Densities and Viscosities of Polyhydroxy Solutes in Aqueous

Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India. J. Chem. Eng. Data , 2016, 61 (5), pp 1756–1776. DOI: 10.1021/acs.jced...
2 downloads 14 Views 2MB Size
Article pubs.acs.org/jced

Densities and Viscosities of Polyhydroxy Solutes in Aqueous Tetraethylammonium Bromide Solutions at Different Temperatures Parampaul K. Banipal,* Sonika Arti, and Tarlok S. Banipal Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India S Supporting Information *

ABSTRACT: Infinite-dilution standard partial molar volumes, V°2 , and the Jones−Dole viscosity B-coefficients of some saccharides and their polyols, (−)-D-arabinose, (+)-D-arabitol, (+)-D-xylose, xylitol, (−)-L-sorbose, D-sorbitol, (+)-D-galactose, galactitol, (+)-Dglucose, and (+)-D-maltose monohydrate, have been obtained in aqueous (0.05, 0.5, 1.0, and 2.0) mol·kg−1 tetraethylammonium bromide (Et4NBr) solutions from apparent molar volumes, V2,ϕ, and relative viscosities, ηr data, respectively, at (288.15, 298.15, 308.15, and 318.15) K under atmospheric pressure, p = 0.1 MPa. The corresponding transfer parameters (ΔtV°2 and ΔtB) along with isobaric expansion coefficients, (∂V2°/∂T)P, their second-order derivatives (∂2V2°/∂T2)P, pair (VAB, ηAB), and triplet (VABB, ηABB) volumetric, and rheological interaction coefficients have been determined, because these parameters are sensitive to structural changes occurring in solutions due to temperature and concentration changes. Pentoses, hexoses, and their polyols exhibit negative transfer volumes in presence of tetraethylammonium bromide, which indicates the dominance of hydrophobic−ionic interactions. The interaction coefficient values are higher for polyols having nonplanar sickle conformations. Also the results have been compared with those in presence of ammonium bromide. The results confirm that the solute−solvent/cosolute interactions are dependent on the stereochemistry and molecular conformations of the polyhydroxy solute and cosolute.

1. INTRODUCTION

Salt effects on water have been most commonly described in terms of their chaotropicity or kosmotropicity. Tetra-nalkylammonium salts (R4NBr, R = CH3, C2H5) are a separate class of electrolytes due to their unusual properties in solutions, apparently caused by their large size hydrophobic alkyl chains.15−19 Tetra-n-alkylammonium halides destabilize lysozyme by interacting with the exposed hydrophobic groups of the denatured state and simultaneously weakening the hydrophobic interactions between the nonpolar groups of the protein. It has been reported that tetra-n-alkylammonium halides dissociate phycocyanin, a protein that exists in solution as several well characterized aggregates.20−22 Hydrophobic interactions between the hydrophobic part of protein and bulky alkyl groups on R4N+ ions play an essential role in inhibiting aggregation properties of this protein.23,24 In view of increasing biological, pharmaceutical, and food applications, we have undertaken a systematic study of volumetric and rheological properties of some saccharides and their polyols in pure water and in Et4NBr(aq) solutions. Recently we have reported4 the influence of NH4Br on solvation behavior of polyhydroxy solutes in aqueous solutions. Results have been compared in both cosolutes. An attempt has been made to interpret the physicochemical properties data in terms of the stereochemistry

The solution properties of saccharides and their polyols in mixed aqueous media are of considerable interest in various aspects of basic research and in food, pharmacy, cosmetics, and chemical industries. Xylitol is broadly used as sweetener, and sorbitol is used as stabilizing agent in the food industry as well as in pharmaceutical formulations since it is harmless upon ingestion.1,2 Myo-inositol is an essential nutrient for most living cells including protozoa.3 Binary and ternary aqueous solutions of saccharides, inorganic salts, alcohols, and polyols can be used as osmotic agents and to adjust the water activity and pH in order to reduce the growth of contaminated microorganisms.4,5 D-Mannitol is used as hyperosmolar solution in the therapy of elevated intracranial pressure in brain trauma. The native conformation of the globular proteins under external osmotic stress such as dehydration, temperature, variable pH, freezing, high salinity, and internal stress like high concentration of protein denaturants can be stabilized by naturally occurring osmolytes such as polyols called “protective osmolytes”.6−8 Disaccharides are well-known for their ability to preserve life in cells, organisms, and biomolecules against environmental stresses. The organisms exploit the water structuring characteristics of the solutes in many ways, such as to modify the viscosity of cellular fluids and to protect against freezing or dehydration. Volumetric and rheological data will be helpful in the study of protein stability and antidesiccation mechanisms.9−14 © 2016 American Chemical Society

Received: November 8, 2015 Accepted: April 12, 2016 Published: April 26, 2016 1756

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

3. RESULTS AND DISCUSSION 3.1. Apparent Molar Volumes. The apparent molar volumes, V2,ϕ, of various saccharides and their polyols have been determined in mB {molality of Et4NBr (cosolute)} = (0.05, 0.5, 1.0, and 2.0) mol·kg−1 aqueous solutions of Et4NBr at T = (288.15, 298.15, 308.15, and 318.15) K from the density, ρ, data using the following relation:

of polyhydroxy solutes and further to correlate with their solvation behavior.

2. EXPERIMENTAL SECTION 2.1. Chemicals. The abbreviation, mass fraction purity, and source of procurement of chemicals used are given in Table 1. Table 1. Specifications of the Chemicals Used chemical name (abbreviation) (−)-D-arabinose (Ara) (+)-D-arabitol (Arol) (+)-D-xylose (Xyl) xylitol (Xyol) (−)-L-sorbose (Sor) D-sorbitol

(Srol)

(+)-D-galactose (Gal) galactitol (Gaol) (+)-D-glucose (Glc) (+)-D-maltose monohydrate (Mal) tetraethylammonium bromide (Et4NBr)

source

CAS number

Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sisco Research Lab. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co.

10323-20-3 488-82-4

≥0.99 0.99

87-99-0

≥0.99

87-79-6

≥0.98

50-70-4

0.98

59-23-4

≥0.99

608-66-2

≥0.99

50-99-7

≥0.99

71-91-0

(1)

where M is the molar mass of solute, ρ0 is the density of solvent {pure H2O or (Et4NBr + H2O)}, mA is the molality of solute, and ρ is the density of solution. The values of densities for the solutes increase in presence of Et4NBr but decrease with increase in temperature (Table 2). However, the apparent molar volumes of solutions increase with temperature but decrease with increase in mB values (3-D plot of V2,ϕ versus mA of xylitol in 0.5 mol·kg−1 Et4NBr(aq) solutions over temperature range (288.15 to 318.15) K is given in Figure 1). The density data for (H2O + Et4NBr) have been compared with the literature data13,15,17,18,20,21,34 (given in Supporting Information, Figure S1a−d) and show good agreement at all studied temperatures in most cases. However, the ρ values for 1.0 mol· kg−1 Et4NBr solutions at 298.15 K reported by Banerjee and Kishore21 are higher (Figure S1b). The ρ values for (+)-Dglucose in (0.05, 0.50, 1.0, and 2.0) mol·kg−1 Et4NBr(aq) ternary solutions are in good agreement with the literature values13 at 0.05 mol·kg−1 Et4NBr (Figure S2a); however, at other molalities of Et4NBr, the literature values13 are higher than the present one (Figure S2b,c). Apparent molar volume of Et4NBr has an interesting feature in aqueous solution, because the plot of V2,ϕ versus mB shows a negative slope. This anomalous behavior may be attributed to the large Et4N+ cation, which undergoes hydrophobic hydration or the “caging effect” of water molecules. According to Marcus22 for a large hydrophobic ion (R4N+) that has an alkyl or aryl group with radius, ri > 2.5 Ǻ , the electrostriction is negligible; therefore, the bulky R4N+ cation does not interact electrostatically with water molecules. The Et4N+ cation being hydrophobic in nature avoids contact with water and sits in the cavity created by the tetrahedrally arranged water molecules, resulting in a tighter packing and thus causing a decrease in volume. 3.2. Infinite-Dilution Partial Molar Volumes and Volumes of Transfer. The standard partial molar volumes (V2° = V2,ϕ ° ) at infinite-dilution were evaluated by least-squares fitting of the following equation to V2,ϕ data as:

0.99

58-86-6

6363-53-7

V2, ϕ = {M /ρ} − {(ρ − ρ0 )/(mA ρρ0 )}

mole fraction puritya

0.95 ≥0.99

a

as declared by supplier and also the samples were purified by drying over CaCl2 .

These chemicals were used after drying over CaCl2(anhyd) in a vacuum desiccator for 48 h at room temperature. All the solutions were prepared afresh on mass basis using a Mettler balance (model AB265-S) with a precision of ±0.01 mg in deionized water procured from Ultra UV/UF Rions lab water system. The specific conductance of deionized water was less than 1.29 × 10−4 S·m−1. The water was degassed before use to avoid microbubbles in solutions. 2.2. Methods. 2.2.1. Density Measurements. The densities of the solutions were measured by using a vibrating-tube digital densimeter (DMA 60/602, Anton Paar, Austria) with reproducibility better than ±3 × 10−3 kg·m−3 on average. The temperature of the water around the densimeter cell was controlled within ±0.01 K by using an efficient constant temperature bath (Julabo F25/Germany). The operation of the instrument was checked by determining densities of NaCl(aq) solutions, which agree very well with the literature values.25 2.2.2. Viscosity Measurements. The solution viscosities were measured by using an Ubbelohde-type capillary viscometer, calibrated by measuring the efflux time of water from (288.15 to 318.15) K. The efflux time was measured with a digital stopwatch with a resolution ±0.01 s for the average of at least four flow-time readings. The temperature of the thermostatic water bath (Julabo F25/Germany) was controlled within ±0.01 K. The measured standard uncertainty in viscosities is ±0.002 mPa·s. The viscosities, η, of solutions were determined by using the relation η/ρ = at − b/t, where ρ is the density of the solution, t is the efflux time, a and b are the viscometric constants.

