Densities and Viscosities of Binary Mixtures of Vitamin K3 with

Apr 10, 2008 - M. Habibullah , Kamalendra N. Das , Ismail M. M. Rahman , M. Ashraf Uddin , Khaled Saifuddin , Koichi Iwakabe , and Hiroshi Hasegawa...
0 downloads 0 Views 68KB Size
1110

J. Chem. Eng. Data 2008, 53, 1110–1115

Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K Cheng-Ying Song,* Hong-Zhi Shen, Jian-Hong Zhao, Liu-Cheng Wang, and Fu-An Wang College of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China

The densities and viscosities for binary mixtures of vitamin K3 + benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene, respectively, have been determined experimentally under normal atmospheric pressure over the entire molality range from (303.15 to 333.15) K. The apparent molar volumes of vitamin K3 were calculated from experimental measurements. Results were fit to obtain the appropriate parameters and standard deviations between the measured and fitted values.

Table 1. Comparison of Experimental and Literature Values of Density, G, and Viscosity, η, for Pure Compounds

Introduction The density and viscosity are important basic data used in chemical engineering designs, solution theory, and molecular thermodynamics. Vitamin K3 (2-methyl-1,4-naphthoquinone), which displays good antihemorrhagic activity, is an important compound in medical and dietary applications and a synthetic intermediate of vitamin K with wide uses and optimum application prospects.1,2 In the synthesis and purification process of vitamin K3, it is useful to know the physical properties of vitamin K3 + organic solvents. However, a survey of the literature shows that very few measurements have been made on the physical properties of binary mixtures for vitamin K3 + aromatic hydrocarbons. Song et al.3,4 have reported the solubility data of vitamin K3 in aromatic hydrocarbons and water + alcohols, respectively. Nevertheless, to our knowledge, no density and viscosity data on mixtures for vitamin K3 + aromatic hydrocarbons were previously reported in the literature. In this work, densities and viscosities for vitamin K3 + benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene binary mixtures have been measured under normal atmospheric pressure over the entire molality range from (303.15 to 333.15) K. From measurements of densities, the apparent molar volumes of vitamin K3 were calculated. Results were fit to obtain the appropriate parameters and standard deviations between the measured and fitted values.

liquid benzene

toluene

ethylbenzene

* Corresponding author. E-mail: [email protected]. Fax: +0086-37167781027.

η/mPa · s exptl lit.

303.15

0.8680

0.86817 0.86838

0.5640

308.15 313.15 318.15 323.15

0.8622 0.8570 0.8516 0.8463

0.862959

0.5232 0.5001 0.4714 0.4397

328.15 333.15

0.8407 0.8354

0.84688

0.4145 0.3932 0.85767 8

303.15

0.8575

308.15 313.15

0.8529 0.8479

0.5253

318.15 323.15

0.8435 0.8387

328.15 333.15 303.15

0.8340 0.8291 0.8580

>308.15

0.8535

313.15 318.15 323.15

0.8495 0.8447 0.8405

0.84227

328.15 333.15 303.15

0.8359 0.8316 0.8721

0.8717412

308.15 313.15 318.15 323.15

0.8677 0.8640 0.8597 0.8555

328.15 333.15 303.15

0.8512 0.8471 0.8556

308.15

0.8511

313.15 318.15 323.15

0.8469 0.8424 0.8383

328.15 333.15 303.15

0.8337 0.8296 0.8520

308.15

0.8477

313.15 318.15 323.15

0.8432 0.8387 0.8345

328.15 333.15

0.8299 0.8251

0.8578 0.852859 0.84827 0.83908 0.838710

0.8578011 0.8581012 0.854159 13

0.4933 0.4717 0.4491 0.4244 0.4082 0.3835 0.5986

o-xylene

m-xylene

p-xylene

14

0.867389 0.85379

14

0.8558112 0.8558715 0.851579 0.8514016 0.8382514

0.8522512 0.8522717 0.847879 0.84797 0.83490

14

0.5665 0.56277 0.564318 0.52187 0.50319 0.43818 0.44219 0.3955 0.39219 0.5235 0.52267 0.49207 0.46597 0.47119 0.4245 0.42168 0.390520 0.598114 0.597620

