1 Dehydration of Aqueous Ethanol Mixtures
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
by Extractive Distillation C. BLACK and D. E. DITSLER Shell Development Co., Emeryville, Calif. 94608
Although nonidealities in vapor and liquid phases complicate the separation of components from mixtures, a knowledge of these nonidealities can be applied to design an extractive distillation step. Ethylene glycol is added to an aqueous ethanol mixture to produce the overhead separation of ethanol from water. Methods published earlier by one of the authors are applied to calculate phase equilibria in a computer calculation of the separation. The extractive distillation results are tabulated, represented graphically, and discussed to illustrate extractive distillation as a method for dehydrating aqueous ethanol mixtures. The results are compared with corresponding results obtained by azeotropic distillation with n-pentane as entrainer. They show extractive distillation with ethylene glycol is more expensive than azeotropic distillation with n-pentane.
C e p a r a t i n g c o m p o n e n t s f r o m m i x t u r e s is c o m p l i c a t e d b y n o n i d e a l i t i e s i n ^
the l i q u i d a n d v a p o r phases. N e v e r t h e l e s s , a k n o w l e d g e o f t h e factors
c o n t r i b u t i n g to the n o n i d e a l i t y of the m i x t u r e s h e l p s to p r o d u c e a j u d i c i o u s d e s i g n for the s e p a r a t i o n step. S o m e t i m e s c o m p o n e n t s are a d d e d t o the m i x t u r e to alter the n o n i d e a l i t y b y c h a n g i n g the m o l e c u l a r e n v i r o n m e n t . E x t r a c t i v e d i s t i l l a t i o n is u s e d because the c o m p o n e n t s are d i s t r i b u t e d differently b e t w e e n c o n t a c t i n g l i q u i d a n d v a p o r phases i n e q u i l i b r i u m w h e n a h i g h - b o i l i n g n o n i d e a l c o m p o n e n t is a d d e d to the m i x t u r e .
The
a d d e d c o m p o n e n t is i n t r o d u c e d i n the u p p e r p a r t of a d i s t i l l a t i o n c o l u m n a b o v e the f e e d a n d r e m a i n s i n a p p r e c i a b l e c o n c e n t r a t i o n i n the l i q u i d o n a l l of the l o w e r trays.
It is r e m o v e d f r o m the c o l u m n w i t h one of the
c o m p o n e n t s b e i n g separated as t h e bottoms p r o d u c t . A l t h o u g h a n o n i d e a l c o m p o n e n t is also i n t r o d u c e d for a z e o t r o p i c d i s t i l l a t i o n , t h e a d d e d c o m 1 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2
E X T R A C T I V E
Table I.
A N D
DISTILLATION
Constants for Calculating Imperfection-Pressure Coefficients E'
m
X
0.089 0.089 0.026
4.75 4.75 4.75
75.9 79.2 24.7
P ,Atm. c
Ethanol Ethylene glycol Water β
A Z E O T R O P I C
516.3 761.11 647.00
63.1 84.04 218.0
Α11 δα coefficients have been taken equal to zero.
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
p o n e n t is, i n that case, m o r e easily v o l a t i l i z e d f r o m t h e m i x t u r e t h a n one of the c o m p o n e n t s b e i n g separated. C o n s e q u e n t l y i t is r e m o v e d o v e r h e a d from the column. I n either case the r e l a t i v e d i s t r i b u t i o n s b e t w e e n t h e s e p a r a b l e l i q u i d a n d v a p o r phases are p r e d i c t e d f r o m t h e p u r e c o m p o n e n t v a p o r pressures Pi°,
l i q u i d p h a s e a c t i v i t y coefficients, γ/s, a n d i m p e r f e c t i o n - p r e s s u r e co
efficients 0/s.
U s i n g these three q u a n t i t i e s , the r e l a t i v e d i s t r i b u t i o n is
expressed as y*Pi°fl,°
m
E x t r a c t i v e d i s t i l l a t i o n has b e e n extensively u s e d for n e a r l y decades i n l a b o r a t o r y , p i l o t p l a n t , a n d c o m m e r c i a l p l a n t operations.
three Cal
c u l a t i o n or p r e d i c t i o n of p h a s e e q u i l i b r i a for s u c h separations has often b e e n d i s c u s s e d ( I , 2, 3 ) .