V2, ϕ = V 2° + SvmA

(2)

where Sv is the experimental slope. The V2° values of solutes in water and their comparison with the literature values have been reported earlier.4 The V°2 values of pentoses, hexoses (except Gal at 288.15 and 298.15K), and their polyols are less in Et4NBr(aq) solutions than in water, and these values decrease with increase in mB values (Supporting Information, Table S1). However, the V°2 values are higher for Mal at all temperatures and for Gal (at higher temperatures only) in Et4NBr(aq) solutions than in water, and these values increase with increase in mB values. The V2° values increase with increase in temperature in each case. The standard partial molar volumes of transfer, ΔtV°2 , of polyhydroxy solutes from water to Et4NBr solutions were estimated as Δt V 2° = V 2° (in Et4NBr(aq) solutions) − V 2° (in H2O) 1757

(3)

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

mol·kg

−1

mBc = 0.05 mol·kg−1 0.00000 0.05017 0.07233 0.09072 0.10871 0.12574 0.14947 0.16591 0.19302 0.20740 mBc = 0.5 mol·kg−1 0.00000 0.05028 0.06958 0.08695 0.10823 0.12805 0.14893 0.16787 0.18770 0.20811 mBc = 1.0 mol·kg−1 0.00000 0.05115 0.07162 0.08965 0.10914 0.12714 0.15250 0.17179 0.18932 0.20557 mBc = 2.0 mol·kg−1 0.00000 0.04889 0.07019 0.09001 0.10768 0.13218

mAa 3

−1

89.16 89.31 89.44 89.55 89.71 89.85 89.98 90.09 90.23

88.52 88.62 88.70 88.78 88.88 88.97 89.08 89.15 89.20

87.34 87.40 87.47 87.52 87.61

1.017913 1.020938 1.022081 1.023102 1.024347 1.025491 1.026688 1.027764 1.028887 1.030028

1.035824 1.038906 1.040124 1.041189 1.042334 1.043383 1.044854 1.045960 1.046961 1.047889

1.060978 1.063945 1.065225 1.066407 1.067457 1.068899

V2,ϕ × 10 m ·mol 6

92.14 92.18 92.21 92.22 92.25 92.28 92.31 92.35 92.37

kg·m

T = 288.15 K

−3

1.001825 1.004718 1.005984 1.007030 1.008051 1.009012 1.010345 1.011263 1.012769 1.013567

ρ × 10

−3

1758

1.057937 1.061134 1.062382 1.063539 1.064560 1.065970

1.032567 1.035577 1.036768 1.037806 1.038921 1.039944 1.041379 1.042447 1.043424 1.044322

1.015985 1.018947 1.020069 1.021068 1.022281 1.023401 1.024574 1.025630 1.026733 1.027844

6

3

−1

V2,ϕ × 10 m ·mol

T = 298.15 K −3

88.71 88.79 88.82 88.91 88.98

89.93 90.02 90.13 90.24 90.33 90.43 90.59 90.65 90.73

90.43 90.53 90.68 90.85 90.99 91.12 91.24 91.33 91.49

93.46 93.56 93.66 93.74 93.85 93.95 94.05 94.16 94.24

b

(−)-D-arabinose (M = 150.13 × 10

kg·m

0.998859 1.001691 1.002926 1.003943 1.004932 1.005858 1.007147 1.008028 1.009477 1.010238

ρ × 10

−3

1.051906 1.054736 1.055954 1.057078 1.058069 1.059438

1.027253 1.030191 1.031351 1.032365 1.033452 1.034450 1.035846 1.036894 1.037842 1.038716

1.010170 1.013072 1.014170 1.015154 1.016349 1.017454 1.018610 1.019649 1.020731 1.021834

6

3

−1

90.17 90.26 90.35 90.47 90.58

91.46 91.55 91.66 91.77 91.86 91.98 92.10 92.19 92.28

91.79 91.92 91.98 92.10 92.21 92.31 92.41 92.51 92.62

94.64 94.78 94.89 94.97 95.09 95.19 95.32 95.43 95.52

V2,ϕ × 10 m ·mol

T = 308.15 K −3

kg·m

0.993878 0.996661 0.997872 0.998868 0.999839 1.000747 1.002011 1.002871 1.004293 1.005035

−1

kg·mol )

ρ × 10 −3

−3

kg·m

1.046828 1.049591 1.050781 1.051883 1.052858 1.054202

1.023501 1.026359 1.027484 1.028466 1.029521 1.030484 1.031841 1.032862 1.033779 1.034626

1.007208 1.010037 1.011111 1.012071 1.013237 1.014318 1.015445 1.016461 1.017521 1.018604

0.991993 0.994718 0.995906 0.996883 0.997834 0.998726 0.999965 1.000812 1.002198 1.002924

ρ × 10

−3

−3

91.61 91.67 91.73 91.78 91.86

93.09 93.23 93.37 93.48 93.61 93.71 93.81 93.91 94.00

93.35 93.41 93.48 93.59 93.67 93.77 93.86 93.93 94.01

95.89 95.99 96.09 96.17 96.27 96.37 96.47 96.62 96.72

V2,ϕ × 106 m3·mol−1

T = 318.15 K

Table 2. Densities, ρ, and Apparent Molar Volumes, V2,ϕ, of Polyhydroxy Solutes in Et4NBr(aq) Solutions over Temperature Range (288.15 to 318.15) K at Pressure (p = 0.1 MPa)

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

1759

100.00 100.11 100.21 100.32 100.44 100.51 99.29 99.32 99.37 99.42 99.46 99.49

1.038180 1.039277 1.040311 1.041236 1.042264 1.043183

1.063335 1.064151 1.065042 1.066569 1.067426 1.068168

1.004574 1.005537 1.006883 1.007672 1.008944 1.009981 1.010743

mBc = 0.05 mol·kg−1 0.04949 0.06704 0.09173 0.10639 0.13004 0.14947 0.16382 94.26 94.34 94.43 94.54 94.64 94.72 94.77

100.79 100.90 101.02 101.15 101.26 101.39

1.020454 1.021437 1.022308 1.023235 1.024281 1.025367

87.67 87.73 87.81

102.04 102.18 102.27 102.40 102.49 102.62

1.070110 1.072283 1.073473

1.004327 1.005281 1.006272 1.007154 1.008060 1.008976

= 2.0 mol·kg−1 0.15283 0.19009 0.21081

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

mBc = 0.05 mol·kg−1 0.05029 0.06980 0.09016 0.10854 0.12744 0.14686 mBc = 0.5 mol·kg−1 0.05064 0.07053 0.08835 0.10746 0.12919 0.15196 mBc = 1.0 mol·kg−1 0.04707 0.06930 0.09044 0.10953 0.13099 0.15020 mBc = 2.0 mol·kg−1 0.04771 0.06438 0.08270 0.11428 0.13216 0.14772

mBc

mAa mol·kg−1

Table 2. continued

1.001559 1.002505 1.003826 1.004603 1.005854 1.006867 1.007613

1.060543 1.061337 1.062199 1.063677 1.064501 1.065217

1.034883 1.035958 1.036971 1.037875 1.038885 1.039777

1.018488 1.019458 1.020322 1.021244 1.022284 1.023364

1.001313 1.002249 1.003223 1.004091 1.004975 1.005883

1.067147 1.069257 1.070409

1.029540 1.030596 1.031587 1.032476 1.033460 1.034333

1.012643 1.013601 1.014458 1.015369 1.016396 1.017462

0.996297 0.997223 0.998176 0.999031 0.999905 1.000793

95.36 95.44 95.55 95.64 95.72 95.84 95.90

0.996532 0.997461 0.998753 0.999516 1.000741 1.001737 1.002471

100.40 1.054186 100.49 1.054974 100.61 1.055831 100.75 1.057289 100.86 1.058110 100.92 1.058814 (+)-D-xylose (Mb = 150.13 × 10−3 kg·mol−1)

100.97 101.13 101.25 101.38 101.49 101.62

101.62 101.70 101.76 101.82 101.89 101.97

103.17 103.29 103.36 103.47 103.59 103.66

96.50 96.60 96.77 96.86 96.96 97.06 97.12

101.23 101.29 101.37 101.55 101.62 101.71

101.85 102.07 102.27 102.41 102.59 102.73

102.49 102.59 102.62 102.68 102.75 102.85

104.15 104.23 104.37 104.48 104.58 104.69

90.64 90.81 90.89

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

89.05 1.060586 89.17 1.062630 89.28 1.063758 (+)-D-arabitol (Mb = 152.15 × 10−3 kg·mol−1)