0.5691

0.85343

Experimental Section Materials. Analytical reagent vitamin K3 obtained from Peking Biotech. Co. Ltd. was further purified by recrystallizations, and its purity was determined by UV spectrophotometry (type UV-2401PC, Shimadzu Co. Ltd.) to be 0.997 in mass fraction. Benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene which were obtained from Shanghai Chemical Reagent Co. were purified by distillation. The mass fractions were determined by gas chromatography (type GC2010 Shimadzu Co. Ltd.) using a DB-1 capillary column with a FID detector, and they were 0.995, 0.995, 0.997, 0.997, 0.994, and 0.997, respectively. All the chemicals were stored over molecular sieve before use. Water used in experiments was doubledistilled water, and the conductivity was less than 1 · 10-4 S · m-1.

T/K

F/g · cm-3 exptl lit.

0.5372 0.5060 0.4805 0.4566 0.4371 0.7604 0.6900 0.6451 0.6117 0.5711 0.5433 0.5105 0.5490

0.536920 0.4825 0.482914 0.441020 0.760214 0.70938 0.62719 0.5615 0.555414 0.54948 0.547114

0.5201 0.4967 0.4817 0.4440 0.4350 0.4130 0.5726 0.5374 0.5178 0.4882 0.4595

0.49719 0.44448 0.4455 0.571414 0.56717 0.56947 0.53557 0.51319 0.459914 0.458021

0.4439 0.4189

Apparatus and Procedure. The density was measured with five Ostwald-Sprengel-type pycnometers having a bulb volume

10.1021/je7006549 CCC: $40.75  2008 American Chemical Society Published on Web 04/10/2008

Journal of Chemical & Engineering Data, Vol. 53, No. 5, 2008 1111 Table 2. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for Benzene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