S o m e h a v e d i s c u s s e d t h e selection of solvents
f o r e x t r a c t i v e d i s t i l l a t i o n (4, 5 ) .
O t h e r s h a v e d i s c u s s e d its r e c e n t a p p l i
c a t i o n t o p a r t i c u l a r separations (6, 7, 8 ) .
A c o m p a r i s o n of
extractive
d i s t i l l a t i o n , as a s e p a r a t i o n m e t h o d , w i t h a z e o t r o p i c d i s t i l l a t i o n a n d w i t h l i q u i d - l i q u i d e x t r a c t i o n has r e c e n t l y b e e n d i s c u s s e d briefly b y G e r s t e r
(9).
T h e use of d i g i t a l c o m p u t e r s to c a r r y o u t c o m p l e t e c a l c u l a t i o n s i n the d e s i g n of s e p a r a t i o n processes has b e e n the g o a l of m a n y . T o d o this effectively, s u i t a b l e m e t h o d s for p h a s e e q u i l i b r i a a n d tray-to-tray d i s t i l l a t i o n c a l c u l a t i o n s are r e q u i r e d . R e s u l t s c a l c u l a t e d b y t h e a p p l i c a t i o n of s u c h m e t h o d s to d e h y d r a t e a q u e o u s e t h a n o l m i x t u r e s u s i n g e t h y l ene g l y c o l as the extractive d i s t i l l a t i o n solvent is d i s c u s s e d b e l o w .
A
b r i e f r e v i e w of t h e m e t h o d s u s e d for p h a s e e q u i l i b r i a a n d e n t h a l p i e s is f o l l o w e d b y a d i s c u s s i o n of t h e results f r o m d i s t i l l a t i o n c a l c u l a t i o n s . T h e s e are c o m p a r e d for extractive d i s t i l l a t i o n w i t h c o r r e s p o n d i n g results o b t a i n e d b y a z e o t r o p i c d i s t i l l a t i o n w i t h n-pentane. Phase
Equilibria
T h e i m p o r t a n t q u a n t i t i e s n e e d e d to represent the n o n i d e a l p h a s e e q u i l i b r i a for extractive d i s t i l l a t i o n are v a p o r pressures Ρ*°, l i q u i d - p h a s e a c t i v i t y coefficients
y% a n d i m p e r f e c t i o n - p r e s s u r e
coefficients
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
ft.
The
1.
B L A C K
A N D
Dehydration
DITSLER
Table II.
of Ethanol
Constants for Vapor Pressure Equations A
Ethanol Ethylene glycol Water a
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
5
3
Mixtures
B
8.16280 7.71147 20.844*
Antoine equations. Log Ρ = A - BIT -
0
C 1623.22 1816.34 2817.4*
228.98 178.603 4.04859*
C log Τ ; P, mm Hg, T , °K.
c r i t i c a l constants a n d other coefficients for c a l c u l a t i n g the i m p e r f e c t i o n pressure coefficients (1)
are g i v e n i n T a b l e I. E q u a t i o n s a n d coefficients
for c a l c u l a t i n g v a p o r pressures are g i v e n i n T a b l e II.
As binary vapor
i n t e r a c t i o n s h a v e b e e n neglected, the values for t h e δ*, coefficients
have
a l l b e e n t a k e n e q u a l to z e r o as s h o w n i n T a b l e I. T h e M o d i f i e d v a n L a a r equations ( I ) t h e l i q u i d phase a c t i v i t y coefficients. are g i v e n i n T a b l e III.
h a v e b e e n u s e d to c a l c u l a t e
Coefficients at three
temperatures
T h e s e are u s e d b y t h e c o m p u t e r to c a l c u l a t e ac
t i v i t y coefficients at a n y c o m p o s i t i o n a n d t e m p e r a t u r e i n the d i s t i l l a t i o n column. E n t h a l p i e s for s a t u r a t e d l i q u i d s a n d v a p o r s are g i v e n i n T a b l e for the p u r e c o m p o n e n t s r e f e r r e d to z e r o for t h e l i q u i d s at 32 ° F .
