3d)-»Fe(4s) t r a n s i t i o n i s c a l c u l a t e d t o be 58600 cm" . Although 2

3+

1

2

3+

1

1

2 +

2

2

1

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

p2 S

WAVELENGTH (μ)

F i g u r e 13. S o l a r s p e c t r a l i r r a d i a n c e c u r v e (From r e f e r e n c e 33).

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

Fe Sites in Clay Minerals

15. SHERMAN

307

t h i s i s o u t s i d e t h e range o f p r e s e n t l y a v a i l a b l e s o l a r energy a t the E a r t h ' s s u r f a c e , t h e t a i l o f t h e a b s o r p t i o n band may a l l o w t r a n s i t i o n s i n d u c e d by n e a r - u l t r a v i o l e t r a d i a t i o n ( i . e . , below 50000 cm" . Indeed, as shown b y G e t o f f ( 3 7 ) , Fe * c a t i o n s c a n reduce w a t e r m o l e c u l e s when i r r a d i a t e d b y l i g h t a t 254 nm (40,000 cm" ) 1

2

1

2

3

Fe * + H 0 + hv - Fe *0H' + 1/2H 2

2

I n t h e p r e c a m b r i a n ( o r on p r e s e n t day M a r s ) , t h e absence, o f an ozone l a y e r a l l o w e d s o l a r UV r a d i a t i o n w i t h e n e r g i e s as h i g h as -40,000 cm' (0.25 m i c r o n s ) . P h o t o r e d u c t i o n t r a n s i t i o n s v i a t h e Fe(3d) t o F e ( 4 s ) t r a n s i t i o n may have been v e r y s i g n i f i c a n t . The p h o t o c h e m i c a l o x i d a t i o n o f Fe *, and t h e p r e c i p i t a t i o n o f FeOOH, may be t h e o r i g i n o f t h e e x t e n s i v e p r e c a m b r i a n banded i r o n forma­ t i o n s (38-40). Moreover, t h e p h o t o o x i d a t i o n o f Fe * may have reduced C0 t o o r g a n i c molecules (37.41): 1

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

2

2

2

2

3

2Fe * + H 0 + C 0 - 2Fe * + HCOOH + 20H2

2

I t would be a w o r t h w h i l e experiment t o i n v e s t i g a t e t h e photoredox p r o p e r t i e s o f those Fe * b e a r i n g c l a y s ( e . g . , g l a u c o n i t e and f e r r o s a p o n i t e ) t h a t were abundant i n t h e p r e c a m b r i a n . 2

Areas f o r Future I n v e s t i g a t i o n The t h e o r e t i c a l r e s u l t s d e s c r i b e d h e r e g i v e o n l y a z e r o t h - o r d e r d e s c r i p t i o n o f the e l e c t r o n i c s t r u c t u r e s o f i r o n b e a r i n g c l a y m i n e r a l s . These r e s u l t s c o r r e l a t e w e l l , however, w i t h t h e e x p e r i ­ m e n t a l l y d e t e r m i n e d o p t i c a l s p e c t r a and p h o t o c h e m i c a l r e a c t i v i t i e s of t h e s e m i n e r a l s . S t i l l , we would l i k e t o go beyond the simple approach p r e s e n t e d h e r e and p e r f o r m m o l e c u l a r o r b i t a l c a l c u l a t i o n s ( u s i n g t h e Χα-Scattered wave o r D i s c r e t e V a r i a t i o n a l method) w h i c h a d d r e s s t h e e l e c t r o n i c s t r u c t u r e s o f much l a r g e r c l u s t e r s . Clus­ t e r s w h i c h accomodate s e v e r a l u n i t c e l l s o f t h e c r y s t a l would be of g r e a t i n t e r e s t s i n c e t h e r e s u l t s would be a v e r y c l o s e a p p r o x i ­ m a t i o n t o t h e f u l l band s t r u c t u r e o f t h e c r y s t a l . The r e s u l t s o f such c a l c u l a t i o n s may a l l o w us t o a d d r e s s s e v e r a l major problems: 1. What a r e t h e l o n g - r a n g e superexchange pathways w h i c h g i v e rise to t h e magnetic s t r u c t u r e s o f i r o n b e a r i n g p h y l l o s i l i c a t e s ? 2. What p r e v e n t s t h e r m a l l y a c t i v a t e d e l e c t r o n h o p p i n g I n mixed v a l e n t c l a y s ? What i s t h e n a t u r e o f t h e d-band s t r u c t u r e ? 3. When e l e c t r o n s a r e e x c i t e d from t h e 0(2p) band t o t h e Fe(3d) band, what k i n d o f o r b i t a l pathways may a l l o w h o l e s i n t h e 0 ( 2 p ) band t o m i g r a t e t o t h e s u r f a c e o r i n t e r l a y e r r e g i o n and f a c i l i t a t e e l e c t r o n t r a n s f e r processes? 4. Assuming l a r g e c l u s t e r s may approximate t h e band s t r u c t u r e o f the c r y s t a l , what energy i s r e q u i r e d t o e x c i t e e l e c t r o n s i n t o t h e F e ( 4 s ) c o n d u c t i o n band i n Fe * b e a r i n g c l a y s ? Can such e l e c t r o n s reduce o r g a n i c m o l e c u l e s adsorbed i n t h e s u r f a c e o r t r a p p e d i n t h e interlayer? 2

