Deletion of Calponin 2 in Mouse Fibroblasts Increases Myosin II

Oct 13, 2016 - ... Wayne State University School of Medicine, Detroit, Michigan 48201, ... of Orthopedic Surgery and Bioengineering, University of Pit...
1 downloads 0 Views 24MB Size
Subscriber access provided by CORNELL UNIVERSITY LIBRARY

Article

Deletion of calponin 2 in mouse fibroblasts increases myosin II-dependent cell traction force M. Moazzem Hossain, Guangyi Zhao, Moon-Sook Woo, James H-C Wang, and Jian-Ping Jin Biochemistry, Just Accepted Manuscript • DOI: 10.1021/acs.biochem.6b00856 • Publication Date (Web): 13 Oct 2016 Downloaded from http://pubs.acs.org on October 15, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Biochemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

1  

Deletion  of  calponin  2  in  mouse  fibroblasts  increases   myosin  II-­dependent  cell  traction  force     M  Moazzem  Hossain†,  Guangyi  Zhao‡,  Moon-­Sook  Woo†,  James  H-­C.  Wang‡,     Jian-­Ping  Jin*,†     †



Department  of  Physiology,  Wayne  State  University  School  of  Medicine,  Detroit,  MI  48201  

Departments  of  Orthopedic  Surgery  and  Bioengineering,  University  of  Pittsburg,  Pittsburg,     PA  15213  

 

Running  title:  Calponin  2  regulates  cell  traction  force     Funding   sources:   This   work   was   supported   in   part   by   National   Institutes   of   Health   grants   HL086720  and  AR048816  to  JPJ,  and  AR061395  and  AR065949  to  JHW.     *Correspondence   should   be   addressed   to:   Dr.   J.-­P.   Jin,   Department   of   Physiology,   Wayne   State   University   School   of   Medicine,   5374   Scott   Hall,   540   E.   Canfield,   Detroit,   MI   48201.   Tel:   313-­577-­1520  Fax:  313-­577-­5494,  Email:  [email protected]     Keywords:  Calponin  2,  cell  traction  force,  actin  cytoskeleton,  adhesion,  motility    

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 2 of 54

2  

Abbreviations  used:       CTF  -­  cell  traction  force   FBS  -­  fetal  bovine  serum   KO  -­  knockout   mAb  -­  monoclonal  antibodies   MEF  -­  mouse  embryonic  fibroblasts   NCM  -­net  contractile  moment   PBS  -­  phosphate  buffered  saline   RMST  -­  root  mean  square  traction   SDS-­PAGE  -­  SDS-­polyacrylamide  gel  electrophoresis   TBS  -­  Tris  buffered  saline   TSE  -­  total  strain  energy   WT  -­  wild-­type  

ACS Paragon Plus Environment

Page 3 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

3  

Abstract   Cell   traction   force   (CTF)   plays   a   critical   role   in   controlling   cell   shape,   enabling   cell   motility,   and   maintaining   cellular   homeostasis   in   many   biological   processes   such   as   angiogenesis,   development,   wound   healing,   and   cancer   metastasis.   Calponin   is   an   actin   filament-­associated   cytoskeletal   protein   in   smooth   muscles   and   multiple   types   of   non-­muscle   cells.   An   established   biochemical   function   of   calponin   is   the   inhibition   of   myosin   ATPase   in   smooth   muscle   cells.   Vertebrates   have   three   calponin   isoforms.   Among   them,   calponin   2   is   expressed   in   epithelial   cells,   endothelial   cells,   macrophages,   myoblasts   and   fibroblasts,   and   plays   a   role   in   regulating   cytoskeleton   activities   such   as   cell   adhesion,   migration   and   cytokinesis.   Knockout   (KO)   of   the   gene   encoding   calponin   2   (Cnn2)   in   mice   increased   cell   motility,   suggesting   a   function   of   calponin   2   in   modulating   CTF.   In   the   present   study,   we   examined   fibroblasts   isolated   from   Cnn2   KO   and   wild   type   (WT)   mice   using   CTF   microscopy.   Primary   mouse   fibroblasts   were   cultured   on   polyacrylamide   gel   substrates   embedded   with   fluorescent  beads  to  measure  root-­mean  square  traction,  total  strain  energy,  and  net  contractile   movement.  The  results  showed  that  calponin  2-­null  fibroblasts  exhibit  greater  traction  force  than   that  of  WT  cells.  Adherent  calponin  2-­null  fibroblasts  de-­adhered  faster  than  WT  control  during   mild   trypsin   treatment,   consistent   with   increased   CTF.   Blebbistatin,   an   inhibitor   of   myosin   II   ATPase,   is   more   effective   on   altering   cell   morphology   when   calponin   2   is   present   in   WT   fibroblasts   than   that   on   Cnn2   KO   cells,   indicating   their   additive   effects   on   inhibiting   myosin   motor  activity.  The  novel  finding  that  calponin  2  regulates  myosin-­dependent  CTF  in  non-­muscle   cells  demonstrates  a  mechanism  to  control  cell  motility-­based  functions.  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 4 of 54

4  

Introduction   Cell   motility   is   essential   in   life   activities.   During   movement,   cells   generate   force   in   the   cytoskeleton   through   interactions   with   the   extracellular   matrix.   Measurement   of   these   forces   enables   better   understanding   of   the   cellular   mechanisms   that   regulate   cell   motility.   The   actin   cytoskeleton   plays   a   central   role   in   myosin   ATPase-­generated   cellular   mechanical   force   and   motility-­based   functions,   including   cell   division,1   migration2   and   contraction.3   During   adhesion   and  migration,  cells  exert  a  cell  traction  force  (CTF)  that  is  essential  for  them  to  move  and  also   plays   critical   roles   in   controlling   cell   morphology4   and   maintaining   cellular   homeostasis   in   various   physiological   and   pathological   processes,   such   as   angiogenesis,   development,   wound   healing,  and  cancer  metastasis.5-­9     Cell   traction   force   microscopy   (CTFM)   is   a   technique   that  quantitatively   determines   the   traction   force   generated   by   individual   cells   or   a   group   of   cells10.  An   advantage   of   CTFM   is   to   directly   measure   the   traction   force   of   cells   to   indicate   the   “cause”   (the   traction   force)   of   cell   movement,   unlike   other   techniques   that   measure   the   “effect”   (cell   movement   itself)   of   cell   movement11.   A   commonly   employed   approach   for   CTFM   is   to   use   a   polyacrylamide   gel   substrate  embedded  with  fluorescent  beads,  which  has  an  elasticity  to  allow  measurement  of  a   wide  range  of  CTF  in  a  linear  and  elastic  manner12.  The  following  variables  are  measured:  the   root  mean  square  traction  (RMST)  calculated  as  the  mean  traction  exerted  by  whole  cells13;;  the   net   contractile   moment   (NCM)   that   is   a   coordinate   invariant   scalar   measure   of   the   cell’s   contractile  “strength”;;  and  the  total  strain  energy  (TSE)  transferred  from  the  cell  to  the  substrate   through  elastic  distortion,  which  is  another  measure  of  contractile  strength14.     Calponin  is  an  abundant  actin  filament-­associated  protein  first  found  in  smooth  muscle.15   In  vertebrates,  calponin  is  present  in  three  isoforms,  calponin  1,  2  and  3  (previously  named  h1,   h2   and   h3   (acidic)   calponins,   which   are   encoded   by   three   homologous   genes.16-­18   Tissue   distribution   of   the   three   calponin   isoforms   is   different.   Calponin   1   encoded   by   Cnn1   gene   is   specifically   expressed   in   differentiated   smooth   muscle   cells   with   a   function   in   modulating  