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

0.994592 0.995502 0.996771 0.997517 0.998717 0.999695 1.000406

1.049064 1.049824 1.050640 1.052031 1.052807 1.053467

1.025756 1.026794 1.027766 1.028632 1.029598 1.030447

1.009642 1.010579 1.011416 1.012299 1.013294 1.014326

0.994382 0.995296 0.996241 0.997090 0.997959 0.998843

1.055322 1.057331 1.058429

97.72 97.81 97.93 98.03 98.13 98.22 98.32

102.35 102.58 102.90 103.28 103.47 103.67

102.69 102.96 103.21 103.42 103.61 103.81

103.44 103.61 103.68 103.83 104.00 104.15

104.85 104.93 105.04 105.11 105.18 105.25

91.95 92.07 92.17

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

1760

= 0.05 mol·kg−1 0.18553 = 0.5 mol·kg−1 0.05153 0.06677 0.08676 0.10835 0.12004 0.13176 0.16307 0.18783 = 1.0 mol·kg−1 0.05273 0.06888 0.08772 0.10745 0.12146 0.13575 0.15399 0.18203 = 2.0 mol·kg−1 0.04827 0.06731 0.08476 0.10932 0.12424 0.14939 0.17476 0.19106

mBc = 0.05 mol·kg−1 0.04984 0.06816 0.08468 0.10531 0.12203 0.14840 0.16375 0.18593 mBc = 0.5 mol·kg−1 0.05281 0.06985

mBc

mBc

mBc

mBc

mAa mol·kg−1

101.35 101.40 101.49 101.55 101.63 101.74 101.82 101.91 99.71 99.77

1.020622 1.021485

89.70 89.79 89.87 89.96 90.05 90.15 90.26 90.30

90.27 90.29 90.31 90.33 90.34 90.36 90.38 90.41

92.82 92.89 92.96 93.06 93.13 93.17 93.28 93.37

94.85

1.004340 1.005254 1.006070 1.007087 1.007903 1.009180 1.009915 1.010975

1.063780 1.064872 1.065865 1.067255 1.068089 1.069493 1.070892 1.071792

1.038902 1.039837 1.040924 1.042057 1.042859 1.043673 1.044710 1.046294

1.020818 1.021666 1.022775 1.023962 1.024598 1.025238 1.026933 1.028261

1.011890

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1.018647 1.019493

1.001333 1.002227 1.003026 1.004019 1.004814 1.006056 1.006776 1.007801

1.060996 1.062075 1.063055 1.064425 1.065254 1.066645 1.068031 1.068919

1.035587 1.036504 1.037568 1.038677 1.039463 1.040258 1.041274 1.042822

1.018831 1.019657 1.020735 1.021876 1.022491 1.023104 1.024728 1.025988

1.008738

1.030207 1.031102 1.032136 1.033215 1.033971 1.034739 1.035717 1.037200

1.012976 1.013795 1.014859 1.015997 1.016607 1.017215 1.018835 1.020089

1.003566

100.65 100.75

102.32 102.45 102.58 102.68 102.80 102.97 103.05 103.20

1.012812 1.013652

0.996320 0.997203 0.997991 0.998971 0.999755 1.000982 1.001691 1.002708

101.32 101.41

103.24 103.36 103.49 103.60 103.72 103.88 103.97 104.08

91.88 91.98 92.02 92.10 92.17 92.26 92.37 92.42

92.80 92.86 92.95 93.03 93.12 93.21 93.29 93.46

94.98 95.07 95.21 95.37 95.46 95.55 95.73 95.92

97.24

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

90.59 1.054609 90.63 1.055661 90.70 1.056622 90.79 1.057965 90.83 1.058773 90.89 1.060128 90.98 1.061479 91.03 1.062346 xylitol (Mb = 152.15 × 10−3 kg·mol−1)

91.41 91.45 91.48 91.52 91.53 91.57 91.59 91.64

93.99 94.14 94.29 94.54 94.65 94.76 95.01 95.24

95.99

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.009835 1.010671

0.994390 0.995252 0.996020 0.996966 0.997726 0.998920 0.999599 1.000574

1.049456 1.050481 1.051413 1.052715 1.053499 1.054807 1.056119 1.056946

1.026393 1.027265 1.028269 1.029319 1.030061 1.030801 1.031750 1.033199

1.009963 1.010764 1.011812 1.012932 1.013531 1.014128 1.015728 1.016975

1.001484

101.76 101.85

104.25 104.44 104.63 104.86 105.03 105.21 105.37 105.57

93.50 93.57 93.65 93.74 93.82 93.96 94.06 94.18

94.07 94.18 94.36 94.46 94.52 94.67 94.79 94.92

96.11 96.21 96.31 96.44 96.52 96.62 96.74 96.86

98.42

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

1761

= 0.5 mol·kg−1 0.09000 0.10455 0.12626 0.14215 0.16521 0.18309 = 1.0 mol·kg−1 0.05170 0.06813 0.08888 0.10113 0.12767 0.14145 0.17211 0.18310 = 2.0 mol·kg−1 0.05303 0.06820 0.09514 0.10930 0.11530 0.14732 0.15844 0.18534

mBc = 0.05 mol·kg−1 0.04681 0.06799 0.08679 0.10772 0.13602 0.14721 0.18573 0.19948 mBc = 0.5 mol·kg−1 0.04552 0.06972 0.07687 0.10854 0.12332 0.14864

mBc

mBc

mBc

mAa mol·kg−1

108.96 109.06 109.10 109.19 109.30 109.40 109.52 109.61 108.08 108.30 108.40 108.56 108.74 108.85

1.021147 1.022837 1.023330 1.025517 1.026516 1.028237

98.35 98.44 98.56 98.64 98.71 98.85 98.93 99.07

98.81 98.92 99.00 99.12 99.22 99.30 99.43 99.50

99.88 99.98 100.06 100.15 100.21 100.30

1.005137 1.006618 1.007928 1.009373 1.011312 1.012066 1.014670 1.015583

1.063653 1.064406 1.065734 1.066423 1.066710 1.068254 1.068780 1.070052

1.038477 1.039306 1.040349 1.040953 1.042269 1.042942 1.044435 1.044962

1.022496 1.023218 1.024295 1.025075 1.026206 1.027070

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1.019183 1.020861 1.021354 1.023517 1.024517 1.026222

1.002127 1.003592 1.004881 1.006305 1.008220 1.008969 1.011532 1.012438

1.060866 1.061609 1.062914 1.063593 1.063873 1.065395 1.065907 1.067160

1.035185 1.036005 1.037032 1.037633 1.038932 1.039597 1.041068 1.041587

1.020490 1.021201 1.022256 1.023022 1.024130 1.024983 1.029851 1.030664 1.031688 1.032283 1.033573 1.034230 1.035692 1.036207

1.014640 1.015347 1.016397 1.017155 1.018255 1.019098

108.92 109.04 109.08 109.29 109.38 109.50

110.03 110.07 110.16 110.26 110.36 110.41 110.57 110.63

1.013342 1.015001 1.015487 1.017631 1.018611 1.020299

0.997119 0.998573 0.999854 1.001274 1.003183 1.003933 1.006497 1.007408

109.71 109.90 109.98 110.17 110.34 110.46

110.82 110.83 110.89 110.93 110.97 111.00 111.07 111.09

100.04 100.12 100.29 100.39 100.46 100.61 100.71 100.85

100.24 100.33 100.39 100.49 100.58 100.69 100.82 100.89

101.49 101.57 101.65 101.76 101.84 101.93

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

99.26 1.054509 99.31 1.055242 99.44 1.056529 99.52 1.057196 99.60 1.057475 99.71 1.058973 99.83 1.059481 99.94 1.060713 (−)-L-sorbose (Mb = 180.16 × 10−3 kg·mol−1)

99.59 99.69 99.80 99.88 99.98 100.05 100.20 100.27

100.82 100.91 101.02 101.09 101.18 101.25

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.010356 1.012007 1.012492 1.014630 1.015617 1.017298

0.995194 0.996631 0.997896 0.999300 1.001187 1.001927 1.004463 1.005360

1.049403 1.050126 1.051400 1.052063 1.052337 1.053820 1.054317 1.055537

1.026077 1.026881 1.027890 1.028476 1.029743 1.030392 1.031836 1.032345

1.011654 1.012355 1.013393 1.014147 1.015235 1.016070

110.37 110.49 110.53 110.65 110.73 110.85

111.75 111.77 111.83 111.86 111.89 111.91 111.98 112.01

100.78 100.90 101.05 101.13 101.21 101.36 101.48 101.62

100.83 100.96 101.08 101.20 101.37 101.47 101.60 101.67

101.92 102.02 102.15 102.24 102.35 102.45

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

1762

= 0.5 mol·kg−1 0.16785 0.18540 = 1.0 mol·kg−1 0.04836 0.07197 0.09023 0.10751 0.13232 0.14921 0.16388 0.18766 = 2.0 mol·kg−1 0.05215 0.06704 0.08347 0.09288 0.11621 0.14654 0.16728 0.20970

mBc = 0.05 mol·kg−1 0.04614 0.06895 0.08738 0.10615 0.12558 0.14703 0.18114 0.19816 mBc = 0.5 mol·kg−1 0.04832 0.06963 0.08225 0.10744 0.12505 0.14969 0.16386 0.18931

mBc

mBc

mBc

mAa mol·kg−1

116.67 116.78 116.89 117.02 117.14 117.24 117.35 117.46 116.02 116.14 116.23 116.34 116.48 116.58 116.67 116.79

1.021047 1.022410 1.023209 1.024798 1.025892 1.027421 1.028288 1.029842

106.83 106.93 107.04 107.12 107.27 107.42 107.52 107.74

107.36 107.54 107.69 107.84 107.99 108.12 108.20 108.37

109.02 109.14

1.004826 1.006292 1.007464 1.008647 1.009862 1.011197 1.013307 1.014339

1.064653 1.065688 1.066820 1.067464 1.069052 1.071099 1.072486 1.075286

1.039259 1.040910 1.042173 1.043357 1.045049 1.046186 1.047172 1.048751

1.029519 1.030684

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1.019051 1.020385 1.021167 1.022718 1.023792 1.025286 1.026132 1.027650

1.001798 1.003231 1.004374 1.005529 1.006719 1.008025 1.010083 1.011090

1.061863 1.062883 1.064001 1.064640 1.066206 1.068233 1.069599 1.072347

1.035966 1.037602 1.038857 1.040038 1.041719 1.042853 1.043826 1.045393

1.027508 1.028666 1.030619 1.032243 1.033484 1.034654 1.036323 1.037444 1.038407 1.039974

1.021556 1.022707

117.49 117.58 117.68 117.82 117.93 118.04 118.14 118.26

118.19 118.32 118.47 118.61 118.72 118.82 118.95 119.07

1.013191 1.014504 1.015276 1.016799 1.017856 1.019325 1.020162 1.021654

0.996774 0.998184 0.999312 1.000450 1.001620 1.002898 1.004921 1.005913

118.72 118.84 118.90 119.09 119.20 119.32 119.41 119.54

119.40 119.57 119.69 119.83 119.95 120.11 120.25 120.36

108.53 108.62 108.72 108.79 108.93 109.09 109.17 109.38

109.05 109.15 109.27 109.36 109.46 109.57 109.69 109.78

110.62 110.71

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

107.79 1.055505 107.90 1.056519 108.00 1.057629 108.03 1.058259 108.20 1.059817 108.31 1.061822 108.43 1.063183 108.71 1.065929 b −3 D-sorbitol (M = 182.18 × 10 kg·mol−1)