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

308

SPECTROSCOPIC CHARACTERIZATION OF MINERALS AND THEIR SURFACES

Literature Cited 1. Waite, T.D., in, "Geochemical Processes at Mineral Surfaces; ACS Symposium Series 323 , Davis, J.Α.; Hayes, K.F.,Eds". American Chemical Society: Washington DC, 1986, Chap. 20. 2. Stone, A.T., in, "Geochemical Processes at Mineral Surfaces, ACS Symposium Series 323, Davis, J.Α.; Hayes, K.F.,Eds."; American Chemical Society: Washington DC, 1986, Chap. 21. 3. Cairns-Smith, A.G.; Hartmann H. (eds.) " Clay Minerals and the Origin of Life"; Cambridge University Press: Cambridge, 1986. 4. Sherman, D.M.; Vergo, N. American Mineral. 1988, 73, 1346-1354. 5. Bonnin, D. These d'Etat, Universitie de Paris. 1981, 82 pp. 6. Besson, G.; Bookin, A.S.; Dainyak, L.G.; Rautureau, M.; Tsipursky, S.I.; Tchoubar, C.; Drits, B.A. J. Appl. Crystall. 1983, 16, 374-383. 7. Mering, J; Oberlin, A. Clays Clay Mineral., 1967, 27, 3-25. 8. Townsend, M.G.; Longworth, G.; Ross, C.A.M.; Provencher, R. Phys. Chem. Mineral. 1987, 15, 64-70. 9. Johnston, J.H.; Cardile, C.M. Clays Clay Mineral. 1985, 33, 21-30. 10. Daynyak, L.G.; Drits, V.A. Clays and Clay Mineral. 1987, 35, 363-372. 11. Cardile, C.M.; Johnston, J.H. Clays Clay Mineral. 1985 33, 295-300. 12. Goodman, B.A. Clays Clay Mineral. 1978, 26, 176-177. 13. Diamant, Α.; Pasternak, M.; Banin, A. Clays Clay Mineral. 1982, 30, 63-66. 14. Gangas, N.H.J.; van Wonterghem, J . ; Morup, S.; Koch, C.J.W. J. Phys. C. 1985 18, L1011-L1015. 15. Aronowitz S.; Coyne L.; Lawless, J.; Rishpon, J. Inorg. Chem., 1982, 21, 3589-93. 16. Slater, J.C. The Self-consistent Field for Molecules and Solids, Volume 4: Quantum Theory of Molecules and Solids: McGraw-Hill: New York, 1974. 17. Johnson, K.H. Adv. Quantum Chem. 1973, 7, 143-185. 18. Sherman, D.M. Phys. Chem. Mineral. 1985, 12, 161-175. 19. Chen C.J.; Shaked D.; Banin A. Clay Mineral., 1979, 14, 93-102. 20. Karickhoff, S.W.; Bailey, G.W. Clays Clay Mineral., 1973, 21, 59-70. 21. Lever, A.B.P. "Inorganic Electronic Spectroscopy"; Elsevier: Amsterdam, 1968; Chapter 7. 22. Griffith, W.S. "The theory of transition metal ions"; Cam­ bridge University Press: Cambridge, 1961. 23. Krebs, J.J.; Maisch, W.G. Phys. Rev. Β 1971, 4, 757-769. 24. Lohr, L.L. Coordination Chem. Rev., 1972, 8, 241-259. 25. Clark, R.N.; King. T.; Klejwa, M.; Swayze, G.; Vergo, N. J., Geophys. Res. (submitted). 26. Sherman, D.M. Phys. Chem. Mineral., 1985, 12, 311-314. 27. Strehlow, W.H.; Cook. E.L. J. Phys. Chem. Ref. Data 1973, 2, 163.

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

15. SHERMAN

Fe Sites in Clay Minerals

Downloaded by UNIV LAVAL on July 9, 2014 | http://pubs.acs.org Publication Date: November 29, 1990 | doi: 10.1021/bk-1990-0415.ch015

28.

309

Anderson, W.L.; Stucki, J.W. Dev. Sedimentology 1979, 27, 75-84. 29. Lear, P.R.; Stucki, J.W. Clays Clay Mineral. 1987, 35, 373-378. 30. McConchie, D.M.; Ward, J.B.; McCann, V.H.; Lewis, D.W. Clays Clay Mineral., 1979, 27, 339-48. 31. Coey, J.M.D.; Mourkarika, A.; McDonagh, C.M. Solid State Commun., 1982, 41, 797. 32. Sherman, D.M. Phys. Chem. Mineral. 1987, 14, 364-367. 33. Valley, S.L. (Ed.), "Handbook of geophysics and space environments"; Air Force Cambridge Research Laboratories, 1965, 649 p. 34. Marusak, L.A.; Messier, R.; White, W.B. J. Phys. Chem. Solids, 1980, 41, 981-984. 35. Dare-Edwards, M.P.; Goodenough, J.B.; Hamnett, Α.; Trevelllick, P.R., J. Chem. Soc., Faraday Trans., 1983, 79, 2027-2041. 36. Faust, B.C.; Hoffmann, M.R., Environ. Sci. Technol., 1986, 20, 943-948. 37. Getoff, Ν., Z. Naturforsch. Teil Β., 1962, 17, 87; 1963, 18, 169. 38. Cairns-Smith, A.G., Nature (London), 1978, 276, 807. 39. Braterman, P.S., Cairns-Smith, A.G.; Sloper, R.W., Nature (London), 1983, 303, 163. 40. Braterman, P.S., Cairns-Smith, A.G.; Sloper, R.W.; Truscott, T.G.; Craw, Μ., J.Chem. Soc. Dalton Trans., 1984, 1441-1445. 41. Bauer, M.E. Chem. Geol., 1978, 22, 189-206. RECEIVED May 18, 1989

In Spectroscopic Characterization of Minerals and Their Surfaces; Coyne, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.