ACS Paragon Plus Environment

Page 5 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

5  

smooth   muscle   contractility.19   Calponin   2   encoded   by   Cnn2   gene   is   expressed   in   both   smooth   muscle20   and   many   non-­muscle   cell   types   including   epidermal   keratinocytes,21,22   lung   alveolar   cells,23   endothelial   cells,24,25   fibroblasts,26,27   myeloid   blood   cells27,   platelets,28   osteoclasts,29   myoblasts30  and  prostate  cancer  cells.31  Calponin  3  encoded  by  Cnn3  gene  is  found  in  smooth   muscle32  and  brain  with  a  connection  to  neuronal  regeneration  and  growth.33  It  also  expresses  in   lymphocytes,34  trophoblasts35  and  myoblasts36  with  a  potential  role  in  cell  fusion.     Based   on   studies   of   calponin   1,   an   established   biochemical   function   of   calponin   is   the   inhibition   of   myosin   ATPase   in   smooth   muscle   cells.19   Amino   acid   sequences   of   the   calponin   isoforms  are  largely  conserved,  indicating  their  conserved  functions.  Previous  studies  observed   that   calponin   2   stabilizes   actin   stress   fibers,22   inhibits   cytokinesis,37   and   slows   down   cell   migration.27   Calponin   binds   multiple   proteins,   including   F-­actin   and   tropomyosin10   that   are   key   components   of   the   cytoskeleton.   The   actin   filaments   play   central   functions   in   cell   motility   and   contractility,  whereas  tropomyosin  stabilizes  the  actin  filaments  in  non-­muscle  cells.38  Therefore,   calponin   may   participate   in   regulating   cell   adhesion   and   motility   by   inhibiting   myosin   motor-­ based  cytoskeleton  activities,  analogous  to  that  of  troponin  in  striated  muscles.16,19   The   function   of   calponin   in   regulating   cell   motility   is   a   new   area   of   research.   Cell   structure   and   motility   are   affected   by   mechanical   forces   exerted   from   the   surrounding   environment   including   stiffness   of   the   substrate   on   which   the   cell   adheres.39-­43   The   gene   expression  and  protein  turnover  of  calponin  2  are  both  regulated  by  mechanical  tension  in  the   cytoskeleton.22,23,30   The   effects   of   calponin   on   cell   adhesion   and   migration   involve   mechanical   interactions   with   the   surrounding   cells   and   tissue   matrix.   We   previously   demonstrated   that   knockout  (KO)  of  Cnn2  gene  in  mice  increased  the  motility  of  macrophages27  and  fibroblasts.31   Decreased   calponin   2   was   associated   with   weakened   substrate   adhesion   of   prostate   cancer   cells31  and  platelets.28  These  findings  suggest  a  role  of  calponin  2  in  regulating  CTF.     In  the  present  study,  we  investigated  this  hypothesis  by  using  primary  fibroblasts  isolated   from   Cnn2   KO   and   wild   type   (WT)   mice.   CTFM   studies   showed   that   deletion   of   calponin   2   in  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 6 of 54

6  

Cnn2  KO  cells  significantly  increased  CTF.  Calponin  2  and  blebbistatin,  an  inhibitor  of  myosin  II   ATPase,   exhibit   additive   effects.   The   results   demonstrate   that   calponin   2   is   an   inhibitor   of   myosin   II   motor-­generated   CTF,   indicating   a   novel   mechanism   to   regulate   cell   adhesion   and   motility-­based  functions.  

ACS Paragon Plus Environment

Page 7 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

7  

Materials  and  Methods   The   development   of   Cnn2   KO   mouse   line   and   PCR   genotyping   were   described   previously.27  All   animal   protocols   used   in   our   study   were   approved   by   the   Institutional  Animal   Care  and  Use  Committee  of  Wayne  State  University.     Isolation  and  culture  of  adult  mouse  primary  fibroblasts   Fibroblasts   were   isolated   as   described   previously44   from   leg   muscles   of   adult   WT   and   Cnn2  KO  mice.27  Briefly,  WT  and  Cnn2  KO  mice  were  euthanized  and  muscle  tissues  from  both   hind  legs  were  isolated  under  sterile  conditions.  Using  a  pair  of  sharp  scissors,  the  tissues  were   minced  in  Dulbecco’s  Modified  Eagle  Medium  (DMEM)  containing  0.5%  pancreatin  and  0.125%   trypsin,   triturated   using   a   10   mL   pipette,   and   incubated   at   37°C   for   6   min.   The   trituration   and   incubation   steps   were   repeated   once   and   the   crude   tissue   digest   was   filtered   by   passing   through  a  100  µm  mesh.  The  filtrate  containing  isolated  cells  were  collected  by  centrifugation  at   200   x   g   for   5   min,   suspended   in   DMEM   containing   20%   fetal   bovine   serum   (FBS),   2   mM   L-­ glutamine,  100  U/mL  penicillin  and  50  U/mL  streptomycin,  and  incubated  in  tissue  culture  dishes   at  37°C  in  5%  CO2.  After  1  hr,  floating  cells  not  attached  to  the  dish  were  removed  to  selectively   culture   the   adherent   cells.   The   cells   were   passed   when   reaching   80-­90%   confluence.   The   second  and  third  passages  of  cells  were  used  for  experiments.     Isolation  and  culture  of  mouse  embryonic  fibroblasts   From  Cnn2+/-­  heterozygote  parents,  13.5-­day  embryos  were  collected  to  isolate  primary   fibroblasts   from   individual   embryos   as   described.45   After   removing   the   head   and   innards,   the   embryo   was   washed   with   sterile   phosphate   buffered   saline   (PBS)   and   minced   with   a   pair   of   sharp   scissors   in   1   mL   0.25%   trypsin,   1   mM   EDTA.   After   incubation   at   37°C   for   30   min,   the   digestion  was  stopped  by  adding  4  mL  of  culture  media  (DMEM,  10%  FBS,  2  mM  L-­glutamine,   100  U/mL  penicillin  and  50  U/mL  streptomycin).  Cells  were  dissociated  from  the  embryo  tissue  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 8 of 54

8  

by   pipetting   up   and   down   for   20   times.  Additional   6   mL   culture   media   was   added   to   the   cells   suspension   for   plating   on   a   100   mm   tissue   culture   dish.   Genotype   of   each   embryo   was   determined  using  PCR  on  genomic  DNA  isolated  from  the  head  tissue.  Cells  from  Cnn2-­/-­  and   WT   embryos   were   passed   after   3   days   of   culture   at   80-­90%   confluence.   Second   passages   of   the   mouse   embryonic   fibroblasts   (MEF)   were   used   for   experiments   after   Western   blot   verification  of  the  Cnn2  KO  and  WT  genotypes.     Isolation  and  culture  of  neonatal  mouse  skin  fibroblasts   Adapted  from  a  standard  method  (Current  Protocols  in  Molecular  Biology,  2001),  primary   skin  fibroblasts  were  isolated  from  4  days  old  WT  and  Cnn2  KO  mice.  From  animals  euthanized   after   PCR   genotyping,   back   skin   was   dissected   under   sterile   conditions   and   incubated   with   0.25%  trypsin  at  37°C  for  1h.  The  epidermal  layer  was  removed  mechanically  with  forceps  and   the  dermis  was  washed  with  DMEM,  cut  into  small  pieces  and  incubated  with  2  mL  of  700  U/mL   collagenase  I  at  37°C  for  2h  with  agitation  every  20  min.  2  mL  of  ice-­cold  culture  media  (DMEM,   20%  FBS,  2  mM  L-­glutamine,  100  U/mL  penicillin  and  50  U/mL  streptomycin)  was  then  added   before  a  vigorous  vortex.  The  cell  suspension  was  passed  through  a  100  µm  mesh  and  the  cells   were  spun  down  at  150x  g  for  10  min.  The  cell  pellet  was  re-­suspended  in  the  culture  media  and   seeded   in   a   100-­mm   tissue   culture   dish   for   incubation   at   37°C   in   a   CO2   incubator.  The   media   was  changed  after  24h  and  changed  again  48  hr  later.  Five  days  after  the  original  plating,  the   cells  (P0)  at  80-­90%  confluence  were  treated  with  0.5%  dispase  in  DMEM  at  37°C  for  30  min  to   remove   keratinocyte   contamination   before   passing   to   three   100-­mm   culture   dish.   At   near   confluence,  the  cells  were  made  into  frozen  stocks  (P1).  Cells  recovered  from  the  frozen  stock   were  cultured  to  near  confluence  and  passed  once  (P2)  for  use  in  experiments.     Anti-­calponin  antibodies  