η

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0334 0.0889 0.1332

0.8680 0.8694 0.8718 0.8737

142.50 141.01 140.64

T ) 303.15 K 0.5640 0.1778 0.5788 0.2215 0.5842 0.2681 0.5880

0.8756 0.8775 0.8795

140.40 139.91 139.58

0.5927 0.6006 0.6063

0.0000 0.0334 0.0889 0.1332

0.8622 0.8636 0.8660 0.8679

143.08 141.57 141.20

T ) 308.15 K 0.5232 0.1778 0.5408 0.2215 0.5443 0.2681 0.5484

0.8698 0.8717 0.8737

140.96 140.46 140.13

0.5519 0.5598 0.5667

0.0000 0.0334 0.0889 0.1332

0.8570 0.8584 0.8608 0.8627

143.60 142.08 141.70

T ) 313.15 K 0.5001 0.1778 0.5057 0.2215 0.5096 0.2681 0.5142

0.8646 0.8665 0.8685

141.46 140.95 140.62

0.5189 0.5242 0.5309

0.0000 0.0334 0.0889 0.1332

0.8516 0.8530 0.8554 0.8573

144.15 142.61 142.23

T ) 318.15 K 0.4714 0.1778 0.4782 0.2215 0.4811 0.2681 0.4847

0.8592 0.8611 0.8631

141.98 141.45 141.13

0.4893 0.4945 0.5000

0.0000 0.0334 0.0889 0.1332

0.8463 0.8477 0.8501 0.8520

144.69 143.13 142.74

T ) 323.15 K 0.4397 0.1778 0.4467 0.2215 0.4489 0.2681 0.4528

0.8539 0.8558 0.8578

142.49 141.97 141.64

0.4566 0.4610 0.4647

0.0000 0.0334 0.0889 0.1332

0.8407 0.8421 0.8445 0.8464

145.26 143.68 143.28

T ) 328.15 K 0.4145 0.1778 0.4206 0.2215 0.4235 0.2681 0.4266

0.8483 0.8502 0.8522

143.03 142.51 142.17

0.4318 0.4347 0.4388

0.0000 0.0334 0.0889 0.1332

0.8354 0.8368 0.8392 0.8411

145.80 144.20 143.81

T ) 333.15 K 0.3932 0.1778 0.3946 0.2215 0.3967 0.2681 0.4003

0.8430 0.8449 0.8469

143.55 143.02 142.68

0.4069 0.4084 0.4121

of 25 cm3 and an internal capillary diameter of about 1 mm. The internal volumes of the pycnometers were calibrated with pure water at each of the measured temperatures, and the densities of water were taken from the literature.5 The thoroughly cleaned and perfectly dried pycnometers were first weighed on an electronic balance (type AW120, Shimadzu Co.) accurate to within ( 0.0001 g and then filled with experimental liquid and immersed in a thermostat (type 501, Shanghai Laboratory Instrument Works Co. Ltd.) controlled to within ( 0.01 K. After thermal equilibrium had been achieved at the required temperature, the pycnometers were removed from the thermostat and properly cleaned, dried, and weighed. The density was then determined from the mass of the sample and the volume of the pycnometers. The readings from five pycnometers were averaged to determine the density. Uncertainties in density measurements were estimated to be within ( 0.0002 g · cm-3. The viscosity was measured using a commercial Ubbelohde capillary viscometer (type 1836-A, Shanghai Glass Instruments Factory, China) of 0.55 mm diameter, calibrated with doubledistilled water at temperatures of (303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K. A thoroughly cleaned and perfectly dried viscometer, filled with experimental liquid, was placed vertically in an insulated jacket, wherein constant temperature (( 0.01 K) was maintained by circulating water from a thermostatically controlled water bath at the required temperature. After thermal stability was attained, the flow times of the liquids were recorded with an electronic digital stopwatch correct to ( 0.01 s. At least five repetitions of each datum point obtained were reproducible to ( 0.05 s, and the results were averaged. Since all flow times were greater than 200 s and the capillary diameter (0.55 mm) was far less than its length (100 mm), the kinetic energy and end corrections, respectively, were

found to be negligible. The viscosity η was then calculated from the relationship6

η Ft ) ηw Fwtw

(1)

where η, F, and t and ηw, Fw, and tw are the viscosities, densities, and flow time of the mixture and water, respectively. The values of the viscosity and density of pure water come from the literature.5 The overall uncertainty of the viscosity measurements is dependent on the equilibrium stability of the viscometer, the time of flow, and the change of density, and viscosity values are uncertain to within the range ( 0.0030 mPa · s.

Results and Discussion The measured densities and viscosities of benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene together with literature values are included in Table 1, and it is clear from Table 1 that the experimental results show good agreement with the literature data. The experimental densities and viscosities at different temperatures are listed in Tables 2 to 7. In terms of the data shown in Tables 2 to 7, which showed the dependencies of density and viscosity on temperature and concentration, were plotted, respectively. It can be found that the density and viscosity increase with increasing concentration of vitamin K3 at constant temperature and decrease with increasing temperature at a fixed concentration of vitamin K3. The dependence of density and viscosity on temperature and concentration has been calculated by means of the Vogel–Tamman–Fulcher (VTF) equation22

1112 Journal of Chemical & Engineering Data, Vol. 53, No. 5, 2008 Table 3. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for Toluene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