108.20 108.34 108.43 108.52 108.64 108.74 108.85 109.02

109.57 109.69

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.010193 1.011489 1.012248 1.013760 1.014802 1.016257 1.017079 1.018556

0.994849 0.996243 0.997355 0.998481 0.999638 1.000906 1.002899 1.003869

1.050391 1.051396 1.052495 1.053121 1.054670 1.056654 1.058003 1.060722

1.026832 1.028432 1.029659 1.030812 1.032460 1.033569 1.034518 1.036069

1.018564 1.019714

119.64 119.76 119.87 119.99 120.11 120.21 120.31 120.43

120.39 120.50 120.64 120.74 120.85 120.96 121.13 121.30

109.38 109.45 109.55 109.61 109.70 109.88 109.96 110.18

109.91 110.08 110.21 110.32 110.42 110.52 110.66 110.73

110.93 111.00

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

= 1.0 mol·kg−1 0.04657 0.06864 0.08549 0.10923 0.13048 0.14725 0.16721 0.18675 = 2.0 mol·kg−1 0.05171 0.07374 0.10584 0.11896 0.13302 0.16763 0.18613 0.19481

mBc = 0.05 mol·kg−1 0.05047 0.07120 0.08350 0.10780 0.12860 0.14602 0.16839 0.18546 mBc = 0.5 mol·kg−1 0.04874 0.07023 0.08819 0.10676 0.13282 0.14973 0.16568 0.18568 mBc = 1.0 mol·kg−1 0.04549 0.06267 0.09486 0.10327

mBc

mBc

mAa mol·kg−1

1763

109.22 109.32 109.40 109.49 109.62 109.70 109.85 109.95 109.21 109.26 109.31 109.36 109.44 109.49 109.56 109.61 109.34 109.46 109.61 109.67

1.021317 1.022803 1.024037 1.025307 1.027073 1.028213 1.029278 1.030613

1.038960 1.040128 1.042301 1.042862

114.54 114.67 114.77 114.86 114.93 115.05 115.13 115.20

115.27 115.34 115.41 115.51 115.61 115.71 115.78 115.87

1.005382 1.006825 1.007674 1.009347 1.010761 1.011940 1.013437 1.014572

1.064285 1.065670 1.067676 1.068482 1.069345 1.071456 1.072570 1.073082

1.038836 1.040246 1.041314 1.042808 1.044132 1.045165 1.046394 1.047584

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1.035698 1.036868 1.039046 1.039612

1.019372 1.020846 1.022067 1.023319 1.025064 1.026186 1.027230 1.028542

1.002396 1.003829 1.004673 1.006330 1.007733 1.008899 1.010391 1.011516

1.061476 1.062836 1.064795 1.065586 1.066429 1.068492 1.069585 1.070088

1.035521 1.036904 1.037946 1.039408 1.040701 1.041716 1.042909 1.044067

1.030170 1.031532 1.032560 1.034002 1.035278 1.036276 1.037459 1.038605

109.60 109.65 109.73 109.75

109.63 109.75 109.86 109.98 110.11 110.21 110.35 110.44

109.73 109.86 109.94 110.08 110.22 110.34 110.45 110.56

1.030372 1.031536 1.033699 1.034253

1.013544 1.015006 1.016217 1.017454 1.019175 1.020272 1.021305 1.022595

0.997392 0.998812 0.999643 1.001279 1.002665 1.003816 1.005283 1.006390

110.06 110.15 110.30 110.39

110.13 110.34 110.48 110.68 110.91 111.12 111.25 111.40

110.38 110.57 110.73 110.94 111.11 111.26 111.42 111.57

116.82 116.92 117.09 117.16 117.25 117.38 117.48 117.55

117.66 117.77 117.91 118.02 118.14 118.24 118.33 118.44

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

115.86 1.055111 115.96 1.056456 116.11 1.058392 116.18 1.059175 116.26 1.060007 116.39 1.062048 116.46 1.063121 116.53 1.063618 (+)-D-galactose (Mb = 180.16 × 10−3 kg·mol−1)

116.60 116.68 116.81 116.92 117.04 117.12 117.25 117.37

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.026608 1.027764 1.029906 1.030458

1.010577 1.012038 1.013250 1.014497 1.016217 1.017336 1.018373 1.019673

0.995491 0.996908 0.997741 0.999379 1.000769 1.001922 1.003399 1.004521

1.050010 1.051343 1.053262 1.054040 1.054859 1.056884 1.057941 1.058431

1.026385 1.027733 1.028752 1.030173 1.031436 1.032419 1.033581 1.034715

110.48 110.63 110.88 110.97

110.37 110.56 110.68 110.78 111.02 111.08 111.21 111.32

110.79 110.92 111.01 111.16 111.28 111.40 111.50 111.56

117.52 117.65 117.83 117.90 118.03 118.15 118.29 118.37

118.54 118.64 118.75 118.91 119.03 119.14 119.28 119.37

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

= 1.0 mol·kg−1 0.12711 0.14896 0.18155 0.20052 = 2.0 mol·kg−1 0.04802 0.07015 0.08306 0.10559 0.12158 0.14937 0.18366 0.19622

mBc = 0.05 mol·kg−1 0.04950 0.07077 0.08824 0.11037 0.12783 0.14952 0.16418 0.19016 0.20446 mBc = 0.5 mol·kg−1 0.04996 0.06968 0.08746 0.11079 0.12900 0.14999 0.17069 0.19151 0.21138 mBc = 1.0 mol·kg−1 0.04946 0.06998 0.09077 0.10967 0.13017 0.14854

mBc

mBc

mAa mol·kg−1

118.40 118.51 118.62 118.75 118.84 118.93 119.01 119.15 119.23 118.07 118.17 118.26 118.32 118.39 118.45 118.55 118.66 118.73 117.42 117.47 117.55 117.60 117.67 117.75

1.021047 1.022267 1.023358 1.024784 1.025888 1.027152 1.028384 1.029611 1.030779

1.038907 1.040173 1.041443 1.042591 1.043826 1.044923

109.54 109.63 109.71 109.84 109.93 110.07 110.20 110.31

109.80 109.92 110.06 110.17

1.004958 1.006286 1.007366 1.008724 1.009787 1.011101 1.011980 1.013526 1.014368

1.064218 1.065691 1.066544 1.068019 1.069058 1.070851 1.073041 1.073825

1.044444 1.045884 1.048014 1.049235

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1764

1.035615 1.036865 1.038123 1.039256 1.040478 1.041566

1.019074 1.020279 1.021355 1.022762 1.023847 1.025092 1.026309 1.027525 1.028675

1.001747 1.003055 1.004121 1.005460 1.006507 1.007804 1.008663 1.010190 1.011024

1.061478 1.062956 1.063814 1.065306 1.066358 1.068176 1.070395 1.071203

1.041207 1.042656 1.044801 1.046034

1.035828 1.037260 1.039375 1.040594

118.29 118.34 118.38 118.46 118.52 118.58

119.06 119.11 119.19 119.25 119.35 119.42 119.50 119.58 119.66

119.51 119.61 119.70 119.82 119.92 120.00 120.12 120.23 120.30

1.030280 1.031520 1.032765 1.033890 1.035098 1.036170

1.013234 1.014427 1.015494 1.016884 1.017961 1.019196 1.020400 1.021602 1.022740

0.999006 1.000301 1.001351 1.002676 1.003712 1.004993 1.005845 1.007355 1.008174

119.00 119.08 119.16 119.23 119.32 119.42

119.88 119.97 120.05 120.16 120.23 120.29 120.39 120.48 120.57

120.44 120.50 120.63 120.72 120.82 120.89 121.00 121.10 121.19

110.07 110.12 110.14 110.20 110.23 110.28 110.33 110.36

110.53 110.64 110.80 110.89

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

109.65 1.055140 109.69 1.056615 109.71 1.057471 109.73 1.058954 109.76 1.060003 109.80 1.061814 109.87 1.064032 109.89 1.064836 galactitol (Mb = 182.18 × 10−3 kg·mol−1)

109.81 109.88 109.97 110.05

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.026511 1.027747 1.028990 1.030114 1.031322 1.032397

1.010245 1.011426 1.012479 1.013853 1.014915 1.016128 1.017313 1.018493 1.019618

0.995015 0.996295 0.997340 0.998656 0.999683 1.000951 1.001793 1.003293 1.004103

1.050042 1.051502 1.052346 1.053815 1.054847 1.056626 1.058803 1.059584

1.032015 1.033432 1.035521 1.036720

119.54 119.59 119.63 119.66 119.72 119.78

120.60 120.70 120.84 120.96 121.06 121.18 121.30 121.43 121.51

121.24 121.34 121.41 121.48 121.57 121.67 121.79 121.87 121.97

110.68 110.80 110.89 110.98 111.06 111.20 111.33 111.42

111.16 111.30 111.51 111.65

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

= 1.0 mol·kg−1 0.16665 = 2.0 mol·kg−1 0.05109 0.07214 0.08620 0.10919 0.12447 0.14850 0.16744 0.21149

mBc = 0.05 mol·kg−1 0.04993 0.06875 0.08606 0.10943 0.13076 0.14726 0.16530 0.19027 mBc = 0.5 mol·kg−1 0.04808 0.07020 0.08862 0.10996 0.12979 0.14884 0.16670 0.18773 mBc = 1.0 mol·kg−1 0.05090 0.06730 0.07800 0.10072 0.12732 0.15063 0.17202 0.19524 mBc = 2.0 mol·kg−1 0.05329 0.06714

mBc

mBc

mAa mol·kg−1

111.67 111.77 111.89 111.97 112.07 112.16 112.27 112.35 109.53 109.64 109.77 109.85 109.95 110.03 110.14 110.25 108.85 108.92 108.97 109.08 109.18 109.24 109.34 109.42 108.15 108.21