ACS Paragon Plus Environment

Page 9 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

9   A   mouse   monoclonal   antibody   (mAb)   CP22   and   a   rabbit   polyclonal   antiserum   RAH2  

generated   by   immunization   with   purified   mouse   calponin   2   were   used   in   the   present   study.   Details  for  the  antibody  preparation  and  characterization  have  been  described  previously.22,46     SDS-­polyacrylamide  gel  electrophoresis  (PAGE)  and  Western  blotting     Total   protein   from   primary   cultures   of   mouse   fibroblasts   was   extracted   by   lysis   of   monolayer   cells   in   SDS-­PAGE   sample   buffer   (50   mM   Tris,   2%   SDS,   10%   glycerol,   0.1%   bromophenol  blue,  pH  8.8)  after  washing  with  PBS.  The  2%  SDS  in  the  buffer  aims  for  a  rapid   inactivation   of   endogenous   proteases.   The   protein   extracts   were   heated   at   80°C   for   5   min   to   solubilize  proteins  and  clarified  by  centrifugation  in  a  microcentrifuge  at  the  maximum  speed  for   5   min.   The   supernatant   was   loaded   on   12%   gel   in   Laemmli   buffer   and   electrophoresed   at   a   constant   current   of   25   mA   per   Bio-­Rad   mini-­gel.22  The   protein   bands   resolved   were   visualized   by  staining  with  Coomassie  Blue  R250.     Duplicate  SDS-­gels  were  electrically  blotted  to  nitrocellulose  membranes  using  a  semi-­ dry  transfer  apparatus  (Bio-­Rad,  Hercules,  CA)  at  5  mA/cm2  for  15  min.  After  blocking  with  1%   bovine  serum  albumin  (BSA)  and  0.05%  Tween-­20  in  Tris  buffered  saline  (TBS),  the  membrane   was   incubated   with   anti-­calponin   antibody   RAH2   in   TBS   containing   0.1%   BSA   and   0.05%   Tween-­20   under   gentle   rocking   at   4°C   overnight.   The   membrane   was   then   washed   with   TBS   containing  0.05%  Tween-­20,  and  further  incubated  with  alkaline  phosphatase-­labeled  anti-­rabbit   IgG  (Sigma)  secondary  antibody  at  room  temperature  on  a  rocker  for  1  hr.  The  membrane  was   washed   again   as   above,   followed   by   development   in   5-­bromo-­4-­chloro-­3-­indolyl   phosphate/nitroblue   tetrazolium   chromogenic   substrate   solution   to   visualize   the   calponin   bands.22       Immunofluorescence  microscopy  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 10 of 54

10   Mouse  fibroblasts  were  seeded  at  104  cells  per  well  on  gelatin-­coated  and  UV-­irradiated  

#1   glass   cover   slips   in   24-­well   culture   plates   and   cultured   at   37°C   in   5%   CO2   for   18   hrs.   Adherent  cells  on  coverslips  were  rinsed  in  PBS,  fixed  in  cold  acetone  for  30  min  and  blocked   with  1%  BSA  in  PBS  in  a  humidified  box  at  room  temperature  for  30  min.  The  cover  slips  were   incubated   with   anti-­calponin   2   mAb   CP22   at   4°C   overnight.   After   washing   in   PBS   containing   0.05%  Tween-­20,  the  cells  were  stained  with  fluorescein  isothiocyanate  (FITC)-­conjugated  goat   anti-­mouse  IgG  secondary  antibody  (Sigma)  and  tetramethylrhodamine  isothiocyanate  (TRITC)-­ conjugated  phalloidin  (Sigma)  (for  F-­actin)  at  room  temperature  for  1  hr.  After  final  washes  with   PBS   containing   0.05%   Tween-­20,   the   coverslips   were   mounted   on   glass   slides   and   viewed   using  a  confocal  fluorescence  microscope  to  examine  the  cellular  localization  of  calponin  2  and   its  relationship  to  the  actin  cytoskeleton.     Polyacrylamide  gel  culture  substrate  for  CTFM   Two-­dimensional  gel  substrate  was  prepared  as  described  previously11,47  by  making  thin   layers  of  polyacrylamide  gel  on  the  glass  bottom  of  a  MatTek  culture  dish  (Ashland,  MA).  Prior   to   casting   the   gel,   the   dishes   were   pre-­treated   with   0.1   N   NaOH   and   air-­dried,   treated   with   3-­ aminopropyltrimethoxysilane  for  5  min,  rinsed  three  times  with  double  distilled  water,  incubated   with  0.5%  glutaraldehyde  for  30  min,  washed  three  times  again  with  double  distilled  water,  and   dried  at  60°C.  The  treated  dishes  were  stored  at  room  temperature  and  used  within  one  week.     Two   layers   of   polyacrylamide   gel   were   casted   on   the   treated   glass   bottom   (14   mm   diameter)   of   the   culture   dishes.   The   lower   layer   was   ~120   μm   thick,   and   the   upper   layer   was   ~60   μm   thick   and   contained   0.2   μm   yellow-­green   fluorescent   micro-­beads   (Ex/Em   =   505/515,   Molecular  Probes,  Eugene,  OR)  at  1/200  dilution.  0.5  µL  TEMED  and  5  µL  of  10%  ammonium   persulfate   were   added   to   1   mL   gel   stock   solution   containing   5%   acrylamide   and   0.225%   bis-­ acrylamide   immediately   before   use.   The   lower   layer   was   fabricated   by   adding   11   μL   of   the   acrylamide  mix  to  the  center  of  the  glass  bottom  for  polymerizing  at  room  temperature  for  2  hrs.  

ACS Paragon Plus Environment

Page 11 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

11  

The  upper  layer  was  then  prepared  by  adding  5  μL  of  the  gel  stock  containing  fluorescent  beads   on  top  of  the  lower  layer  and  covering  with  a  circular  cover  slip  (12  mm  diameter).  The  dishes   were  then  placed  upside  down  at  4°C  for  2  hrs  to  allow  the  fluorescence  beads  to  settle  on  the   cover  slip  (thus  at  the  surface  of  the  gel  substrate).  After  polymerization  at  room  temperature  for   30   min,   the   cover   slip   was   carefully   removed   and   the   polyacrylamide   gel   surface   was   washed   with  double  distilled  water.     The  gel  substrate  was  activated  by  treating  with  100  μL  of  1  mM  sulfo-­SANPAH  (Pierce,   Rockford,   IL)   in   50   mM   HEPES   buffer   under   UV   light   for   9   min   followed   by   three   washes   with   double  distilled  water.  The  polyacrylamide  gel  substrates  were  then  coated  with  180  μL  of  100   μg/mL   type   I   collagen   at   4°C   overnight   and   thoroughly   washed   three   times   with   PBS   prior   to   seeding   cells.   The   Young’s   modulus   of   the   polyacrylamide   gel   substrate   was   8-­kPa,   and   the   Poisson’s   ratio   was   0.48,48   which   responds   to   a   wide   range   of   forces   in   a   linear   and   elastic   manner.12     Acquiring  CTFM  images   The   culture   dishes   holding   polyacrylamide   gel   substrates   were   sterilized   with   UV   irradiation   for   30   min.   Cnn2   KO   and   WT   adult   mouse   leg   muscle   fibroblasts   and   MEF   were   seeded  at  5  x  103  cells/dish,  allowed  to  attach  and  spread  for  24  hrs  in  DMEM  containing  20%   FBS.  An   area   on   the   polyacrylamide   gel   substrate   with   an   adequate   density   of   adherent   cells   was  selected  for  CTFM  analysis.   Two   sets   of   microscopic   images   were   obtained   for   CTF   analysis.   Images   of   individual   cells   with   the   fluorescent   beads   embedded   in   the   underneath   gel   substrate   were   first   taken   using   a   fluorescence   microscope   equipped   with   a   CCD   camera.  The   cells   were   then   removed   by  adding  100  μL  of  1  N  NaOH  to  the  well  that  contained  2  mL  culture  media  and  fluorescence   images  of  the  same  area  were  recorded  again.  The  following  parameters  were  then  computed   by   comparing   the   positions   of   the   fluorescence   beads   before   and   after   removing   the   cells:   a)  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 12 of 54

12  

root  mean  square  traction  (RMST),  the  mean  of  traction  through  the  whole  cell;;  b)  net  contractile   moment  (NCM),  a  coordinate  invariant  scalar  measure  of  the  cell’s  contractile  strength;;  and  c)   total   strain   energy   (TSE),   the   energy   transferred   from   the   cell   to   the   elastic   distortion   of   the   substrate   and   another   measure   of   contractile   strength.   Calculation   of   these   parameters   was   done  using  the  method  by  Butler  et  al.14     Fibroblast  de-­adhesion  assay   To   investigate   the   effect   of   calponin   2   deletion   on   the   dynamics   of   actin   cytoskeleton   reorganization,  Cnn2  KO  and  WT  mouse  fibroblasts  was  examined  for  de-­adhesion  during  mild   trypsin  digestion.  The  cells  were  seeded  in  6-­well  plates  at  1  x  105  cells  per  well  and  cultured  for   24   hrs.   The   monolayer   of   adherent   cells   was   washed   with   PBS   and   treated   with   a   low   concentration  of  trypsin-­EDTA  solution  (0.025%  trypsin,  0.1  mM  EDTA)  for  10  min.  The  digestion   was  stopped  by  adding  FBS  to  a  final  concentration  of  10%.  Phase-­contrast  microscopic  images   were   taken   in   multiple   randomly   selected   areas   to   determine   the   percentage   of   round-­up   cells   and  evaluate  the  de-­adhesion  velocity.49       Effect  of  blebbistatin  treatment  on  CTF  and  sensitivity  test   To   investigate   the   biochemical   mechanism   by   which   calponin   2   regulates   cell   traction   force,  CTFM  was  repeated  with  treatment  of  blebbistatin,  an  inhibitor  of  myosin  II  ATPase.50  10   μM   blebbistatin   treatment   for   30   min   was   determined   as   an   optimal   condition   that   applies   an   inhibition   of   myosin   II  ATPase   with   a   minimally   change   in   cell   morphology.   Cnn2   KO   and   WT   mouse   adult   fibroblasts   and   MEF   treated   under   this   condition   were   analyzed   with   CTFM   as   described  above.   To  test  the  sensitivity  of  Cnn2  KO  and  WT  mouse  neonatal  skin  fibroblasts  and  MEF  to   blebbistatin,  cells  were  seeded  in  6-­well  culture  plate  a  2.5  x  104  cells/well  for  growing  on  plastic   and  on  8-­kPa  gel  substrate  (the  same  stiffness  as  that  used  in  CTFM  studies),  cultured  for  24  