IV
Vapor
m i x t u r e s are c a l c u l a t e d a s s u m i n g z e r o heat of m i x i n g . L i q u i d e n t h a l p i e s for the m i x t u r e s are c a l c u l a t e d to i n c l u d e t h e i n t e g r a l heat of m i x i n g , g i v e n a c c o r d i n g to
(2)
H^^^iU), w h e r e t h e differential heat of m i x i n g (Li)
x
(L«). = Table III.
is g i v e n as
2.303#(Δ l o g γ < ) . / Δ ( 1 / Τ )
(3)
Modified van Laar Coefficients for the System Ethanol-Ethylene G l y c o l - W a t e r
Binary % Ethanol-ethylene glycol Ethanol-water Ethylene gly col-water Ethanol-ethylene glycol Ethanol-water E t h y l e n e glycol—water Ethanol-ethylene glycol Ethanol-water Ethylene glycol-water
Ai,
A»
c«
0.276000 0.728000 0.001680 0.251000 0.74600 0.00142 0.23000 0.76050 0.00130
0.259279 0.407000 0.001000 0.23579 0.40080 0.00081 0.21607 0.39250 0.000714
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
t,°C 75.0 75.0 75.0 87.8 87.8 87.8 100.0 100.0 100.0
4
E X T R A C T I V E
Table IV.
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
Ethylene
glycol
Water
Distillation
A Z E O T R O P I C
DISTILLATION
Enthalpies for Liquid and Vapor h (liquid) Btu/lb. mole
t °F Ethanol
A N D
H ( vapor) Btu/lb. mole
32 100 200 300
0.00 2506.1 6034.9 10365.3
19800.0 20937.9 22573.3 23969.2
100 200 300 400
3637.0 7535.0 11600.0 15889.0
30724.0 32828.0 35193.0 37700.0
100 200 300
1225.0 3027.0 4820.0
19916.0 20649.0 21290.0
Calculations
C a l c u l a t i o n s for t h e extractive d i s t i l l a t i o n o f aqueous e t h a n o l m i x tures c o n t a i n i n g 8 5 . 6 4 % m e t h a n o l h a v e b e e n c a r r i e d o u t w i t h t h e a i d of a U N I V A C 1108 c o m p u t e r .
T h e c o m p u t e r p r o g r a m calculates a l l p h a s e
e q u i l i b r i a a n d tray-to-tray m a t e r i a l a n d heat balances for e a c h c o m p o n e n t
250
,71.43%
-
I Ο
ζ < χ ι— LU Ζ eg LU
200
S/F = 2.5 (MOLE)
150 y
75%
100 h•
^^77.78%
50 -
i
: .0 Figure I . 99%
1 1.8
— — — r
ι , 2.6 R/F (MOLE BASIS)
— 80% 1 3.4
Effects on product purity of changing solvent-feed feea ratios
and reflux-
recovery of ethanol in the extractive distilfotion with ethylene glycol at 14.7 psia
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
1.
B L A C K
A N D
2 Figure 2.
DITSLER
Dehydration
of Ethanol
5
Mixtures
3 4 ETHYLENE GLYCOL/ΕΤΗANOL (MOLE BASIS) Effect of solvent-feed ratio on product purity in the distillation of aqueous ethanol with ethylene glycol
5 extractive
i n the feed. F o r fixed e t h y l e n e - g l y c o l f e e d ratios c a l c u l a t i o n s w e r e m a d e for a n e t h a n o l r e c o v e r y of 9 9 % m i n the o v e r h e a d at f o u r different r e f l u x f e e d ratios i n the r a n g e 1-θ
+
m o l e basis. E a c h series o f c a l c u l a t i o n s w a s
m a d e at the constant s o l v e n t - f e e d
ratios o f 2.5, 3.0, 3.5, a n d 4.0 m o l e
basis. T h e pressure d r o p p e r tray w a s a s s u m e d t o b e 0.1 p s i w i t h the r e b o i l e r pressure set a t 14.7 p s i a .