η

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0454 0.0909 0.1365

0.8575 0.8596 0.8617 0.8638

137.55 137.28 137.02

T ) 303.15 K 0.5253 0.1817 0.5365 0.2270 0.5440 0.2728 0.5487

0.8659 0.8680 0.8701

136.58 136.22 135.98

0.5572 0.5612 0.5683

0.0000 0.0454 0.0909 0.1365

0.8529 0.8550 0.8571 0.8592

137.95 137.68 137.41

T ) 308.15 K 0.4933 0.1817 0.5088 0.2270 0.5160 0.2728 0.5185

0.8613 0.8634 0.8655

136.98 136.61 136.37

0.5246 0.5277 0.5346

0.0000 0.0454 0.0909 0.1365

0.8479 0.8500 0.8521 0.8542

138.38 138.11 137.84

T ) 313.15 K 0.4717 0.1817 0.4814 0.2270 0.4880 0.2728 0.4902

0.8563 0.8584 0.8605

137.40 137.03 136.79

0.4955 0.4987 0.5051

0.0000 0.0454 0.0909 0.1365

0.8435 0.8456 0.8477 0.8498

138.77 138.50 138.22

T ) 318.15 K 0.4491 0.1817 0.4535 0.2270 0.4582 0.2728 0.4630

0.8519 0.8540 0.8561

137.78 137.40 137.16

0.4677 0.4753 0.4775

0.0000 0.0454 0.0909 0.1365

0.8387 0.8408 0.8429 0.8450

139.19 138.91 138.64

T ) 323.15 K 0.4244 0.1817 0.4321 0.2270 0.4362 0.2728 0.4390

0.8471 0.8492 0.8513

138.19 137.81 137.57

0.4430 0.4459 0.4515

0.0000 0.0454 0.0909 0.1365

0.8340 0.8361 0.8382 0.8403

139.60 139.32 139.05

T ) 328.15 K 0.4082 0.1817 0.4130 0.2270 0.4147 0.2728 0.4176

0.8424 0.8445 0.8466

138.59 138.21 137.96

0.4208 0.4242 0.4303

0.0000 0.0454 0.0909 0.1365

0.8291 0.8312 0.8333 0.8354

140.03 139.75 139.47

T ) 333.15 K 0.3835 0.1817 0.3872 0.2270 0.3909 0.2728 0.3927

0.8375 0.8396 0.8417

139.01 138.63 138.38

0.3980 0.4065 0.4137

Table 4. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for Ethylbenzene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

η

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0451 0.0903 0.1354

0.8580 0.8599 0.8618 0.8637

143.13 142.88 142.54

T ) 303.15 K 0.5986 0.1805 0.6083 0.2256 0.6164 0.2710 0.6218

0.8656 0.8675 0.8694

142.22 141.90 141.65

0.6317 0.6333 0.6361

0.0000 0.0451 0.0903 0.1354

0.8535 0.8554 0.8573 0.8592

143.58 143.33 142.99

T ) 308.15 K 0.5691 0.1805 0.5735 0.2256 0.5794 0.2710 0.5853

0.8611 0.8630 0.8649

142.66 142.34 142.08

0.5893 0.5948 0.5991

0.0000 0.0451 0.0903 0.1354

0.8495 0.8514 0.8533 0.8552

143.98 143.73 143.38

T ) 313.15 K 0.5372 0.1805 0.5439 0.2256 0.5484 0.2710 0.5543

0.8571 0.8590 0.8609

143.06 142.73 142.48

0.5570 0.5611 0.5673

0.0000 0.0451 0.0903 0.1354

0.8447 0.8466 0.8485 0.8504

144.47 144.21 143.87

T ) 318.15 K 0.5060 0.1805 0.5104 0.2256 0.5148 0.2710 0.5192

0.8523 0.8542 0.8561

143.53 143.21 142.95

0.5241 0.5283 0.5330

0.0000 0.0451 0.0903 0.1354

0.8405 0.8424 0.8443 0.8462

144.89 144.63 144.28

T ) 323.15 K 0.4805 0.1805 0.4832 0.2256 0.4881 0.2710 0.4937

0.8481 0.8500 0.8519

143.95 143.62 143.36

0.4969 0.5015 0.5054

0.0000 0.0451 0.0903 0.1354

0.8359 0.8378 0.8397 0.8416

145.36 145.10 144.75

T ) 328.15 K 0.4566 0.1805 0.4615 0.2256 0.4648 0.2710 0.4715

0.8435 0.8454 0.8473

144.40 144.08 143.81

0.4740 0.4758 0.4806

0.0000 0.0451 0.0903 0.1354

0.8316 0.8335 0.8354 0.8373

145.80 145.53 145.18

T ) 333.15 K 0.4371 0.1805 0.4405 0.2256 0.4440 0.2710 0.4475

0.8392 0.8411 0.8430

144.84 144.50 144.24

0.4510 0.4546 0.4581

Journal of Chemical & Engineering Data, Vol. 53, No. 5, 2008 1113 Table 5. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for o-Xylene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