ACS Paragon Plus Environment

Page 13 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

13  

hr,  and  treated  with  1,  3  and  10  μM  blebbistatin.  Phase-­contrast  images  of  the  cells  were  taken   at  15,  30,  45,  60,  90  and  120  min  of  the  treatment  to  quantify  the  effect  on  the  spreading  area  of   cells.  The   spreading   area   of   cells   at   different   concentration   of   blebbistatin   was   plotted   against   the   time   of   treatment   to   assess   the   effect   of   calponin   2   deletion   on   the   sensitivity   of   cells   to   blebbistatin.     Data  analysis   All  experiments  were  repeated  three  times  or  more  and  the  data  are  presented  as  mean   ±   SE.   Statistical   analysis   was   performed   using   unpaired   two-­tail   Student’s   t-­test.   Differences   between  two  samples  were  considered  significant  when  P  was  less  than  0.05.  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 14 of 54

14  

Results     Deletion  of  calponin  2  in  mouse  fibroblasts  increases  cell  traction  force   Western  blot  analysis  of  total  protein  extracts  showed  significant  levels  of  calponin  2  in   fibroblasts  isolated  from  the  adult  leg  muscles  as  well  as  day  13.5.  embryos  of  WT  mice  while  it   is   absent   in   cells   of   Cnn2   KO   mice   (Fig.   1A).   Confocal   microscopic   images   of   adult   mouse   primary  fibroblasts  showed  that  calponin  2  was  co-­localized  with  F-­actin  stress  fibers  (Fig.  1B),   consistent  with  its  role  in  regulating  actin  filament-­mediated  cellular  functions.22,23,25,27-­29,31   Analysis  of  phase-­contrast  and  fluorescent  microscopic  images  of  fibroblasts  from  adult   WT  and  Cnn2  KO  mice  cultured  on  type  I  collagen-­coated  thin  layer  of  polyacrylamide  gel  with   embedded  fluorescent  beads  revealed  higher  CTF  in  Cnn2  KO  fibroblasts  than  that  in  WT  cells   (Fig.   2).   The   constrained   traction   field   computed   from   the   beads   movement,   and   the   direct   computation  of  tractions  from  the  Fourier  decomposition  of  the  displacements  are  shown  in  Fig.   2B   and   2D.   Quantification   of   CTF   parameters   determined   that   Cnn2   KO   fibroblasts   exerted   significantly  higher  RMST,  NCM  and  TSE  (Fig.  3A,  3B  and  3C,  respectively)  than  that  in  the  WT   fibroblasts.  The  shape  index  (SI)  of  Cnn2  KO  and  WT  cells  was  not  significantly  different  (Fig.   3D).  Studies  of  Cnn2  KO  and  WT  MEF  produced  similar  results  (Fig.  4).       Cnn2  KO  mouse  fibroblasts  exhibit  faster  de-­adhesion  than  that  of  WT  cells   A   previous   study   observed   that   cells   with   faster   round-­up   velocity   during   trypsin   treatment   had   higher   CTF.49   To   further   demonstrate   the   role   of   calponin   2   in   the   regulation   of   CTF  in  mouse  fibroblasts,  the  percentage  of  adherent  cells  rounded-­up  by  10  min  of  mild  trypsin   treatment   was   examined   to   show   that   Cnn2   KO   mouse   fibroblasts   de-­adhered   significantly   faster  than  that  of  WT  cells  (Fig.  5).     It   was   reported   that   the   de-­adhesion   time   during   trypsin-­treatment   of   adherent   cells   inversely  correlated  with  cell  contractility.  Inhibition  of  myosin  motor  with  blebbistatin  treatment  

ACS Paragon Plus Environment

Page 15 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

15  

delayed   the   trypsin   treatment-­produced   de-­adhesion   and   reduced   the   stiffness   of   cellular   structure.49   Therefore,   although   the   trypsin   de-­adhesion   test   is   not   specific   to   a   particular   cell   signaling   pathway,   it   is   informative   to   compare   cytoskeleton   reorganization   dynamics   and   intrinsic  contractile  force  in  the  presence  or  absence  of  calponin  2’s  inhibitory  effect  on  myosin   motor  activity.  The  result  indicates  that  deletion  of  calponin  2  in  mouse  fibroblasts  increases  cell   traction  force  and  the  dynamics  of  cytoskeleton  reorganization.       Effect  of  calponin  2  deletion  on  increasing  CTF  is  myosin  II  motor-­dependent   Treatment   of   mouse   primary   fibroblasts   with   high   concentrations   of   blebbistatin,   an   inhibitor   of   myosin   II  ATPase,50   resulted   in   cell   deformation   shown   with   a   slacked   morphology   (data   not   shown).   Under   a   mild   blebbistatin   treatment   condition   which   does   not   cause   drastic   change  in  morphology  (10  µM  30m  min),  CTF  was  significantly  decreased  in  both  Cnn2  KO  and   WT  cells  (Fig.  6)  as  compared  with  that  in  the  absence  of  blebbistatin  (Fig.  3).  This  result  was   consistent   with   a   previous   report   that   treatment   of   NIH-­3T3   cells   with   10   μM   blebbistatin   reduced   CTF   by   13   fold.51   The   quantification   of   CTF   parameters   showed   diminished   RMST,   NCM   and   TSE   in   Cnn2   KO   and   WT   cells   while   no   significant   change   in   cell   shape   (SI)   and   spreading   area   for   both   adult   mouse   fibroblasts   (Fig.   7)   and   MEF   (Fig.   8).   The   effect   of   blebbistatin   on   diminishing   the   difference   in   CTF   between   Cnn2   KO   and   WT   fibroblasts   demonstrate  that  calponin  2  regulates  CTF  via  inhibiting  myosin  II  ATPase  and  motor  activity.     Quantitative  analysis  of  the  dose-­dependence  and  time  course  of  blebbistatin’s  effect  on   mouse   fibroblasts   in   adherent   culture   showed   that   Cnn2   KO   fibroblasts   were   significantly   less   sensitivity   to   blebbistatin   than   that   of   WT   cells   (Fig.   9).   The   results   demonstrate   that   whereas   the  spreading  area  of  WT  MEF  was  as  expected  larger  than  that  of  Cnn2  KO  cells  on  8-­kPa  gel   substrate  prior  to  blebbistatin  treatment,  it  began  to  decrease  earlier  (at  45  min)  and  to  a  large   degree  with  a  trend  of  responding  to  lower  concentrations  of  blebbistatin  than  that  of  Cnn2  KO   cells   (Fig.   9A).   At   120   min,   WT   and   Cnn2   KO   MEF   showed   similar   spreading   areas   and  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 16 of 54

16  

sensitivity   to   blebbistatin   concentrations.   The   same   pattern   was   found   for   MEF   on   plastic   substrate   although   the   WT   and   Cnn2   KO   cells   both   showed   earlier   responses   (at   30   min)   as   compared  with  the  time  course  on  gel  substrate  (Fig.  9B).  Very  similar  results  were  obtained  for   WT   and   Cnn2   KO   neonatal   skin   fibroblasts  (Fig.   9C   and   D).  The   lower   sensitivity   of  Cnn2   KO   fibroblasts   to   blebbistatin   indicates   a   less   endogenous   inhibition   of   myosin   II   ATPase   when   calponin   2   is   absent,   supporting   that   calponin   2   regulates   CTF   via   inhibiting   myosin   II   motor   activity.    