1.021256 1.022774 1.024025 1.025470 1.026800 1.028070 1.029248 1.030627

1.039358 1.040483 1.041213 1.042753 1.044544 1.046104 1.047517 1.049045

1.064654 1.065598

116.58 116.71 116.78 116.88 116.97 117.10 117.18 117.41

117.83

1.005221 1.006485 1.007637 1.009187 1.010588 1.011665 1.012830 1.014440

1.064128 1.065405 1.066251 1.067627 1.068530 1.069942 1.071046 1.073574

1.045996

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1765

1.061849 1.062775

1.036054 1.037168 1.037889 1.039416 1.041188 1.042725 1.044123 1.045630

1.019284 1.020781 1.022018 1.023443 1.024753 1.026008 1.027172 1.028539

1.002230 1.003486 1.004633 1.006174 1.007571 1.008640 1.009800 1.011403

1.061341 1.062603 1.063435 1.064792 1.065683 1.067079 1.068165 1.070663

1.042627

1.037222

109.34 109.42

109.85 109.87 109.92 109.97 110.05 110.14 110.24 110.33

110.48 110.60 110.71 110.80 110.92 110.99 111.09 111.16

112.33 112.39 112.47 112.55 112.61 112.69 112.79 112.87

1.055466 1.056379

1.030690 1.031783 1.032493 1.033993 1.035727 1.037236 1.038605 1.040088

1.013425 1.014899 1.016118 1.017521 1.018811 1.020039 1.021182 1.022529

0.997223 0.998469 0.999605 1.001133 1.002510 1.003571 1.004722 1.006307

110.52 110.58

111.02 111.10 111.15 111.23 111.39 111.50 111.61 111.69

111.64 111.80 111.91 112.02 112.14 112.26 112.39 112.45

113.08 113.15 113.25 113.32 113.45 113.53 113.62 113.72

118.40 118.46 118.56 118.65 118.75 118.84 118.92 119.14

119.50

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

117.55 1.054984 117.63 1.056236 117.73 1.057061 117.81 1.058407 117.90 1.059289 118.00 1.060674 118.10 1.061755 118.30 1.064228 (+)-D-glucose (Mb = 180.16 × 10−3 kg·mol−1)

118.66

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.050329 1.051225

1.026884 1.027963 1.028659 1.030134 1.031849 1.033334 1.034687 1.036145

1.010414 1.011873 1.013077 1.014463 1.015740 1.016961 1.018093 1.019424

0.995295 0.996522 0.997642 0.999142 1.000498 1.001539 1.002663 1.004220

1.049880 1.051116 1.051934 1.053265 1.054139 1.055509 1.056577 1.059019

1.033452

111.78 111.86

112.20 112.24 112.33 112.42 112.51 112.63 112.71 112.81

112.79 112.84 112.94 113.02 113.11 113.18 113.28 113.35

114.03 114.15 114.26 114.40 114.53 114.63 114.78 114.89

119.16 119.30 119.40 119.50 119.60 119.70 119.79 120.03

119.83

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

= 2.0 mol·kg−1 0.08825 0.09466 0.12280 0.14403 0.16612 0.18938

mBc = 0.05 mol·kg−1 0.05055 0.06925 0.09003 0.10949 0.12910 0.14770 0.16876 0.18963 mBc = 0.5 mol·kg−1 0.04920 0.06911 0.09059 0.09215 0.10740 0.12339 0.14874 0.16612 0.18400 mBc = 1.0 mol·kg−1 0.04890 0.06596 0.08217 0.10446 0.12522 0.14876 0.16402 0.19207 mBc = 2.0 mol·kg−1 0.04266 0.06338 0.08382 0.09938 0.12887

mBc

mAa mol·kg−1

212.65 212.73 212.83 212.85 212.93 213.01 213.12 213.26 213.34 214.12 214.21 214.34 214.49 214.60 214.77 214.87 215.05 215.80 215.93 216.03 216.14 216.28

1.041862 1.043933 1.045879 1.048527 1.050970 1.053698 1.055450 1.058633

1.066058 1.068481 1.070846 1.072625 1.075962

210.07 210.16 210.32 210.44 210.53 210.66 210.79 210.90

108.32 108.35 108.50 108.59 108.69 108.76

1.024149 1.026629 1.029470 1.029276 1.031327 1.033262 1.036299 1.038350 1.040450

1.008431 1.010834 1.013473 1.015921 1.018366 1.020659 1.023231 1.025757

1.067025 1.067455 1.069334 1.070741 1.072192 1.073713

V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3

Table 2. continued

1766

1.063296 1.065708 1.068056 1.069827 1.073145

1.038585 1.040649 1.042591 1.045235 1.047669 1.050400 1.052149 1.055326

1.022193 1.024659 1.027292 1.027480 1.029326 1.031247 1.034263 1.036307 1.038387

1.005439 1.007833 1.010470 1.012918 1.015360 1.017655 1.020230 1.022757

216.53 216.68 216.84 216.95 217.10

214.82 214.91 215.00 215.12 215.24 215.34 215.44 215.61

213.37 213.49 213.61 213.65 213.77 213.87 214.01 214.12 214.24

210.83 210.91 210.97 211.03 211.09 211.17 211.25 211.32

1.056950 1.059356 1.061700 1.063471 1.066785

1.033240 1.035291 1.037218 1.039842 1.042264 1.044972 1.046708 1.049866

1.016352 1.018807 1.021425 1.021615 1.023453 1.025372 1.028367 1.030403 1.032475

1.000401 1.002773 1.005378 1.007796 1.010203 1.012467 1.015007 1.017487

217.52 217.63 217.77 217.85 217.98

215.94 216.05 216.20 216.36 216.45 216.60 216.71 216.88

214.41 214.54 214.71 214.70 214.82 214.88 215.08 215.18 215.30

212.36 212.48 212.63 212.74 212.89 213.01 213.13 213.30

110.67 110.74 110.85 110.95 111.05 111.13

V2,ϕ × 106 m3·mol−1

T = 308.15 K ρ × 10−3 kg·m−3

1.064177 109.53 1.057764 1.064596 109.60 1.058177 1.066440 109.75 1.060000 1.067818 109.85 1.061360 1.069239 109.96 1.062764 1.070726 110.06 1.064235 (+)-D-maltose anhydrous (Mb = 342.30 × 10−3 kg·mol−1)

V2,ϕ × 106 m3·mol−1

T = 298.15 K ρ × 10−3 kg·m−3

1.051835 1.054227 1.056559 1.058317 1.061609

1.029437 1.031472 1.033384 1.035992 1.038388 1.041077 1.042806 1.045939

1.013332 1.015764 1.018362 1.018548 1.020373 1.022270 1.025247 1.027265 1.029322

0.998434 1.000775 1.003351 1.005737 1.008112 1.010345 1.012857 1.015301

1.052588 1.052994 1.054788 1.056122 1.057497 1.058939

218.83 218.91 219.01 219.08 219.23

217.31 217.40 217.53 217.63 217.79 217.91 217.98 218.14

215.84 215.97 216.09 216.11 216.19 216.29 216.43 216.52 216.63

214.17 214.29 214.40 214.53 214.69 214.82 214.91 215.10

111.93 112.00 112.10 112.22 112.35 112.44

V2,ϕ × 106 m3·mol−1

T = 318.15 K ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Article

a mA is the molality of solute in aqueous Et4NBr(aq). bM is the molar mass of solute. cmB is the molality of Et4NBr in water. Standard uncertainties, u, are u(T) = 0.01 K, u(m) = 1 × 10−5 mol·kg−1, u(ρ) = 1 kg·m−3, and u(p) = 0.001 MPa, and the combined uncertainty, Uc, in V2,ϕ values is Uc(V2,ϕ) = 0.11 × 10−6 m3·mol−1 at mB = 0.04 mol·kg−1 and Uc(V2,ϕ) = 0.02 × 10−6 m3·mol−1 at mB = 0.21 mol·kg−1 (level of confidence = 0.95, k ≈ 2) concentration of the solute.

219.30 219.37 219.49 1.063859 1.065328 1.067797 218.10 218.19 218.30 1.069044 1.070517 1.073003 217.23 217.36 217.47 1.075406 1.076876 1.079364 216.39 216.49 216.62 1.078237 1.079719 1.082219 = 2.0 mol·kg−1 0.14927 0.16273 0.18559 mBc

T = 318.15 K

V2,ϕ × 106 m3·mol−1 V2,ϕ × 106 m3·mol−1

T = 308.15 K

ρ × 10−3 kg·m−3 V2,ϕ × 106 m3·mol−1

T = 298.15 K

ρ × 10−3 kg·m−3 V2,ϕ × 106 m3·mol−1

T = 288.15 K

ρ × 10−3 kg·m−3 mAa mol·kg−1

Table 2. continued

ρ × 10−3 kg·m−3

Journal of Chemical & Engineering Data

Figure 1. Plot of density, ρ, vs molality, mA, for xylitol mB = 0.5 mol· kg−1 Et4NBr(aq) solutions at (288.15, 298.15, 308.15, and 318.15) K.