#x03B7;

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0436 0.0884 0.1326

0.8721 0.8739 0.8758 0.8777

0.8796 0.8816 0.8835

140.42 139.52 139.17

0.7658 0.7765 0.7833

0.0000 0.0436 0.0884 0.1326 0.0000 0.0436 0.0884 0.1326

0.8677 0.8695 0.8714 0.8733 0.8640 0.8658 0.8677 0.8696

0.8752 0.8772 0.8791

140.84 139.93 139.59

0.7159 0.7260 0.7348

0.8715 0.8735 0.8754

141.20 140.29 139.94

0.6742 0.6810 0.6888

0.0000 0.0436 0.0884 0.1326

0.8597 0.8615 0.8634 0.8653

0.0000 0.0436 0.0884 0.1326

0.8555 0.8573 0.8592 0.8611

0.0000 0.0436 0.0884 0.1326

0.8512 0.8530 0.8549 0.8568

0.0000 0.0436 0.0884 0.1326

0.8471 0.8489 0.8508 0.8527

142.85 141.80 141.00

T ) 303.15 K 0.7404 0.1767 0.7432 0.2215 0.7496 0.2656 0.7581

143.68 142.60 141.79

T ) 308.15 K 0.6900 0.1767 0.6988 0.2215 0.7021 0.2656 0.7081 0.6451 0.1767 0.6532 0.2215 0.6592 0.2656 0.6687

144.12 143.03 142.21

T ) 318.15 K 0.6117 0.1767 0.6212 0.2215 0.6256 0.2656 0.6319

0.8672 0.8692 0.8711

141.61 140.69 140.34

0.6407 0.6473 0.6525

144.55 143.45 142.63

T ) 323.15 K 0.5711 0.1767 0.5792 0.2215 0.5832 0.2656 0.5905

0.8630 0.8650 0.8669

142.02 141.09 140.74

0.5967 0.6011 0.6087

144.99 143.89 143.05

T ) 328.15 K 0.5433 0.1767 0.5498 0.2215 0.5531 0.2656 0.5601

0.8587 0.8607 0.8626

142.44 141.50 141.15

0.5665 0.5706 0.5773

145.42 144.30 143.46

T ) 333.15 K 0.5105 0.1767 0.5177 0.2215 0.5202 0.2656 0.5277

0.8546 0.8566 0.8585

142.84 141.90 141.54

0.5309 0.5358 0.5412

143.30 142.23 141.43

Table 6. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for m-Xylene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