A drop o f two psi from top tray t o
condenser w a s a s s u m e d for t h e c a l c u l a t i o n . T h e reflux t e m p e r a t u r e w a s set at 104.0°F. A t o t a l of 46 trays w i t h solvent a d d e d o n 43 a n d f e e d at t r a y 2 2 w a s u s e d for the c a l c u l a t i o n s . T h e f e e d a n d t h e solvent w e r e i n t r o d u c e d as l i q u i d at 110° a n d 173°F, respectively. T h e s e results h a v e b e e n u s e d to s h o w the effects o f c h a n g i n g r e f l u x f e e d r a t i o at fixed values of the s o l v e n t - f e e d ratio. I n F i g u r e 1 the w a t e r i n t h e e t h a n o l p r o d u c t is p l o t t e d vs. t h e r e f l u x - f e e d r a t i o , b o t h expressed o n a m o l e basis. F o u r curves are s h o w n , e a c h r e p r e s e n t i n g a different solvent-feed
ratio. E a c h c u r v e goes t h r o u g h a m i n i m u m as the r e f l u x -
f e e d r a t i o changes. pronounced.
A t low solvent-feed
A t high solvent-feed
ratios t h e m i n i m u m i s m o r e
ratios i t i s s h a l l o w , s h o w i n g
only
s m a l l changes as t h e r e f l u x - f e e d varies f r o m 1.4-1.8, m o l e basis. A t the r e f l u x - f e e d
r a t i o o f 1.5545 t h e w a t e r
content o f the
top
p r o d u c t , e t h a n o l , is near the m i n i m u m for e a c h s o l v e n t - f e e d r a t i o s h o w n . F o r this r e f l u x - f e e d r a t i o , t h e w a t e r content o f the t o p p r o d u c t has b e e n p l o t t e d vs. the ethylene g l y c o l - e t h a n o l ratios i n F i g u r e 2.
This curve
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
24 REBOILER 20
16 Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
CONDENSER 12 8
2
1
4 ETHYLENE GLYCOL/ETHANOL RATIO, MOLES 3
Reboiler and condenser heat loads vs. solvent-feed
Figure 3. 99%
ratio
recovery of ethanol, feed rate 242.02 moles ethanol/hour reflux/feed = 1.5545 mole basis
defines the w a t e r c o n t e n t o f the e t h a n o l p r o d u c t as a f u n c t i o n o f t h e solvent-ethanol ratio. If the f e e d rate is fixed at 242.02 moles o f e t h a n o l p e r h o u r a n d t h e heat loads for r e b o i l e r a n d condenser are c a l c u l a t e d , t h e effect o f c h a n g i n g s o l v e n t - e t h a n o l r a t i o c a n b e o b t a i n e d . T h e s e results are s h o w n i n F i g u r e 3.
Since ethanol is recovered
a t 9 9 % m o l e i n e a c h case a n d t h e
Table V . Extractive Distillation Column Ethanol-Ethylene G l y c o l - W a t e r at 14.7 Psia Material
Components
Feed/Moles
top
e
Balance
b
Solvent/Moles
Top Product Moles
Bottom Product Moles
Ethanol Ethylene glycol Water
0.8564 0.0000 0.1436
3.5000
0.856315 0.000001 0.000014
0.000085 3.499999 0.143586
Totals
1.000
3.5000
0.856330
3.643670
"Reboiler load 73,969 Btu/unit time, top load 46,433 Btu/unit time. * Liquid feed at 110°F on tray 22, liquid solvent at 173°F on tray 43.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
Dehydration
DITSLER
of Ethanol
7
Mixtures
Table VI. Extractive Distillation Column Ethanol-Ethylene G l y c o l - W a t e r Temperature,
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
Tray
No.