ACS Paragon Plus Environment

Page 17 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

17  

Discussion   Calponin   is   an   abundant   protein   in   smooth   muscle   cells   and   in   multiple   types   of   non-­ muscle  cells.  The  biological  functions  of  calponin  are  not  fully  understood.17,18  Extensive  studies   have   been   carried   out   to   decipher   the   biochemical   function   of   calponin   in   smooth   muscle   contraction.18,19  While  calponin  1  is  specifically  expressed  in  smooth  muscle  cells,  calponin  2  is   found   in   both   smooth   muscle37   and   many   non-­muscle   cell   types,   including   fibroblasts.26,27   Our   previous   studies   have   demonstrated   the   inhibitory   effects   of   calponin   2   on   cell   migration,   proliferation,  phagocytosis  and  platelet  adhesion.27,28,31,37  In  the  present  study,  we  characterized   the   function   of   calponin   2   in   regulating   cell   traction   force   using   primary   Cnn2   KO   mouse   fibroblasts27  as  a  physiologically  informative  experimental  system.   Traction  force  exerted  by  cells  on  their  extracellular  environment  mediates  many  cellular   functions   such   as   cell   adhesion,52-­54   differentiation,55-­57   embryogenesis,58,59   cancer   metastasis9,60,61   and   wound   healing.62,63   In   cancer   cells,   increased   CTF   increases   metastatic   potential.9  Our  previous  studies  showed  that  the  gene  expression  and  protein  level  of  calponin  2   in   adherent   cells   both   positively   correlate   to   substrate   stiffness,   reflecting   mechanical   tension   regulations.22,23,30   In   the   present   study,   we   found   that   primary   fibroblasts   from   Cnn2   KO   mice   exhibit  higher  traction  force  than  that  of  WT  fibroblasts  (Figs.  3  and  4),  indicating  an  inhibition  of   CTF  by  calponin  2.  This  finding  provides  a  novel  insight  into  the  molecular  mechanism  by  which   calponin  2  regulates  cell  motility.27,31   Cultured   cells   adherent   to   a   substrate   represent   many   cell   types   with   biological   and   medical  importance.  For  example,  macrophages,  epithelial  cells,  and  fibroblasts  are  all  adherent   cells  in  vivo  and  generate  strong  traction  force.64  In  these  cells,  myosin  II  is  the  primary  motor   protein  that  generates  CTF.51,65  Calponin  1,  the  smooth  muscle  specific  isoform  of  calponin,  has   been  extensively  characterized  in  in  vitro  biochemical  and  biophysical  studies  as  an  inhibitor  of   myosin   ATPase,   regulating   the   function   of   actin   filaments   to   modify   smooth   muscle   contractility.18,19  Our  present  study,  on  the  other  hand,  is  the  first  report  for  the  role  of  calponin  2  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 18 of 54

18  

in  regulating  non-­muscle  myosin  II  motor  activity  in  live  cells.  The  finding  that  calponin  2  plays  a   role   in   regulating   myosin   II   motor-­generated   CTF   is   analogous   to   the   function   of   calponin   1   in   regulating  smooth  muscle  contractility.   Blebbistatin  is  a  potent  drug  that  inhibits  myosin  II50  and  acts  by  binding  to  the  large  cleft   of  the  motor  domain  of  myosin  and  interfering  with  ADP  dissociation  and  Pi  release.50,66,67  Using   blebbistatin   as   a   tool   to   identify   cytoskeleton   motor   activities,   we   found   that   blebbistatin   significantly   decreased   CTF   and   diminished   the   difference   between   Cnn2   KO   and   WT   mouse   fibroblasts   (Fig.   9).   This   observation   indicates   that   the   effect   of   calponin2   is   myosin   motor   dependent.   The   deletion   of   calponin   2   decreased   the   sensitivity   of   cells   to   blebbistatin   treatment.   This   finding   demonstrates   that   calponin   2   as   an   endogenous   inhibitor   of   myosin   II   ATPase  regulates  CTF  on  the  same  target,  i.e.,  myosin  II  motor  activity.     The   effects   of   calponin   2   and   blebbistatin   are   additive,   indicating   parallel   mechanisms   where  calponin  inhibits  the  activation  of  myosin  by  actin  and  blebbistatin  directly  inhibits  myosin   ATPase.  Therefore,  they  are  non-­competitive  inhibitors.  The  deletion  of  calponin  2  removes  an   endogenous   inhibition   to   permit   a   higher   level   of   myosin   activation,   which   results   in   a   higher   resistance  to  blebbistatin  due  to  the  need  of  an  increased  blebbistatin  inhibition  for  reaching  the   level  of  effect  produced  by  blebbistatin-­calponin  double  inhibition  (Fig.  9).     It   is   worth   noting   that   calponin   binds   F-­actin   with   high   affinity   and   inhibits   the   actin-­ activated   myosin   ATPase68-­71   and   motor   activity,72-­74   whereas   blebbistatin   directly   binds   and   inhibits   myosin   motor   domain.15,66   Therefore,   their   additive   inhibitory   effects   on   CTF   have   two   different   components:  The   effect   of   calponin   2   is   an   endogenous   regulatory   inhibition   to   lower   the  degree  of  myosin  II  motor  activation,  whereas  blebbistatin  is  a  toxin  that  kills  myosin  ATPase   and   motor   activity.   This   difference   is   critical   for   calponin   2   to   function   as   a   physiological   modulator  of  cell  traction  force  and  motility  in  contrast  to  the  effect  of  blebbistatin  on  paralyzing   all  myosin  motor-­based  functions.  

ACS Paragon Plus Environment

Page 19 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

19   The   fact   that   deletion   of   calponin   2   increases   the   velocity   of   cell   de-­adhesion   (Fig.   5)  

also   reflects   a   higher   myosin   II   motor   activity   and   increased   dynamics   of   cytoskeleton   reorganization.  This  observation  is  consistent  with  the  role  of  calponin  2  in  stabilizing  the  actin   cytoskeleton.22   Based  on  the  experimental  data,  our  current  hypothesis  is  that  increased  myosin  motor   activity   and   contractility   due   to   the   deletion   of   calponin   2   will   increase   the   dynamics   of   actin   cytoskeleton   to   slow   down   cell   adhesion   and   to   promote   migration.   On   the   other   hand,   the   building-­up  of  cytoskeleton  tension  by  myosin  motor  depends  on  adhesion.  While  the  size  and   stability  of  focal  adhesions  is  enhanced  by  myosin-­based  contraction  forces  where  blebbistatin   often  had  a  negative  effect  by  inactivating  myosin  motor,  calponin  2  imposes  a  modulatory  and   restrictive   inhibition   of   myosin   motor   to   slow   down   the   kinetics   without   reducing   the   maximum   capacity  of  cell  adhesion.31  In  calponin  2-­null  cells,  higher  myosin  activity  and  contractile  force   slows   down   the   formation   of   stable   adhesion29,31   and   the   higher   cytoskeleton   dynamics   may   produce   smaller   spreading   area   in   adherent   cultures.   The   reduced   cell   dimension   will   then   produce   less   total   tension   in   the   cytoskeleton   to   reach   an   equilibrium.   This   hypothesis   is   supported  by  our  recent  observation  that  calponin  2  is  not  concentrated  at  focal  adhesions  but   co-­localized  with  myosin  in  stress  fibers70  and  worth  further  investigating.     Fig.   10   illustrates   a   model   derived   from   our   knowledge   of   calponin   regulation   and   function  in  cell  traction  force  and  motility.  The  inhibition  of  myosin  ATPase  and  motor  activity  by   calponin  2  decreases  CTF  and  cell  motility  to  facilitate  cell  adhesion,  increase  cell  dimensions  in   monolayer   cultures   and   produce   higher   tension   in   the   cytoskeleton22,23,27,29,31,80.   The   increased   cytoskeleton  tension  further  increases  calponin  2  gene  expression  as  a  positive  feedback.  In  the   meantime,   the   inhibition   of   myosin   motor   activity   decreases   CTF   to   reduce   the   tension   in   the   cytoskeleton   as   a   negative   feedback   thus   to   maintain   an   equilibrium.   Cnn2   KO   or   down-­ regulation  will  function  in  opposite  directions.    

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 20 of 54

20   Living   cells   dynamically   change   structure   and   function   through   gene   regulation   and  

posttranslational   protein   modification   in   response   to   mechanical   signals.75-­79   Calponin   is   a   cytoskeleton  regulatory  protein  responsive  to  changes  in  the  mechanical  environment.22,23,30  The   substrate  stiffness  and  other  extracellular  mechanical  force  signals  will  influence  the  set  point  of   this  equilibrium  depending  on  the  cell  type  and  their  native  tissue  environments,  an  interaction   between  cells  and  the  mechanical  environment  that  merits  further  investigations.     Acknowledgements   We   thank   Hui   Wang   for   mouse   genotyping   and   technical   assistance   and   Ahila   Manivannan  for  preparing  frozen  stocks  of  neonatal  mouse  skin  fibroblasts.  