η

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0452 0.0902 0.1352

0.8556 0.8576 0.8596 0.8616

140.47 140.01 139.64

T ) 303.15 K 0.5490 0.1802 0.5673 0.2254 0.5771 0.2720 0.5802

0.8636 0.8656 0.8677

139.29 139.01 138.51

0.5844 0.5902 0.6031

0.0000 0.0452 0.0902 0.1352

0.8511 0.8531 0.8551 0.8571

140.89 140.42 140.05

T ) 308.15 K 0.5201 0.1802 0.5351 0.2254 0.5422 0.2720 0.5467

0.8591 0.8611 0.8632

139.70 139.42 138.92

0.5523 0.5566 0.5654

0.0000 0.0452 0.0902 0.1352

0.8469 0.8489 0.8509 0.8529

141.28 140.81 140.44

T ) 313.15 K 0.4967 0.1802 0.5098 0.2254 0.5144 0.2720 0.5188

0.8549 0.8569 0.8590

140.09 139.80 139.29

0.5237 0.5284 0.5352

0.0000 0.0452 0.0902 0.1352

0.8424 0.8444 0.8464 0.8484

141.70 141.23 140.85

T ) 318.15 K 0.4817 0.1802 0.4864 0.2254 0.4931 0.2720 0.4977

0.8504 0.8524 0.8545

140.50 140.21 139.70

0.5013 0.5050 0.5117

0.0000 0.0452 0.0902 0.1352

0.8383 0.8403 0.8423 0.8443

142.09 141.61 141.23

T ) 323.15 K 0.4440 0.1802 0.4593 0.2254 0.4642 0.2720 0.4669

0.8463 0.8483 0.8504

140.87 140.58 140.07

0.4711 0.4753 0.4817

0.0000 0.0452 0.0902 0.1352

0.8337 0.8357 0.8377 0.8397

142.52 142.04 141.66

T ) 328.15 K 0.4350 0.1802 0.4381 0.2254 0.4432 0.2720 0.4456

0.8417 0.8437 0.8458

141.30 141.00 140.48

0.4497 0.4539 0.4630

0.0000 0.0452 0.0902 0.1352

0.8296 0.8316 0.8336 0.8356

142.91 142.43 142.04

T ) 333.15 K 0.4130 0.1802 0.4148 0.2254 0.4198 0.2720 0.4242

0.8376 0.8396 0.8417

141.67 141.38 140.85

0.4269 0.4290 0.4342

1114 Journal of Chemical & Engineering Data, Vol. 53, No. 5, 2008 Table 7. Density (G), Viscosity (η), and Apparent Molar Volumes (VΦ,2) for p-Xylene + Vitamin K3 from (303.15 to 333.15) K m

F

VΦ,2

η

m

F

VΦ,2

η

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

mol · kg-1

g · cm-3

cm3 · mol-1

mPa · s

0.0000 0.0454 0.0902 0.1361

0.8520 0.8540 0.8560 0.8581

141.07 140.34 139.35

T ) 303.15 K 0.5726 0.1815 0.5859 0.2267 0.5904 0.2724 0.5958

0.8601 0.8621 0.8641

139.29 139.07 138.92

0.6048 0.6092 0.6161

0.0000 0.0454 0.0902 0.1361

0.8477 0.8497 0.8517 0.8538

141.48 140.74 139.74

T ) 308.15 K 0.5374 0.1815 0.5528 0.2267 0.5581 0.2724 0.5631

0.8558 0.8578 0.8598

139.68 139.45 139.31

0.5716 0.5748 0.5820

0.0000 0.0454 0.0902 0.1361

0.8432 0.8452 0.8472 0.8493

141.90 141.16 140.15

T ) 313.15 K 0.5178 0.1815 0.5222 0.2267 0.5274 0.2724 0.5349

0.8513 0.8533 0.8553

140.08 139.86 139.72

0.5396 0.5430 0.5477

0.0000 0.0454 0.0902 0.1361

0.8387 0.8407 0.8427 0.8448

142.33 141.58 140.55

T ) 318.15 K 0.4882 0.1815 0.4999 0.2267 0.5047 0.2724 0.5097

0.8468 0.8488 0.8508

140.49 140.26 140.12

0.5152 0.5183 0.5242

0.0000 0.0454 0.0902 0.1361

0.8345 0.8365 0.8385 0.8406

142.73 141.97 140.94

T ) 323.15 K 0.4595 0.1815 0.4686 0.2267 0.4737 0.2724 0.4770

0.8426 0.8446 0.8466

140.87 140.65 140.50

0.4824 0.4864 0.4907

0.0000 0.0454 0.0902 0.1361

0.8299 0.8319 0.8339 0.8360

143.16 142.40 141.36

T ) 328.15 K 0.4439 0.1815 0.4467 0.2267 0.4509 0.2724 0.4560

0.8380 0.8400 0.8420

141.29 141.07 140.92

0.4615 0.4633 0.4698

0.0000 0.0454 0.0902 0.1361

0.8256 0.8276 0.8296 0.8317

143.57 142.80 141.75

T ) 333.15 K 0.4189 0.1815 0.4225 0.2267 0.4258 0.2724 0.4309

0.8337 0.8357 0.8377

141.69 141.46 141.31

0.4364 0.4384 0.4429

Table 8. Coefficient of Equation 2 and Standard Deviation, σ, for G and η for Different Systems systems -3

benzene + vitamin K3

F/g · cm η/mPa · s F/g · cm-3 η/mPa · s F/g · cm-3 η/mPa · s F/g · cm-3 η/mPa · s F/g · cm-3 η/mPa · s F/g · cm-3 η/mPa · s

toluene + vitamin K3 ethylbenzene + vitamin K3 o-xylene + vitamin K3 m-xylene + vitamin K3 p-xylene + vitamin K3