Condenser 46 44 43 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1
Composition,
and Volatility
Profiles
t, °F
Ethanol in Vapor, Mole Fraction
Water in Liquid, Mole Fraction
Ρ psia
a W/E
104.0 156.9 158.7 195.3 195.8 196.6 197.5 198.4 199.2 200.0 200.9 201.7 202.7 203.7 194.8 195.5 196.3 197.0 197.7 198.5 199.5 202.0 218.5 246.2 297.9 362.1
0.999983 0.999984 0.999793 0.987189 0.987120 0.98696 0.98677 0.98648 0.98601 0.98517 0.98356 0.98037 0.97395 0.96087 0.93873 0.93854 0.93827 0.93772 0.93615 0.93079 0.91132 0.83701 0.53735 0.07283 0.00349 0.00054
0.000016 0.000015 0.000013 0.000011 0.000019 0.00005 0.00011 0.00024 0.00051 0.00107 0.00220 0.00454 0.00934 0.01926 0.04539 0.04546 0.04561 0.04600 0.04731 0.05201 0.06951 0.13805 0.35352 0.46407 0.19499 0.03941
8.20 10.20 10.4 10.5 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.6
— 1.11 1.09 0.485 0.486 0.488 0.489 0.490 0.492 0.493 0.493 0.492 0.489 0.482 0.532 0.533 0.534 0.535 0.535 0.532 0.516 0.452 0.274 0.208 0.311 0.428
p r o d u c t is a l w a y s h i g h p u r i t y e t h a n o l , the t o p l o a d for the
condenser
r e m a i n s n e a r l y constant. T h e r e b o i l e r l o a d , h o w e v e r , reflects the c h a n g e as t h e s o l v e n t - e t h a n o l r a t i o varies. C h a n g i n g the r e c o v e r y of e t h a n o l f r o m 9 9 - 9 9 . 9 9 % m p r o d u c e s o n l y m i n o r increases i n t h e heat loads.
A s u m m a r y of the c o l u m n m a t e r i a l
b a l a n c e for one m o l e of feed is s h o w n i n T a b l e V w h e n t h e r a t i o is 3.5 m o l e basis.
solvent-feed
T h i s c a l c u l a t i o n w a s m a d e for a r e c o v e r y
of
9 9 . 9 9 % m e t h a n o l u s i n g 46 e q u i l i b r i u m trays w i t h t h e solvent o n 43 a n d t h e f e e d o n 22. T h e r e f l u x - f e e d r a t i o w a s 1.5537 m o l e basis. T h e corre s p o n d i n g d a t a for t e m p e r a t u r e , c o m p o s i t i o n , a n d v o l a t i l i t y profiles summarized in Table VI.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
are
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
8
E X T R A C T I V E
Figure 4. 99.99%
Temperature
A N D
A Z E O T R O P I C
DISTILLATION
profile in extractive distillation of aqueous
recovery of ethanol, ethylene glycol/ethanol feed 1.5537 moles
ratio =
ethanol
4.08688 moles, reflux-
NUMBER OF TRAYS (EQUIL.) Figure
5.
EG/Ε
Volatility =
profiles in the extractive distillation ethanol with ethylene glycol
4.08688, R/F
=
of
aqueous
1.5537 moles, 99.99% recovery, ethanol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
DITSLER
Dehydration
of Ethanol
9
Mixtures
T h e t e m p e r a t u r e profile for the extractive d i s t i l l a t i o n results of T a b l e V I has b e e n p l o t t e d i n F i g u r e 4.
T h e h i g h solvent i n p u t t e m p e r a t u r e
a n d the l o w f e e d i n p u t t e m p e r a t u r e cause s l i g h t l y h i g h e r
temperatures
i n m u c h m o r e of the r e c t i f y i n g section t h a n i n the u p p e r p a r t of
the
s t r i p p i n g section. T h e c o r r e s p o n d i n g v o l a t i l i t y profile for t h e c o l u m n is s h o w n i n F i g u r e 5. T h e i n d i v i d u a l Κ values are also s h o w n there. A s t h e t e m p e r a t u r e increases u p o n a p p r o a c h i n g t h e r e b o i l e r , the r e l a t i v e v o l a t i l i t y for w a t e r w i t h respect to e t h a n o l w o u l d decrease i f t h e
solvent
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
c o n c e n t r a t i o n r e m a i n e d fixed. H o w e v e r t h e ethylene g l y c o l c o n c e n t r a t i o n i n the l i q u i d increases, t e n d i n g t o m a k e t h e r e l a t i v e v o l a t i l i t y increase. These
two
opposing
influences m a k e the r e l a t i v e v o l a t i l i t y c u r v e
go
t h r o u g h a m i n i m u m n e a r t r a y n u m b e r four, as seen i n F i g u r e 5.