ACS Paragon Plus Environment

Page 21 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

21  

References     1.   Han,   E.   K.   H.,   Guadagno,  T.   M.,   Dalton,   S.   L.,   and  Assoian,   R.   K.   (1993)   A   cell   cycle   and   mutational   analysis   of   anchorage-­dependent   growth:   Cell   adhesion   and   TGF-­beta1   control   G1/S  transit  specificity,  J.  Cell.  Biol.  122,  461-­471.   2.   Ponti,  A.,   Machacek,   M.,   Gupton,   S.   L.,   Waterman-­Storer,   C.   M.,   and   Danuser,   G.   (2004)   Two  distinct  actin  networks  drive  the  protrusion  of  migrating  cells,  Science  305,  1782-­1786.   3.   Filipe,   J.   A.,   and   Nunes,   J.   P.   (2002)   Functional   importance   of   the   actin   cytoskeleton   in   contraction  of  bovine  iris  sphincter  muscle,  Auton.  Autacoid.  Pharmacol.  22,  155–159.   4.   Yeung,  T.,  Georges,  P.  C.,  Flanagan,  L.  A.,  Marg,  B.,  Ortiz,  M.,  Funaki,  M.,  Zahir,  N.,  Ming,   W.,  Weaver,  V.,  and  Janmey,  P.  A.  (2005)  Effects  of  substrate  stiffness  on  cell  morphology,   cytoskeletal  structure,  and  adhesion,  Cell  Motil.  Cytoskeleton  60,  24-­34.   5.   van  Vlimmeren,  M.  A.,  Driessen-­Mol,  A.,  Oomens,  C.  W.,  and  Baaijens,  F.  P.  (2012)  Passive   and  active  contributions  to  generated  force  and  retraction  in  heart  valve  tissue  engineering,   Biomech.  Model.  Mechanobiol.  7,  1015-­1027.   6.   Sun,   J.,   Jamilpour,   N.,   Wang,   F.   Y.,   and   Wong,   P.   K.   (2014)   Geometric   control   of   capillary   architecture  via  cell-­matrix  mechanical  interactions,  Biomaterials  35,  3273-­3280.   7.   Vedula,  S.  R.,  Peyret,  G.,  Cheddadi,  I.,  Chen,  T.,  Brugués,  A.,  Hirata,  H.,  Lopez-­Menendez,   H.,  Toyama,  Y.,  de  Almeida,  L.  N.,  Trepat,  X.,  Lim,  C.  T.,  and  Ladoux,  B.  (2015)  Mechanics  of   epithelial  closure  over  non-­adherent  environments,  Nat.  Commun.  6,  6111.   8.   McGrail,  D.J.,  Kieu,  Q.  M.,  and  Dawson,  M.  R.  (2014)  The  malignancy  of  metastatic  ovarian   cancer  cells  is  increased  on  soft  matrices  through  a  mechanosensitive  Rho-­ROCK  pathway,     J.  Cell  Sci.  127,  2621-­2626.   9.   Kraning-­Rush,   C.   M.,   Califano,   J.   P.,   and   Reinhart-­King,   C.   A.   (2012)   Cellular   traction   stresses  increase  with  increasing  metastatic  potential,  PLoS.  ONE  7,  e32572.   10.  Wang,   J.H.C.   and   Lin,   J.S.   (2015)   Cell   traction   force   and   measurement   methods.   Biomechanics  and  Modeling  in  Mechanobiology  6,  361-­371.  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 22 of 54

22  

11.  Wang,   J.H.,   Zhao,   G.,   and   Li,   B.   (2016)   The   Study   of   Cell   Motility   by   Cell   Traction   Force   Microscopy  (CTFM).  Methods  Mol  Biol.  1365,  301-­313.   12.  Pelham,  R.J.  and  Wang,  Y.L.  (1997)  Cell  locomotion  and  focal  adhesions  are  regulated  by   substrate  flexibility.  Proceedings  of  the  National  Academy  of  Sciences  94,  13661-­13665.   13.  Wang,  N.,  Ostuni,  E.,  Whitesides,  G.M.,  Ingber,  D.E.  (2002)  Micropatterning  tractional  forces   in  living  cells.  Cell  Motil  Cytoskeleton  52,  97-­106.   14.  Butler,  J.P.,  Tolić-­Nørrelykke,  I.M.,  Fabry,  B.,  Fredberg,  J.J.  (2002)  Traction  fields,  moments,   and   strain   energy   that   cells   exert   on   their   surroundings.   Am   J   Physiol   Cell   Physiol.   282,   C595-­605.   15.  Takahashi,  K.,  Hiwada,  K.,  and  Kokubu,  T.  (1986)  Isolation  and  characterization  of  a  34,000-­ dalton   calmodulin-­   and   F-­actin-­binding   protein   from   chicken   gizzard   smooth   muscle,   Biochem.  Biophys.  Res.  Commun.  141,  20–26.   16.  Jin,   J.   P.,   Zhang,   Z.,   and   Bautista,   J.  A.   (2008)   Isoform   diversity,   regulation   and   functional   adaptations  of  troponin  and  calponin,  Crit.  Rev.  Eukaryot.  Gene  Expr.  18,  93-­124.   17.  Wu,  K.,  and  Jin,  J.  P.  (2008)  Calponin  in  non-­muscle  cells,  Cell  Biochem.  Biophys.  52,  139-­ 148.   18.  Liu,   R.   Jin,   J.-­P.   (2016)   Calponin   isoforms   CNN1,   CNN2   and   CNN3:   Regulators   for   actin   cytoskeleton  functions  in  smooth  muscle  and  non-­muscle  cells.  Gene  585,  143-­53.   19.  Morgan,   K.   G.,   and   Gangopadhyay,   S.   S.   (2001)   Cross-­bridge   regulation   by   thin   filament-­ associated  proteins,  J.  Appl.  Physiol.  91,  953-­962.   20.  Strasser,   P.,   Gimona,   M.,   Moessler,   H.,   Herzog,   M.,   and   Small,   J.   V.   (1993)   Mammalian   calponin  identification  and  expression  of  genetic  variants,  FEBS.  Lett.  330,  13-­18.   21.  Fukui,  Y.,   Masuda,   H.,  Takagi,   M.,  Takahashi,   K.,   and   Kiyokane   K.   (1997)  The   presence   of   h2-­calponin  in  human  keratinocyte,  J.  Dermatol.  Sci.  14,  29-­36.  

ACS Paragon Plus Environment

Page 23 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

23  

22.  Hossain,   M.   M.,   Crish,   J.   F.,   Eckert,   R.   L.,   Lin,   J.   C.,   and   Jin,   J.   P.   (2005)   H2-­calponin   is   regulated   by   mechanical   tension   and   modifies   the   function   of   actin   cytoskeleton,   J.   Biol.   Chem.  280,  42442-­42453.   23.  Hossain,   M.   M.,   Smith,   P.   G.,   Wu,   K.,   and   Jin,   J.   P.   (2006)   Cytoskeletal   tension   regulates   both   expression   and   degradation   of   h2-­calponin   in   lung   alveolar   Cells,   Biochemistry   45,   15670-­15683.   24.  Sakihara,   C.,   Nishimura,   J.,   Kobayashi,   S.,   Takahashi,   S.,   and   Kanaide,   H.   (1996)   Expression   of   calponin   mRNA   in   porcine   aortic   endothelial   cells,   Biochem.   Biophys.   Res.   Commun.  222,  195-­200.   25.  Tang,  J.,  Hu,  G.,  Hanai,  J.,  Yadlapalli,  G.,  Lin,  Y.,  Zhang,  B.,  Galloway,  J.,  Bahary,  N.,  Sinha,   S.,  Thisse,  B.,  Thisse,  C.,  Jin,  J.  P.,  Zon,  L.  I.,  and  Sukhatme,  V.  P.  (2006)  A  critical  role  for   calponin  2  in  vascular  development,  J.  Biol.  Chem.  281,  6664-­6672.   26.  Masuda,  H.,  Tanaka,  K.,  Takagi,  M.,  Ohgami,  K.,  Sakamaki,  T.,  Shibata,  N.,  and  Takahashi,   K.  (1996)  Molecular  cloning  and  characterization  of  human  non-­smooth  muscle  calponin.  J.   Biochem.  120,  415–424.   27.  Huang,  Q.  Q.,  Hossain,  M.  M.,  Wu,  K.,  Parai,  K.,  Pope,  R.  M.,  and  Jin,  J.  P.  (2008)  Role  of   h2-­calponin  in  regulating  macrophage  motility  and  phagocytosis,  J.  Biol.  Chem.  283,  25887-­ 25899.   28.  Hines,  P.C.,  Gao,  X.,  White,  J.C.  Agostino,  A.D.,  Jin,  J.-­P.  (2014)  A  novel  role  of  h2-­calponin   in  regulating  whole  blood  thrombosis  and  platelet  adhesion  during  physiologic  flow.  Physiol.   Report  2(12).  pii:  e12228.   29.  Huang,   Q.-­Q.,   Hossain,   M.M.,   Sun,   W.,   Xing,   L.,   Pope,   R.M.,   Jin,   J.-­P.   (2016)   Deletion   of   calponin  2  in  macrophages  attenuates  the  severity  of  inflammatory  arthritis  in  mice.  Am.  J.   Physiol.  Cell  Physiol.  In  press  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 24 of 54