The plots of ΔtV2° for pentoses, hexoses, and disaccharide versus mB of cosolute (Et4NBr) are given in Figure 2. The ΔtV°2 values (Supporting Information, Table S2) are negative for pentoses and hexoses, except at low concentrations in a few cases. The ΔtV2° values increase with increasing temperature for pentoses, Ara (Figure 2a) and Xyl (Figure 2b), and ketohexoses, Sor (Figure 2c) and Glc (Figure 2e), but decrease in the case of aldohexose, Gal (Figure 2d). The ΔtV2° values for Mal (Figure 2f) are positive and increase with increase in mB values but decrease with increase in temperature. Further, the ΔtV°2 values (Figure 3) for polyols are negative and decrease with increase in temperature in cases of pentaols, Arol (Figure 3a) and Xyol (Figure 3b), and hexaols, Srol (Figure 3c) and Gaol (Figure 3d). In each case, the ΔtV°2 values decrease sharply up to mB ≈ 0.5 mol·kg−1 and then show some leveling off effect up to mB ≈ 1.0 mol·kg−1, and this effect seems more prominent in Ara. In Xyl and Xyol, the leveling off effect can be seen even beyond mB ≈ 1.0 mol·kg−1, that is, up to mB ≈ 2.0 mol·kg−1. In Gal, the ΔtV°2 values decrease up to mB ≈ 0.5 mol· kg−1 (except at T = 288.15 K), then after showing minima at this concentration, the values again increase at higher molalities of cosolute. In Gaol, the ΔtV°2 values decrease at all values of mB . Applying the cosphere overlap model,26 the positive ΔtV2° values obtained in case of Mal at all molalities of cosolute indicate the predominance of hydrophilic−ionic interactions between the hydrophilic polar sites (−OH, −CO and −O−) of the solute and (Et4N+/Br−) ions of the cosolute. The negative ΔtV2° obtained in cases of pentoses, hexoses, and their polyols may be attributed to the predominance of the two types of interactions: (I) hydrophilic−hydrophobic interactions between the hydrophilic sites of the solute and the hydrophobic {R4 = (C2H5)4} part of the cosolute; (II) hydrophobic− hydrophobic interactions between the hydrophobic (R = CH, CH2, CH3) groups of the solute and hydrophobic parts of the cosolute molecules. The ΔtV2° values are positive for pentoses and their polyols at mB ≈ 0.05 mol·kg−1, which indicates the dominance of hydrophilic−ionic interactions, beyond which these interactions decrease indicating the enhancement in hydrophobic−hydrophobic interactions with increasing concentration of Et4NBr. The large-sized Et4N+ cations (radius = 3.37 Ǻ ), which undergo hydrophobic hydration and the caging effect of water molecules may result in negative ΔtV°2 values in most of the cases. The hydrophobic−hydrophobic/hydrophilic interactions get strengthened with increase in molality of 1767

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Figure 2. Partial molar volumes of transfer at infinite-dilution, ΔtV°2 , vs molalities, mB, of Et4NBr(aq) of (a) (−)-D- arabinose, (b) (+)-D-xylose, (c) (−)-L-sorbose, (d) (+)-D-galactose, (e) (+)-D-glucose, and (f) (+)-D-maltose monohydrate at (◆) 288.15 K, (■) 298.15 K, (▲) 308.15 K, and (×) 318.15 K.

“chaotropes” or structure breakers and result in disturbance of the H-bonding network. Due to the interactions between ions of cosolute and polyhydroxy solutes, their effects on water structure are decreased. The comparison of ΔtV°2 values obtained in Et4NBr with earlier reported values4 in NH4Br shows that generally the ΔtV°2 values are less for solutes (except for L-sorbose) in Et4NBr than those in NH4Br solutions. In both the cosolutes, the ΔtV2° values for Mal (disaccharide) are positive, and the values are negative for pentoses, hexoses, and their polyols at all concentrations of cosolute (except for Gal at higher

Et4NBr and with decrease in temperature in cases of pentoses and ketohexose (Sor), but the effect of temperature is reversed in polyols and aldohexose (Gal). Polyhydroxy solutes are known as “kosmotropes”, because these enhance the strength of the H-bonding network of bulk water. Their kosmotropicity or structure-making propensity in H2O mixtures is reduced as the molality of cosolute increases. Due to the overlap of hydration sphere of the polyhydroxy solute with those of the hydrophobic (Et4N+) ion, the latter’s environment will be much more perturbed thereby causing a maximum destabilization of ion. Br− ions are increasingly 1768

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Figure 3. Partial molar volumes of transfer at infinite-dilution, ΔtV2°, vs molalities, mB, of Et4NBr(aq) of (a) (+)-D-arabitol, (b) xylitol, (c) D-sorbitol, and (d) galactitol at (◆) 288.15 K, (■) 298.15 K, (▲) 308.15 K, and (×) 318.15 K.

hydrophobic hydration and the caging effect of water molecules may result in the smaller ΔtV°2 values. The effective radii4,28,29 of hydrated ions (NH4+ = 3.31 Ǻ , Br− = 3.30 Ǻ , SO42− = 3.79 Ǻ , and Et4N+ = 4.00 Ǻ ) in solution are appreciably greater than their crystal radii, and further, SO42− ion is more heavily hydrated than NH4+ and Br− ions. Therefore, the interactions of ions with solutes make positive contributions to volumes. 3.3. Partial Molar Expansibilities. The standard partial molar expansion coefficients, (∂V2°/∂T)P, and their secondorder derivatives, (∂2V°2 /∂T2)P, have been determined by fitting the V°2 data in the following equation:

concentrations in NH4Br solutions). In NH4Br solutions, the magnitudes of ΔtV°2 increase with mB values at all studied temperatures. However, in Et4NBr, the ΔtV°2 values for solutes (except Mal) decrease sharply up to mB ≈ 0.5 mol·kg−1 and then show some leveling off effect up to mB ≈ 1.0 mol·kg−1. In Gal, the ΔtV°2 values show minima at mB ≈ 0.5 mol·kg−1, and the values increase afterward. The results suggest that overlap of the hydration spheres of polyhydroxy solutes and hydrophobic ions of Et4NBr causes maximum destabilization in aqueous solution. In contrast to this, in NH4Br solutions, the hydration sphere around hydrophilic ions and hydrophilic polyhydroxy solute are tight and their overlap retains the hydration zones as such. NH4+ ions with a low charge density have smaller effects on the local hydrogen bonding. Thus, the hydrophilic NH4+/Br− ions are less destabilized in NH4Br solutions. The comparison of ΔtV2° values of disaccharides obtained in ammonium salts follows the order (NH4)2SO427 > NH4H2PO48 > NH4Br4 > Et4NBr, indicating the strong interactions of disaccharides with SO42− and H2PO4− ions, which is in accordance with the Hofmeister series. Due to high charge density as well as ionic strength, the SO42− and H2PO4− ions undergo more hydration than Br− ions, thus resulting in large ΔtV°2 values in cases of (NH4)2SO4 and NH4H2PO4. In addition to the conformational and stereochemical aspects of the solutes, the size of ion also plays a crucial role in effective complexation with solutes. Et4N+ ion has a larger crystal or ionic radius (r = 3.37 Ǻ ) than NH4+ (r = 1.48 Ǻ ) ion and SO42− (r = 2.30 Ǻ ) and H2PO4− (r = 2.00 Ǻ ) ions have larger crystal or ionic radius than the Br− ion (r = 1.96 Ǻ ).4,28,29 The hydrophobic effect of large-sized Et4N+ cations, which undergo

V 2° = a + bT + cT 2

(4)

where a, b, and c are constants. The (∂V2°/∂T)P values are positive, and generally their magnitudes increase with molality of cosolute and temperature of solution for pentoses, aldohexoses, and Mal; however, these values decrease in cases of ketohexose and polyols (Supporting Information, Table S3). Overall the magnitude of (∂V2°/∂T)P values for saccharides is higher in Et4NBr than in NH4Br, while the reverse is true for polyols and Gal. According to the equation (∂C°p,2/∂P)T = −T(∂2V2°/∂T2)P, used by Hepler,30 the (∂2V2°/∂T2)P derivative can be used to make a distinction between kosmotropic and chaotropic ability of a solute in mixed aqueous solution. Therefore, the positive (∂2V°2 /∂T2)P values obtained on righthand side of above equation for saccharides (except Sor) suggest that saccharides are kosmotropic in nature, and negative (∂2V°2 /∂T2)P values for polyols suggest that polyols act as chaotropic in water (reported earlier).4 Presently, the positive (∂2V2°/∂T2)P values suggest that pentoses (Ara, Xyl), aldohexoses (Gal, Glc), and Mal (disaccharide) behave as 1769

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

kosmotropes, whereas negative (∂2V°2 /∂T2)P values suggest that ketohexose (Sor) and polyols Arol, Xyol, Srol, and Gaol act as chaotropes in Et4NBr(aq) solutions. 3.4. Interactions Coefficients. The McMillan−Mayer theory of solutions has been used to study the interactions in solvating spheres of solute and cosolute.31 Standard partial molar volumes of transfer can be expressed by the following equation to estimate the pair and triplet volumetric interaction coefficients as Δt V 2° = 2VABmB + 3VABBmB 2

water, it interacts more with cosolute. The magnitudes of VAB values are higher for Ara and Gal than for the respective polyols, Arol and Gaol, at all temperatures, and VAB values are higher for Xyl and Sor than for their respective polyols, Xyol and Srol, at only (288.15 and 298.15) K. The magnitude of VAB values is also larger for pentoses than the hexoses, because the additional −CHOH group may decrease the hydrophobic interactions, leading to reduction in the transfer volumes of hexoses. In the case of polyols, VAB values follow the order Xyol > Srol > Arol > Gaol. It is known from the NMR studies32 that Arol and Gaol having planar zigzag conformations in aqueous solutions are more compatible with the water structure, while Xyol and Srol with nonplanar sickle conformations are less compatible with the water structure. Therefore, Arol and Gaol will interact less with cosolute exhibiting smaller VAB values than Xyol and Srol. The comparison shows lower VAB values in presence of Et4NBr(aq) than in NH4Br(aq) solutions, suggesting that the extent of solute−cosolute interactions is greater in the latter than the former. 3.5. Apparent Massic Volumes and Taste Behavior. The taste behavior of studied solutes can be analyzed33 on the basis of apparent massic volumes, vϕ, calculated as vϕ = V2,ϕ/M, where V2,ϕ and M are defined already. The vϕ values increase with solute molality as well as temperature of the solution but decrease with cosolute molality. The vϕ values of all the studied saccharides (Supporting Information, Table S5) lie in the clean sweet taste quality range, (0.58 to 0.65) × 10−3 m3·kg−1, and those of polyols lie in the sweet taste range, (0.64 to 0.69) × 10−3 m3·kg−1, in water and in the presence of Et4NBr(aq) solutions. This suggests that Et4N+ and Br− ions do not have any appreciable effects on the taste quality of the saccharides and their polyols, as observed in NH4Br(aq)4 solutions. However, in the presence of (NH4)2SO4(aq)27 solutions, the vϕ values for disaccharides shift to sweet−bitter taste range, (0.64 to 0.72) × 10−3 m3·kg−1, while the vϕ values still lie in the sweet taste range, (0.64 to 0.66) × 10−3 m3·kg−1, in NH4H2PO4(aq)8 solutions. This clearly indicates the “anion effect”, that is, with increase in charge of anion, the taste quality of saccharides deviates from sweet taste. 3.6. Viscosity and Viscosity B-coefficients. The viscosities, η, of solutions were determined by the following relation:

(5)

The pair, VAB, volumetric interaction coefficients (Supporting Information, Table S4) are negative, and triplet, VABB, volumetric interaction coefficients are positive (except for Mal). Their magnitudes decrease with increase in temperature for pentoses, hexoses, and disaccharide, while these coefficients increase in the case of polyols. The relative weightings of the coefficients (Figure 4) show that the negative contributions of

Figure 4. Contributions of volumetric interaction coefficient to ΔtV2° at various molalities, mB, of Et4NBr(aq) of arabitol at (◆, ∗) 288.15, (■, ●) 298.15, (▲, +) 308.15, and (×, ) 318.15 [◆, ■, ▲, × (VAB) and ∗, ●, +,  (VABB)].

pair interaction coefficients increase linearly, whereas the positive contributions of triplet coefficients vary nonlinearly (except for Gaol at 288.15 K). However, in Mal, the positive contributions of pair interaction coefficients increase linearly, whereas, the negative contributions of triplet coefficients vary nonlinearly. The interaction coefficients are higher for solutes (except for Gal) in Et4NBr than in NH4Br, indicating the hydrophobic−hydrophobic interactions between polyhydroxy solutes and large-sized Et4N+ cations. Aldo- and ketohexoses are essentially all structural isomers differing only in the stereochemical configurations of −OH groups on the ring; as a result their physicochemical characteristics in aqueous solutions are distinct. Consequently the VAB values depend on the contributions of different kinds of −OH groups, axial (a), equatorial (e), or exocyclic (exo). Among the pentoses, the magnitudes of VAB values are higher for Ara than Xyl, and within the hexoses, the VAB values follow the order Sor > Gal > Glc at most temperatures. These trends may be explained on the basis of the stereochemistry of their dominant conformers in water.1,11 Xyl (1e2e3e4e) and Glc (1e2e3e4e6exo) have more −OH groups in equatorial positions than Ara (1e2e3e4a) and Gal (1e2e3e4a6exo). The equatorial −OH groups are more hydrated than the axial ones, because these fit well into the three-dimensional water structure. Therefore, Xyl and Glc interact less and Ara and Gal interact more with cosolute. Sor (1e2a3e4e5e) disturbs the water structure more than aldohexoses, probably because the exocyclic −CHOH moiety is situated at the anomeric center, instead of at the 5-position. Because the Sor has a poor fit in

η /ρ = at − b/t

(6)

where ρ is the density of the solution, t is the efflux time, a and b are the viscometric constants. The relative viscosities, ηr (ηr = η/η0, where η0 and η are the viscosities of solvent and solution, respectively) were fitted to the Jones−Dole equation by the method of least-square analysis to obtain the viscosity Bcoefficients as follows: ηr = 1 + Bc

(7) −3

where c is the molarity of the solution in mol·dm and has been calculated from density and molality data. The viscosities, η, of the solutes in Et4NBr are higher than those in pure water and increase with molalities of both solute and cosolute (Table 3). The viscosities decrease with increase in temperature in all cases. The viscosity data for (H2O + Et4NBr) have been compared with the literature data13,18,34 at all studied temperatures (Figure S3a−d). The present viscosity data show good agreement with the literature values at lower concentration range, (0.01 to 0.05) mol·kg−1, of Et4NBr at all temperatures. However, at higher concentration, that is, 2.0 1770

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Table 3. Viscosities, η, of Polyhydroxy Solutes in Et4NBr(aq) Solutions over Temperature Range (288.15 to 318.15) K at Pressure (p = 0.1 MPa) η, mPa·s mAa mol·kg−1

T = 288.15 K

T = 298.15 K

η, mPa·s

T = 308.15 K

T = 318.15 K

mAa mol·kg−1

T = 288.15 K

(−)-D-arabinose

T = 298.15 K

T = 308.15 K

T = 318.15 K

(+)-D-arabitol

0.00000 0.05017 0.07233 0.09072 0.10871 0.12574 0.14947 0.16591 0.19302 0.20740

1.160 1.185 1.196 1.205 1.213 1.222 1.233 1.241 1.254 1.261

0.904 0.922 0.930 0.936 0.943 0.949 0.957 0.963 0.972 0.977

0.731 0.743 0.749 0.753 0.757 0.761 0.767 0.771 0.777 0.781

0.00000 0.05028 0.06958 0.08695 0.10823 0.12805 0.14893 0.16787 0.18770 0.20811

1.341 1.385 1.402 1.417 1.436 1.453 1.471 1.487 1.504 1.522

1.043 1.075 1.087 1.098 1.111 1.124 1.137 1.149 1.161 1.174

0.836 0.859 0.868 0.876 0.886 0.895 0.904 0.913 0.922 0.931

0.00000 0.05115 0.07162 0.08965 0.10914 0.12714 0.15250 0.17179 0.18932 0.20557

1.550 1.612 1.636 1.658 1.681 1.703 1.733 1.755 1.776 1.795

1.209 1.254 1.271 1.287 1.304 1.319 1.341 1.357 1.372 1.386

0.959 0.991 1.003 1.015 1.027 1.038 1.053 1.065 1.075 1.085

0.00000 0.04889 0.07019 0.09001 0.10768 0.13218 0.15283 0.19009 0.21081

1.942 2.028 2.066 2.100 2.131 2.173 2.209 2.273 2.308

1.513 1.575 1.601 1.626 1.648 1.678 1.704 1.749 1.775 (+)-D-xylose

1.189 1.233 1.251 1.269 1.284 1.306 1.324 1.356 1.374

mBb = 0.05 mol·kg−1 0.612 0.621 0.05029 0.625 0.06980 0.628 0.09016 0.631 0.10854 0.634 0.12744 0.639 0.14686 0.641 0.646 0.649 mBb = 0.5 mol·kg−1 0.700 0.718 0.05064 0.724 0.07053 0.730 0.08835 0.738 0.10746 0.745 0.12919 0.752 0.15196 0.759 0.766 0.773 mBb = 1.0 mol·kg−1 0.792 0.816 0.04707 0.825 0.06930 0.834 0.09044 0.843 0.10953 0.851 0.13099 0.862 0.15020 0.871 0.879 0.886 mBb = 2.0 mol·kg−1 0.952 0.984 0.04771 0.998 0.06438 1.011 0.08270 1.022 0.11428 1.038 0.13216 1.051 0.14772 1.075 1.088

1.186 1.196 1.207 1.216 1.226 1.236

0.921 0.928 0.935 0.942 0.948 0.955

0.743 0.748 0.753 0.757 0.762 0.766

0.621 0.624 0.628 0.631 0.634 0.637

1.382 1.398 1.412 1.428 1.445 1.463

1.070 1.080 1.090 1.100 1.111 1.123

0.854 0.861 0.867 0.873 0.881 0.889

0.712 0.716 0.720 0.725 0.730 0.735

1.609 1.636 1.662 1.685 1.712 1.735

1.247 1.265 1.283 1.298 1.315 1.330

0.983 0.994 1.005 1.014 1.025 1.034

0.808 0.816 0.823 0.829 0.837 0.843

2.026 2.055 2.087 2.142 2.173 2.200

1.571 1.591 1.612 1.650 1.671 1.689

1.227 1.241 1.255 1.280 1.294 1.307

0.978 0.987 0.997 1.014 1.023 1.032

xylitol

0.04949 0.06704 0.09173 0.10639 0.13004 0.14947 0.16382 0.18553

1.184 1.192 1.204 1.211 1.222 1.231 1.238 1.248

0.920 0.926 0.934 0.939 0.946 0.952 0.957 0.964

0.743 0.747 0.753 0.757 0.762 0.767 0.770 0.776

0.05153 0.06677 0.08676

1.388 1.401 1.420

1.074 1.083 1.095

0.858 0.864 0.872

mBb = 0.05 mol·kg−1 0.622 0.04984 0.625 0.06816 0.629 0.08468 0.632 0.10531 0.637 0.12203 0.640 0.14840 0.643 0.16375 0.647 0.18593 mBb = 0.5 mol·kg−1 0.716 0.05281 0.721 0.06985 0.727 0.09000