MOLE FRACTION Figure EG/Ε
6. =
Composition profiles in the extractive distillation aqueous ethanol with ethylene glycol 4.08688 moles, R/F
of
= 1.5537 moles, 99.99% recovery ethanol
C o m p o s i t i o n profiles for the same extractive d i s t i l l a t i o n c o l u m n are s h o w n i n F i g u r e 6. T h e w a t e r c o n c e n t r a t i o n i n the l i q u i d goes t h r o u g h a p r o n o u n c e d m a x i m u m at a b o u t t r a y n u m b e r f o u r (see
T a b l e V I ) , cor
r e s p o n d i n g to t h e m i n i m u m i n the relative v o l a t i l i t y of w a t e r w i t h respect to e t h a n o l . I n this r e g i o n the e t h a n o l c o n c e n t r a t i o n i n t h e v a p o r increases r a p i d l y , c h a n g i n g f r o m less t h a n 2 % at tray n u m b e r three to m o r e t h a n 50%
at t r a y n u m b e r six. T h i s r a p i d increase c o n t i n u e s to a b o u t t r a y
n u m b e r t e n w h e r e the c o n c e n t r a t i o n of e t h a n o l i n t h e v a p o r is a b o u t
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10
E X T R A C T I V E
91 %m.
A N D
A Z E O T R O P I C
DISTILLATION
W a t e r d r o p s o u t of the v a p o r i n the r e c t i f y i n g section b e t w e e n
the f e e d t r a y a n d the solvent i n p u t t r a y w h i l e e t h a n o l c o n t i n u e s
to
concentrate. A b o v e the solvent i n l e t the ethylene g l y c o l d r o p s out r a p i d l y , so i n three e q u i l i b r i u m trays it is r e d u c e d f r o m a b o u t 1.3% m to less t h a n 2 p p m . T h e w a t e r content of the t o p p r o d u c t , e t h a n o l , is a b o u t 16 p p m o n a m o l e basis, as c a l c u l a t e d f r o m the results of T a b l e V . T h e b o t t o m p r o d u c t f r o m the extractive d i s t i l l a t i o n c o l u m n is aqueous Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
ethylene g l y c o l w i t h 3 . 9 4 % m water.
T h i s is f e d to a solvent r e c o v e r y
c o l u m n w h e r e w a t e r is s t r i p p e d f r o m the e t h y l e n e g l y c o l w h i c h is t h e n r e c y c l e d as solvent to the extractive d i s t i l l a t i o n c o l u m n . C a l c u l a t e d results for the solvent r e c o v e r y c o l u m n w i t h n i n e t o t a l trays h a v i n g the f e e d i n l e t o n tray five are g i v e n i n T a b l e V I I .
T h e re
b o i l e r pressure has b e e n t a k e n as 14.7 p s i a . T h e pressure d r o p p e r tray has b e e n set at 0.09 p s i . A d r o p of 1.7 p s i f r o m t h e t o p tray to the c o n Table VII. Solvent Recovery Column Ethanol-Ethylene G l y c o l - W a t e r Temperature
Tray
No.