24  

30.  Jiang,   W.   R.,   Cady,   G.,   Hossain,   M.   M.,   Huang,   Q.   Q.,   Wang,   X.,   and   Jin,   J.   P.   (2014)   Mechanoregulation  of  h2-­calponin  gene  expression  and  the  role  of  Notch  signaling,  J.  Biol.   Chem.  289,  1617-­1628.   31.  Hossain,  M.  M.,  Wang,  X.,  Bergan,  R.  C.,  and  Jin,  J.  P.  (2014)  Diminished  expression  of  h2-­ calponin  in  prostate  cancer  cells  promotes  cell  proliferation,  migration  and  the  dependence   of  cell  adhesion  on  substrate  stiffness,  FEBS.  Open.  Bio.  4,  627-­636.   32.  Applegate,  D.,  Feng,  W.,  Green,  R.  S.,  and  Taubman,  M.  B.  (1994)  Cloning  and  expression   of   a   novel   acidic   calponin   isoform   from   rat   aortic   vascular   smooth   muscle,   J.   Biol.   Chem.   269,  10683-­10690.   33.  Ferhat,   L.,   Charton,   G.,   Represa,  A.,   Ben-­Ari,   Y.,   der   Terossian,   E.,   and   Khrestchatski,   M.   (1996)   Acidic   calponin   cloned   from   neural   cells   is   differentially   expressed   during   rat   brain   development,  Eur.  J.  Neurosci.  8,  1501-­1509.   34.  Flemming,   A.,   Huang,   Q.-­Q.,   Jin,   J.-­P.,   Jumaa,   H.,   and   Herzog,   S.   (2015)   A   conditional   knockout  mouse  model  reveals  that  calponin-­3  is  dispensable  for  early  B  cell  development.   PLOS  ONE  10:e0128385.   35.  Shibukawa,  Y.,  Yamazaki,  N.,  Kumasawa,  K.,  Daimon,  E.,    Tajiri,  M.,  Okada,  Y.,  Ikawa,  M.,   and  Wada,  Y.  (2010)  Calponin  3  regulates  actin  cytoskeleton  rearrangement  in  trophoblastic   cell  fusion,  Mol.  Biol.  Cell.  21,  3973-­3984.   36.  Shibukawa,  Y.,  Yamazaki,  N.,  Daimon,  E.,  and  Wada,  Y.  (2013)  Rock-­dependent  calponin  3   phosphorylation  regulates  myoblast  fusion,  Exp.  Cell  Res.  319,  633-­648.   37.  Hossain,   M.   M.,   Hwang,   D.   Y.,   Huang,   Q.   Q.,   Sasaki,   Y.,   and   Jin,   J.   P.   (2003)   Developmentally  regulated  expression  of  calponin  isoforms  and  the  effect  of  h2-­calponin  on   cell  proliferation,  Am.  J.  Physiol.  Cell  Physiol.  284,  156-­167.   38.  Broschat,   K.   O.,   Weber,  A.,   and   Burgess,   D.   R.   (1989)   Tropomyosin   stabilizes   the   pointed   end  of  actin  filaments  by  slowing  depolymerization,  Biochemistry  28,  8501–8506.    

ACS Paragon Plus Environment

Page 25 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

25  

39.  Chicurel,  M.  E.,  Chen,  C.  S.,  and  Ingber,  D.  E.  (1998)  Cellular  control  lies  in  the  balance  of   forces,  Curr.  Opin.  Cell  Biol.  10,  232-­239.   40.  Davies,   P.   F.   (1995)   Flow-­mediated   endothelial   mechanotransduction,   Physiol.   Rev.   75,   519–560.     41.  Girard,  P.  R.,  and  Nerem,  R.  M.  (1995)  Shear  stress  modulates  endothelial  cell  morphology   and  F-­actin  organization  through  the  regulation  of  focal  adhesion-­associated  proteins,  J.  Cell   Physiol.  163,  179–193.   42.  Ingber,   D.   E.  (1993)   Cellular   tensegrity:   defining   new   rules   of   biological   design   that   govern   the  cytoskeleton,  J.  Cell  Sci.  104,  613–627.   43.  Wang,   N.,   Butler,   J.   P.,   and   Ingber,   D.   E.   (1993)   Mechanotransduction   across   the   cell   surface  and  through  the  cytoskeleton,  Science  260,  1124–1127.     44.  Neville,   C.,   Rosenthal,   N.,   McGrew,   M.,   Bogdanova,   N.,   and   Hauschka,   S.   (1997)   Skeletal   muscle  cultures,  Methods  Cell  Biol.  52,  85-­116S.   45.  Jozefczuk,  J.,  Drews,  K.,  Adjaye,  J.  (2012)  Preparation  of  mouse  embryonic  fibroblast  cells   suitable   for   culture   human   embryonic   and   induced   pluripotent   stem   cells,   J.   Vis.   Exp.   64,   e3854.   46.  Nigam,   R.,   Triggle,   C.   R.,   and   Jin   J.   P.   (1998)   H1-­   and   h2-­calponins   are   not   essential   for   norepinephrine-­   or   sodium   fluoride-­induced   contraction   of   rat   aortic   smooth   muscle,   J.   Muscle  Res.  Cell  Motil.  19,  695-­703.   47.  Tse,   J.   R,   and   Engler,   A.   J.   (2010)   Preparation   of   Hydrogel   Substrates   with   Tunable   Mechanical  Properties,  Curr.  Protoc.  Cell  Biol.  47,  10.16.1-­10.16.16.   48.  Boudou,  T.,  Ohayon,  J.,  Picart,  C.,  and  Tracqui,  P.  (2006)  An  extended  relationship  for  the   characterization   of   Young’s   modulus   and   Poisson’s   ratio   of   tunable   polyacrylamide   Gels,   Biorheology  43,  721–728.   49.  Sen,   S.,   and   Kumar,   S.   (2009)   Cell-­Matrix   De-­Adhesion   Dynamics   Reflect   Contractile   Mechanics,  Cell.  Mol.  Bioeng.  2,  218-­230.  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 26 of 54

26  

50.  Allingham,   J.   S.,   Smith,   R.,   and   Rayment,   I.   (2005)   The   structural   basis   of   blebbistatin   inhibition  and  specificity  for  myosin  II,  Nat.  Struct.  Mol.  Biol.  4,  378-­379.   51.  Beningo,   K.   A.,   Hamao,   K.,   Dembo,   M.,   Wang,   Y.   –L.,   and   Hosoya,   H.   (2006)   Traction   Forces   of   Fibroblasts   are   Regulated   by   the   Rho-­Dependent   Kinase   but   not   by   the   Myosin   Light  Chain  Kinase,  Arch.  Biochem.  Biophys.  456,  224–231.   52.  Cukierman,   E.,   Pankov,   R.,   Stevens,   D.,   and   Yamada,   K.   (2001)   Taking   cell-­matrix   adhesions  to  the  third  dimension,  Science  294,  1708–1712.     53.  Geiger,   B.,   and   Bershadsky,  A.   (2002)   Exploring   the   neighborhood:   adhesion-­coupled   cell   mechanosensors,  Cell  110,  139–142.   54.  Yang,   J.,   Rayburn,   H.,   and   Hynes,   R.   (1995)   Cell-­adhesion   events   mediated   by   alpha(4)   integrins  are  essential  in  placental  and  cardiac  development,  Development  121,  549–560.     55.  Discher,   D.   E.,   Janmey,   P.,   and   Wang.   Y.   L.   (2005)   Tissue   cells   feel   and   respond   to   the   stiffness  of  their  substrate,  Science  310,  1139–1143.   56.  Engler,   A.   J.,   Carag-­Krieger,   C.,   Johnson,   C.   P.,   Raab,   M.,   Tang,   H.   Y.,   Speicher,   D.   W.     Sanger,  J.  W.,  Sanger,  J.  M.,  and  Discher.  D.  E.  (2008)  Embryonic  cardiomyocytes  beat  best   on  a  matrix  with  heart-­like  elasticity:  scar-­like  rigidity  inhibits  beating,  J.  Cell  Sci.  121,  3794– 3802.     57.  Engler,   A.   J.,   Sen,   S.,   Sweeney,   H.   L.,   and   Discher,   D.   E.   (2006)   Matrix   elasticity   directs   stem  cell  lineage  specification,  Cell  126,  677–689.   58.  Galbraith,  C.,  Yamada,  K.,  and  Sheetz,  M.  (2002)  The  relationship  between  force  and  focal   complex  development,  Cell  Biology  159,  695–705.     59.  Georges,   P.   C.,   and   Janmey   P.   A.   (2005)   Cell   type-­specific   response   to   growth   on   soft   materials,  J.  of  Appl.  Physiol.  98,  1547–1553.   60.  Levental,   K.   R.,   Yu,   H.,   Kass,   L.,   Lakins,   J.   N.,   Egeblad,   M.,   Erler,   J.   T.,   Fong,   S.   F.,       Csiszar,   K.,   Giaccia,   A.,   Weninger,   W.,   Yamauchi,   M.,   Gasser,   D.   L.,   and   Weaver,   V.   M.  