(

F ) P1 exp

P2 + P3m T - P4

)

P1

P2

P3

P4

102 · σ

0.5542 49.0000 1.1962 0.0432 0.4492 0.0683 0.6169 0.0421 0.6281 0.0472 1.1683 0.0392

148.6659 1686.1000 107.8169 517.1752 389.3177 373.1751 116.8163 600.5687 86.6281 529.5420 102.9023 604.0916

17.2963 -79.0000 -16.6108 53.3071 30.4710 35.9872 17.4809 51.0830 15.4146 56.2024 -16.3655 55.5911

-28.2062 681.4000 627.0509 97.0893 -298.4230 131.9381 -34.3732 93.3713 22.8961 88.9173 629.0201 78.6688

0.037 0.37 0.025 0.26 0.027 0.18 0.036 0.32 0.034 0.38 0.026 0.30

(2)

where F ) (F or η); F and η are the density and viscosity of solution, respectively; m is the molality of vitamin K3; T is the absolute temperature; and P1, P2, P3, and P4 are the curve-fit coefficients. The values are listed in Table 8 along with standard deviations. The standard deviation is defined by

[∑ ( p

σ)

(Yiexptl - Yicalcd)2

i)1



]

(p - n))

1 2

(3)

where p is the number of experimental points and n is the number of parameters. Yicalcd and Yiexptl refer to the calculated values from the equation and to the experimental value. From Table 8, it can be found that the standard deviations for densities and viscosities of binary mixtures for vitamin K3 + aromatic hydrocarbons is less than 3.7 · 10-4 g · cm-3 and 3.8 · 10-3 mPa · s, respectively. We conclude that eq 2 can be successfully used for the correlation of the investigated physical properties.

The apparent molar volume of vitamin K3, VΦ,2, is given by the following equation

VΦ,2 )

3 M 10 (F - F0) F mFF0

(4)

where M is the molar mass of vitamin K3; F is the density of the solution; and F0 is the density of pure solvent. The values of the apparent molar volume of vitamin K3 in pure solvent have also been given in Tables 2 to 7. The apparent molar volume increases as temperature increases at fixed concentration of vitamin K3 and decreases with concentration at the same temperature. These values are important because they form the basis for understanding molecular interactions.

Literature Cited (1) Dubbs, M. D.; Gupta, R. B. Solubility of vitamin E (R-tocopherol) and vitamin K3 (menadione) in ethanol-water mixture. J. Chem. Eng. Data 1998, 43, 590–591. (2) Shigekazu, Y. Chromium (VI) oxide-catalyzed oxidation of arenas with periodic acid. Tetrahedron Lett. 2001, 42, 3355–3357.