10 C o n d . 9 Top 8 7 6 5 Feed 4 3 2 1 Reboiler
t,
°F
and Composition
Water in Vapor, Mole Fraction
Ethylene Glycol in Liquid, Mole Fraction
Ρ psia
a EG/W
0.99936 0.99936 0.99830 0.93928 0.42680 0.15285 0.04343 0.01103 0.00265 0.00056
.00004 .00176 .06686 .64743 .95536 .98755 .99763 .99919 .99981 .99996
12.28 13.98 14.07 14.16 14.25 14.34 14.43 14.52 14.61 14.70
.0216 .0224 .0352 .0627 .0699 .0723 .0731 .0734 .0736
104.0 209.5 213.3 264.6 356.8 379.6 387.6 390.2 391.1 391.7
Material Components
Profiles
FeedMoles
a
Balance
Top Product
Moles
Bottom
Product
Ethanol Ethylene glycol Water
0.000085 3.499999 0.143586
.000085 .000006 .143442
.000000 3.499993 0.000144
Totals
3.643670
.143533
3.500137
R e b o i l e r l o a d 3,3015 B t u / U n i t Top load 2,8709 B t u / U n i t
—
Moles
Time Time
Based on one mole of feed to the extractive distillation column which precedes the solvent recovery column. a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
1.
B L A C K
A N D
Figure
DITSLER
7.
Dehydration
Temperature
of Ethanol
11
Mixtures
profile for solvent recovery
column
Stripping water from aqueous ethylene glycol
denser has b e e n a s s u m e d . T h e reflux t e m p e r a t u r e w a s set at 104° F a n d t h e r e f l u x - f e e d r a t i o at 1.33491, m o l e basis. T h e f e e d t e m p e r a t u r e w a s 358 ° F , a f e w degrees less t h a n the b o t t o m t e m p e r a t u r e of the extractive d i s t i l l a t i o n c o l u m n . M a t e r i a l b a l a n c e a n d c o l u m n profiles are g i v e n i n T a b l e V I I for the r e c o v e r y c o l u m n . T h e t e m p e r a t u r e profile for this c o l u m n is s h o w n i n F i g u r e 7.
The
c o m p o s i t i o n profiles are p l o t t e d i n F i g u r e 8. T h e s e s h o w the e x p e c t e d trends, w a t e r i n the v a p o r i n c r e a s i n g a n d e t h y l e n e g l y c o l i n the l i q u i d d e c r e a s i n g as one proceeds f r o m the r e b o i l e r to t h e t o p of the c o l u m n . W i t h t h e n u m b e r of trays s h o w n a n d the r e f l u x - f e e d r a t i o g i v e n , e t h y l e n e g l y c o l i n the t o p p r o d u c t ( w a t e r ) is r e d u c e d to a b o u t 42 p p m , m o l e basis. E t h a n o l i n the w a t e r p r o d u c t is a b o u t 0 . 0 6 % m . R e d u c i n g e t h y l e n e g l y c o l i n the w a t e r p r o d u c t to a s i g n i f i c a n t l y l o w e r v a l u e r e q u i r e s o n l y the a d d i t i o n of one or m o r e r e c t i f y i n g trays i n t h e recovery
c o l u m n . A n increase i n the r e f l u x - f e e d
r a t i o w i l l d o as a n
alternate m e t h o d , b u t to c h a n g e t h e e t h a n o l i n the w a t e r p r o d u c t , the extractive d i s t i l l a t i o n c o l u m n w o u l d h a v e to b e o p e r a t e d for h i g h e r or l o w e r e t h a n o l r e c o v e r y t h a n the 9 9 . 9 9 % m v a l u e . T h i s c a n b e d o n e w i t h o u t difficulty. T h e b o t t o m p r o d u c t f r o m the solvent r e c o v e r y c o l u m n is e t h y l e n e g l y c o l w i t h a b o u t 41 p p m of w a t e r , m o l e basis. B y c h a n g i n g the n u m b e r of s t r i p p i n g trays i n the solvent r e c o v e r y c o l u m n , this w a t e r c o n t e n t c a n r e a d i l y be d e c r e a s e d or i n c r e a s e d .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
I f t h e t o p p r o d u c t ( w a t e r ) f r o m t h e solvent r e c o v e r y c o l u m n is to be discarded, the two distillation columns w o u l d be operated to reduce e t h a n o l a n d e t h y l e n e g l y c o l to l o w c o n c e n t r a t i o n s , as i l l u s t r a t e d i n the c a l c u l a t i o n s s h o w n here.