ACS Paragon Plus Environment

Page 27 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

27   (2009)  Matrix  Crosslinking  Forces  Tumor  Progression  by  Enhancing  Integrin  Signaling,  Cell   139,  891–906.  

61.  Tang,  X.,  Kuhlenschmidt,  T.  B.,  Zhou,  J.,  Bell,  P.,  Wang,  F.,  Kuhlenschmidt,  M.  S.,  Saif,  T.  A.   (2010)  Mechanical  force  affects  expression  of  an  in  vitro  metastasis-­like  phenotype  in  HCT-­8   cells,  Biophys.  J.  99,  2460–2469.     62.  Eisenberg,  J.  L.,  Safi,  A.,  Wei,  X.,  Espinosa,  H.  D.,  Budinger,  G.  S.,  Takawira,  D.,  Hopkinson,   S.  B.,  and  Jones  J.  C.  (2011)  Substrate  stiffness  regulates  extracellular  matrix  deposition  by   alveolar  epithelial  cells,  Res.  Rep.  Biol.  2,  1–12.   63.  Lo,  C.  –M.,  Wang,  H.  –B.,  Dembo,  M.,  and  Wang,  Y.  –L.  (2000)  Cell  Movement  Is  Guided  by   the  Rigidity  of  the  Substrate,  Biophys.  J.  79,  144–152.     64.  Bershadsky,   A.   D.,   Balaban,   N.   Q.,   and   Geiger,   B.   (2003)   Adhesion-­dependent   cell   mechanosensitivity,  Annu.  Rev.  Cell  Dev.  Biol.  19,  677-­695.   65.  Pelham,   R.   J.   Jr.,   and   Wang,   Y.   L.   (1999)   High   resolution   detection   of   mechanical   forces   exerted  by  locomoting  fibroblasts  on  the  substrate,  Mol.  Biol.  Cell  4,  935-­945.   66.  Straight,   A.   F.,   Cheung,   A.,   Limouze,   J.,   Chen,   I.,   Westwood,   N.   J.,   Sellers,   J.   R.,   and   Mitchison,  T.  J.  (2003)  Dissecting  temporal  and  spatial  control  of  cytokinesis  with  a  myosin  II   Inhibitor,  Science  299,  1743-­1747.   67.  Ramamurthy   B,   Yengo   CM,   Straight   AF,   Mitchison   TJ,   Sweeney   HL.   (2004)   Kinetic   mechanism  of  blebbistatin  inhibition  of  nonmuscle  myosin  IIb.  Biochemistry  43,  14832-­9.   68.  Abe,  M.,  Takahashi,  K.,  and  Hiwada,  K.  (1990)  Effect  of  calponin  on  actin  activated  myosin   ATPase  activity,  J.  Biochem.  108,  835–838.   69.  Horiuchi,   K.   Y.,   and   Chacko,   S.   (1991)   The   mechanism   for   the   inhibition   of   actin-­activated   ATPase   of   smooth   muscle   heavy   meromyosin   by   calponin,   Biochem.   Biophys.   Res.   Commun.  176,  1487–1493.   70.  Winder,   S.   J.,  Allen,   B.   G.,   Fraser,   E.   D.,   Kang,   H.   M.,   Kargacin,   G.   J.,   and   Walsh,   M.   P.   (1993)  Calponin  phosphorylation  in  vitro  and  in  intact  muscle,  Biochem.  J.  296,  827–836.  

ACS Paragon Plus Environment

Biochemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Page 28 of 54

28  

71.  Winder,   S.   J.,   and   Walsh,   M.   P.   (1990)   Smooth   muscle   calponin.   Inhibition   of   actomyosin   MgATPase  and  regulation  by  phosphorylation,  J.  Biol.  Chem.  265,  10148–10155.       72.  Winder,   S.   J.,   Sutherland,   C.,   and   Walsh,   M.   P.   (1991)   Biochemical   and   functional   characterization  of  smooth  muscle  calponin,  Adv.  Exp.  Med.  Biol.  304,  37–51.   73.  Shirinsky,   V.   P.,   Biryukov,   K.   G.,   Hettasch,   J.   M.,   and   Sellers,   J.   R.   (1992)   Inhibition   of   the   relative   movement   of   actin   and   myosin   by   caldesmon   and   calponin,   J.   Biol.   Chem.   267,   15886–15892.   74.  Haeberle,   J.   R.   (1994)   Calponin   decreases   the   rate   of   cross-­bridge   cycling   and   increases   maximum   force   production   by   smooth   muscle   myosin   in   an   in   vitro   motility   assay,   J.   Biol.   Chem.  269,  12424–12431.   75.  Choquet,  D.,  Felsenfeld,  D.  P.,  and  Sheetz,  M.  P.  (1997)  Extracellular  matrix  rigidity  causes   strengthening  of  integrin-­cytoskeleton  linkages,  Cell  88,  39–48.   76.  Eckes,  B.,  and  Krieg,  T.  (2004)  Regulation  of  connective  tissue  homeostasis  in  the  skin  by   mechanical  forces,  Clin.  Exp.  Rheumatol.  22,  73-­76.   77.  Hamill,  O.  P.,  and  Martinac,  B.  (2001)  Molecular  basis  of  mechanotransduction  in  living  cells,   Physiol.  Rev.  81,  685-­740.   78.  Lehoux,  S.,  and  Tedgui  A.  (2003)  Cellular  mechanics  and  gene  expression  in  blood  vessels,   J.  Biomech.  36,  631-­643.   79.  Walker,  J.  L.,  Fournier,  A.  K.  and  Assoian  R.  K.  (2005)  Regulation  of  growth  factor  signaling   and   cell   cycle   progression   by   cell   adhesion   and   adhesion-­dependent   changes   in   cellular   tension,  Cytokine  Growth  Factor  Rev.  16,  395-­405.   80.  Liu,   R.,   Jin,   J.-­P.   (2016)   Deletion   of   calponin   2   in   macrophages   alters   cytoskeleton-­based   functions  and  attenuates  the  development  of  atherosclerosis.  J  Mol  Cell  Cardiol.  99,  87-­99.  

ACS Paragon Plus Environment

Page 29 of 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Biochemistry

 

29  

(Figure  Legends)     Figure   1.   Calponin   2   is   abundant   in   adult   and   embryonic   mouse   fibroblasts.   (A)   Total   protein  extracts  of  adult  muscle  fibroblasts  and  MEF  isolated  from  WT  and  Cnn2  KO  mice  were   examined   with   SDS-­PAGE   and   Western   blotting   using   anti-­calponin   2   antibody   RAH2.   Significant   amounts   of   calponin   2   were   detected   in   WT   mouse   fibroblasts   but   not   in   Cnn2   KO   cells.   (B)   Adherent   cultures   of   WT   mouse   adult   fibroblasts   were   stained   with   anti-­calponin   2   mAb   CP22   together   with   phalloidin   staining   of   F-­actin.   The   result   showed   that   calponin   2   co-­ localizes  with  the  actin  filaments.     Figure   2.   Cell   traction   force   microscopy   measurement   of   adult   wild   type   and   Cnn2   KO   mouse  fibroblasts.  The  phase  contrast  and  CTF  microscopic  images  showed  examples  of  WT   (A,  B)  and  Cnn2  KO  (C,  D)  mouse  fibroblasts.     Figure   3.   Deletion   of   calponin   2   increases   CTF   of   adult   mouse   fibroblasts.   CTFM   data   showed   that   the stress data (Pa and pJ) normalized   to   individual   cell   areas   (µm2),   Cnn2   KO   cells   had   significantly   higher   root   mean   square   traction   (RMST)   (A),   net   contractile   moment   (NCM)  (B),  and  total  strain  energy  (TSE)  (C)  than  that  of  WT  cells  (*P