Journal of Chemical & Engineering Data, Vol. 53, No. 5, 2008 1115 (3) Song, C. Y.; Shen, H. Z.; Wang, L. C.; Zhao, J. H.; Wang, F. A. Solubilities of Vitamin K3 in benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene between (299.44 and 344.24) K. J. Chem. Eng. Data 2008, 53, 283–285. (4) Song, C. Y.; Shen, H. Z.; Wang, L. C.; Zhao, J. H.; Wang, F. A. Solubilities of 2-methyl-1,4-naphthoquinone in water + (methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol, and glycerin, respectively) from (293.15 to 337.92) K. J. Chem. Eng. Data 2007, 52, 2018–2019. (5) Dean, J. A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, 1999. (6) Nikam, P. S.; Kharat, S. J. Excess molar volumes and deviations in viscosity of binary mixtures of N,N-dimethylformamide with aniline and benzonitrile at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2003, 48, 972–976. (7) Exarchos, N. C.; Tasioula-Margar, M.; Demetropoulos, I. N. Viscosities and Densities of Dilute Solutions of Glycerol Trioleate + Octane, + p-Xylene, + Toluene, and + Chloroform. J. Chem. Eng. Data 1995, 40, 567–571. (8) Assael, M. J.; Papadaki, M.; Wakeham, W. A. Measurements of the Viscosities of Benzene, Toluene, and m-Xylene at Pressure up to 80 Mpa. Int. J. Thermophys. 1991, 12 (3), 449–457. (9) George, J.; Sastry, N. V. Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for CmH2m+1(OCH2CH2) nOH (m ) 1 or 2 or 4 and n ) 1) + benzene, + toluene, + (o-, m-, and p-) xylenes, + ethylbenzene, and + cyclohexane. J. Chem. Eng. Data 2003, 48, 977– 989. (10) Malhotra, R.; Woolf, L. A. Temperature and density dependence of the viscosities of octane and toluene. J. Chem. Eng. Data 1997, 42, 1254–1260. (11) Mehta, S. K.; Ram, G.; Sharma, S.; Sharma, A. K. Influence of substitution in the aromatic ring on the behaviour of thermodynamic properties of pyrrolidin-2-one and aromatic hydrocarbons. J. Mol. Liq. 2004, 111, 133–140. (12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organics SolVents: Physical Properties and Methods of Purification, II, 4th ed., Wiley/ Interscience: New York, 1986.

(13) Deng, J. H.; Tan, H. F.; Yang, Y. Y.; Zai, S. B.; Ouyang, G. F.; Huang, Z. Q. Densities and surface tensions of propyl acetate + xylenes or + ethylbenzene from (298.15 to 308.15) K. J. Chem. Eng. Data 2007, 52, 1131–1135. (14) Yang, C. S.; Ma, P. S.; Zhou, Q. Excess molar volumes and viscosities of binary mixtures of sulfolane with benzene, toluene, ethylbenzene, p-xylene, o-xylene, and m-xylene at 303.15 and 323.15 K and atmospheric pressure. J. Chem. Eng. Data 2004, 49, 881–885. (15) Serrano, L.; Silva, J. A.; Farelo, F. Densities and viscosities of binary and ternary liquid systems containing xylenes. J. Chem. Eng. Data 1990, 35, 288–291. (16) Goud, B. B.; Venkatesu, P.; Rao, M. V. P. Excess volumes and viscosities of isomeric xylenes with o-nitrotoluene or m-nitrotoluene at 308.15 K. J. Chem. Eng. Data 1999, 44, 731–734. (17) Ramachandran, D.; Rambabu, K.; Krishnan, K. M.; Venkateswarlu, P.; Raman, G. K. Volume of mixing, speed of sound, and viscosity of butyl acetate with xylene at 303.15 K. J. Chem. Eng. Data 1995, 40, 815–817. (18) Emmerling, U.; Figurski, G. Densities and kinematic viscosities for the systems benzene + methyl formate, benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate. J. Chem. Eng. Data 1998, 43, 289–292. (19) Weast, R. C. Handbook of Chemistry and Physics, 51st ed.; The Chemical Rubber CO.: 1970–1971. (20) Singh, R. P.; Sinha, C. P.; Das, J. C.; Ghosh, P. Viscosity and density of ternary mixtures for toluene, ethylbenzene, bromobenzene, and 1-hexanol. J. Chem. Eng. Data 1989, 34, 335–338. (21) Kashiwagi, H.; Makita, T. Viscosities of Twelve Hydrocarbon Liquid in the Temperature Range 298–348 K at Pressures up to 110 Mpa. Int. J. Thermorphys. 1982, 3, 289–305. (22) Sadeghi, R.; Zafarani-Moattar, M. T. Thermodynamics of aqueous solutions of polyvinylpyrrolidone. J. Chem. Thermodyn. 2004, 36, 665– 670.

Received for review November 8, 2007. Accepted February 19, 2008.

JE7006549