H o w e v e r , w h e r e the o v e r a l l p l a n t s c h e m e is
s u c h t h a t t h e w a t e r p r o d u c t m i g h t b e r e c y c l e d a n d used—e.g>, as solvent to a n a q u e o u s extractive d i s t i l l a t i o n , i t m i g h t u n d e r some c o n d i t i o n s b e m o r e e c o n o m i c a l to leave m o r e e t h a n o l i n the w a t e r p r o d u c t . T h e e t h a n o l
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
w o u l d b e r e c o v e r e d i n the series of s e p a r a t i o n steps w h i c h f o l l o w i n the flow
scheme. W a t e r m i g h t b e rejected at a m o r e s u i t a b l e p o i n t i n the
flow s c h e m e t h a n f r o m the t o p of the solvent r e c o v e r y c o l u m n . T h e best o p e r a t i n g c o n d i t i o n s c a n b e d e t e r m i n e d o n l y w h e n the e n t i r e p l a n t
flow
scheme is k n o w n .
Comparison of Extractive
with Azeotropic
Distillation
A l t h o u g h e t h a n o l is o b t a i n e d as a t o p p r o d u c t f r o m a n extractive d i s t i l l a t i o n w i t h e t h y l e n e g l y c o l , it is o b t a i n e d as a b o t t o m p r o d u c t f r o m a n a z e o t r o p i c d i s t i l l a t i o n c o l u m n u s i n g a n entraîner s u c h as n-pentane. B a s e d o n a n e t h a n o l rate of 242.02 moles p e r h o u r , a r o u g h c o m p a r i s o n w i l l b e m a d e of the t w o s e p a r a t i o n m e t h o d s .
CONDENSER 10τ
1
MOLE FRACTION Figure
8.
Composition
profiles for solvent recovery
column
Stripping water from aqueous ethylene glycol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
DITSLER
Table VIII.
Dehydration
Downloaded by GRAND VALLEY STATE UNIV on November 14, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch001
Distillation,
14.7
Ethanol psia
(85.64%m Azeotropic
13
Mixtures
Comparing Extractive and Azeotropic
Feed: Aqueous Extractive
of Ethanol
Distillation
Ethanol) Distillation,
50 psia
S o l v e n t = ethylene g l y c o l M o l e s s o l v e n t - e t h a n o l = 4.08688 R e f l u x - f e e d r a t i o = 1.55369 46 T r a y s t o t a l i n e x t r a c t i v e d i s t . c o l . S o l v e n t o n t r a y 43 F e e d on t r a y 22 R e b o i l e r l o a d = 20.9 m i l l i o n Btu/hour T o p l o a d = 13.12 m i l l i o n Btu/hour T o w e r d i a m e t e r = 5.3 feet Ethanol product: W a t e r 16 p p m (mole basis) S o l v e n t 1.2 p p m (mole basis) E t h a n o l recovery f r o m feed = 99.99%
Entraîner = n-pentane Moles n-pentane-ethanol =
S o l v e n t recovery c o l u m n 9 T r a y s , R / F = 1.33491 (mole) R e f l u x on t r a y 9 Feed on t r a y 5 R e b o i l e r l o a d = 9.33 m i l l i o n Btu/hour T o p l o a d = 8.11 m i l l i o n Btu/hour T o w e r d i a m e t e r = 4.1 feet
Stripping column
T o t a l heat to reboilers = 30.23 million Btu/hour T o t a l t o p loads = 21.23 m i l l i o n Btu/hour
T o t a l heat t o reboilers < 13 m i l l i o n Btu/hour T o t a l t o p loads < 14 m i l l i o n Btu/hour
e
e
3.214
18 T r a y s t o t a l i n azeotropic dist. c o l . Entraîner o n t r a y 18 F e e d o n t r a y 16 R e b o i l e r l o a d = 10.7 m i l l i o n Btu/hour C o n d e n s e r l o a d — 11.33 m i l l i o n Btu/hour T o w e r d i a m e t e r < 5 feet Ethanol product: W a t e r < 3 p p m ( m o l e basis) n - P e n t a n e < 1 p p m (mole basis) E t h a n o l r e c o v e r y f r o m feed >99.99% β
Reboiler load