1771

1.188 1.198 1.207 1.218 1.227 1.241 1.249 1.261

0.923 0.930 0.937 0.945 0.951 0.961 0.967 0.976

0.745 0.750 0.755 0.761 0.765 0.773 0.777 0.783

0.623 0.627 0.631 0.635 0.639 0.644 0.648 0.652

1.386 1.401 1.418

1.075 1.085 1.097

0.858 0.865 0.873

0.715 0.720 0.726

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Table 3. continued η, mPa·s mAa

mol·kg

−1

T = 288.15 K

T = 298.15 K

η, mPa·s

T = 308.15 K

0.10835 0.12004 0.13176 0.16307 0.18783

1.439 1.449 1.460 1.488 1.510

1.107 1.114 1.121 1.139 1.154

0.881 0.886 0.891 0.904 0.914

0.05273 0.06888 0.08772 0.10745 0.12146 0.13575 0.15399 0.18203

1.617 1.637 1.660 1.685 1.702 1.720 1.742 1.777

1.255 1.270 1.286 1.303 1.316 1.328 1.344 1.368

0.992 1.002 1.014 1.026 1.035 1.044 1.055 1.073

0.04827 0.06731 0.08476 0.10932 0.12424 0.14939 0.17476 0.19106

2.029 2.063 2.095 2.138 2.165 2.209 2.254 2.282

1.575 1.599 1.622 1.653 1.672 1.703 1.735 1.756 (−)-L-sorbose

1.234 1.251 1.267 1.290 1.303 1.326 1.349 1.364

0.04681 0.06799 0.08679 0.10772 0.13602 0.14721 0.18573 0.19948

1.190 1.204 1.216 1.229 1.247 1.254 1.278 1.286

0.925 0.935 0.943 0.953 0.965 0.970 0.987 0.993

0.747 0.754 0.760 0.767 0.776 0.780 0.792 0.797

0.04552 0.06972 0.07687 0.10854 0.12332 0.14864 0.16785 0.18540

1.381 1.403 1.409 1.437 1.450 1.472 1.489 1.504

1.071 1.085 1.090 1.109 1.118 1.133 1.144 1.154

0.856 0.867 0.870 0.884 0.891 0.902 0.910 0.917

0.04836 0.07197 0.09023 0.10751 0.13232 0.14921 0.16388 0.18766

1.612 1.643 1.666 1.688 1.719 1.740 1.759 1.789

1.253 1.274 1.291 1.306 1.328 1.343 1.356 1.377

0.990 1.005 1.017 1.028 1.044 1.055 1.064 1.079

0.05215 0.06704 0.08347 0.09288 0.11621 0.14654

2.052 2.083 2.117 2.137 2.185 2.247

1.588 1.609 1.632 1.646 1.679 1.721

1.240 1.254 1.270 1.279 1.301 1.330

T = 318.15 K

mAa

mol·kg

mBb = 0.5 mol·kg−1 0.734 0.10455 0.738 0.12626 0.741 0.14215 0.751 0.16521 0.759 0.18309 mBb = 1.0 mol·kg−1 0.817 0.05170 0.824 0.06813 0.833 0.08888 0.842 0.10113 0.849 0.12767 0.855 0.14145 0.864 0.17211 0.877 0.18310 mBb = 2.0 mol·kg−1 0.984 0.05303 0.997 0.06820 1.009 0.09514 1.025 0.10930 1.035 0.11530 1.051 0.14732 1.068 0.15844 1.079 0.18534 mBb = 0.05 mol·kg−1 0.624 0.04614 0.629 0.06895 0.634 0.08738 0.639 0.10615 0.646 0.12558 0.649 0.14703 0.658 0.18114 0.662 0.19816 mBb = 0.5 mol·kg−1 0.714 0.04832 0.722 0.06963 0.724 0.08225 0.735 0.10744 0.739 0.12505 0.747 0.14969 0.753 0.16386 0.759 0.18931 mBb = 1.0 mol·kg−1 0.816 0.04657 0.827 0.06864 0.836 0.08549 0.844 0.10923 0.856 0.13048 0.864 0.14725 0.871 0.16721 0.882 0.18675 mBb = 2.0 mol·kg−1 0.986 0.05171 0.995 0.07374 1.006 0.10584 1.012 0.11896 1.027 0.13302 1.047 0.16763

1772

−1

T = 288.15 K

T = 298.15 K

T = 308.15 K

T = 318.15 K

1.431 1.449 1.462 1.482 1.497

1.105 1.118 1.128 1.141 1.152

0.879 0.887 0.894 0.903 0.910

0.730 0.736 0.741 0.747 0.752

1.619 1.640 1.667 1.683 1.718 1.736 1.775 1.790

1.256 1.270 1.289 1.300 1.323 1.335 1.362 1.372

0.991 1.001 1.014 1.021 1.038 1.046 1.064 1.071

0.815 0.823 0.832 0.837 0.849 0.855 0.869 0.873

2.043 2.072 2.123 2.149 2.161 2.220 2.241 2.291

1.585 1.605 1.641 1.660 1.668 1.711 1.726 1.761 D-sorbitol

1.240 1.255 1.281 1.294 1.300 1.330 1.341 1.366

0.987 0.997 1.015 1.025 1.029 1.050 1.057 1.075

1.197 1.216 1.231 1.246 1.261 1.278 1.305 1.318

0.930 0.942 0.952 0.963 0.973 0.985 1.004 1.013

0.749 0.758 0.765 0.772 0.780 0.788 0.801 0.807

0.626 0.632 0.638 0.643 0.649 0.655 0.664 0.669

1.394 1.417 1.431 1.458 1.477 1.504 1.519 1.546

1.079 1.094 1.103 1.122 1.134 1.152 1.162 1.180

0.861 0.872 0.878 0.891 0.900 0.912 0.919 0.932

0.718 0.726 0.730 0.739 0.746 0.755 0.760 0.769

1.616 1.648 1.671 1.705 1.734 1.758 1.785 1.812

1.253 1.273 1.289 1.311 1.331 1.346 1.364 1.382

0.989 1.004 1.014 1.030 1.043 1.054 1.067 1.079

0.814 0.824 0.832 0.843 0.853 0.860 0.870 0.878

2.063 2.114 2.187 2.217 2.249 2.328

1.595 1.629 1.679 1.699 1.721 1.774

1.245 1.268 1.302 1.316 1.330 1.366

0.989 1.005 1.029 1.038 1.048 1.073

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Table 3. continued η, mPa·s mAa

mol·kg

−1

T = 288.15 K

T = 298.15 K

η, mPa·s

T = 308.15 K

0.16728 0.20970

2.289 2.375

1.750 1.809 (+)-D-galactose

1.349 1.389

0.05047 0.07120 0.08350 0.10780 0.12860 0.14602 0.16839 0.18546

1.194 1.208 1.216 1.232 1.246 1.258 1.272 1.283

0.928 0.937 0.943 0.955 0.964 0.972 0.983 0.990

0.749 0.756 0.760 0.769 0.776 0.782 0.790 0.796

0.04874 0.07023 0.08819 0.10676 0.13282 0.14973 0.16568 0.18568

1.387 1.408 1.425 1.442 1.467 1.483 1.498 1.516

1.075 1.090 1.101 1.114 1.131 1.141 1.152 1.165

0.859 0.869 0.878 0.886 0.898 0.906 0.913 0.923

0.04549 0.06267 0.09486 0.10327 0.12711 0.14896 0.18155 0.20052

1.608 1.630 1.670 1.681 1.710 1.737 1.777 1.801

1.249 1.264 1.292 1.300 1.320 1.339 1.367 1.383

0.987 0.998 1.017 1.022 1.037 1.050 1.069 1.081

0.04802 0.07015 0.08306 0.10559 0.12158 0.14937 0.18366 0.19622

2.047 2.095 2.123 2.171 2.205 2.265 2.337 2.364

1.585 1.618 1.637 1.670 1.694 1.734 1.784 1.802 (+)-D-glucose

1.238 1.260 1.273 1.295 1.311 1.338 1.372 1.384

0.04993 0.06875 0.08606 0.10943 0.13076 0.14726 0.16530 0.19027

1.191 1.203 1.214 1.228 1.242 1.252 1.263 1.278

0.926 0.934 0.942 0.952 0.961 0.969 0.976 0.987

0.748 0.754 0.760 0.767 0.774 0.780 0.786 0.794

0.04808 0.07020 0.08862 0.10996 0.12979 0.14884

1.382 1.401 1.417 1.435 1.452 1.468

1.071 1.084 1.095 1.107 1.119 1.130

0.857 0.866 0.874 0.883 0.891 0.899

T = 318.15 K

mAa

mol·kg

mBb = 2.0 mol·kg−1 1.060 0.18613 1.086 0.19481 mBb = 0.05 mol.kg−1 0.625 0.04950 0.630 0.07077 0.633 0.08824 0.639 0.11037 0.644 0.12783 0.648 0.14952 0.654 0.16418 0.658 0.19016 0.20446 mBb = 0.5 mol·kg−1 0.716 0.04996 0.723 0.06968 0.729 0.08746 0.735 0.11079 0.744 0.12900 0.749 0.14999 0.754 0.17069 0.761 0.19151 0.21138 mBb = 1.0 mol·kg−1 0.812 0.04946 0.819 0.06998 0.832 0.09077 0.836 0.10967 0.846 0.13017 0.855 0.14854 0.869 0.16665 0.877 mBb = 2.0 mol·kg−1 0.983 0.05109 0.997 0.07214 1.006 0.08620 1.020 0.10919 1.031 0.12447 1.048 0.14850 1.070 0.16744 1.078 0.21149 mBb = 0.05 mol·kg−1 0.625 0.05055 0.630 0.06925 0.634 0.09003 0.640 0.10949 0.645 0.12910 0.649 0.14770 0.653 0.16876 0.660 0.18963 mBb = 0.5 mol·kg−1 0.715 0.04920 0.722 0.06911 0.728 0.09059 0.735 0.09215 0.741 0.10740 0.747 0.12339

1773

−1

T = 288.15 K

T = 298.15 K

T = 308.15 K

T = 318.15 K

2.369 2.389

1.802 1.815 galactitol

1.386 1.395

1.086 1.092

1.191 1.204 1.214 1.228 1.238 1.251 1.260 1.276 1.284

0.924 0.933 0.940 0.949 0.956 0.964 0.970 0.980 0.986

0.745 0.751 0.756 0.762 0.767 0.773 0.777 0.784 0.788

0.621 0.625 0.629 0.633 0.636 0.640 0.643 0.647 0.650

1.383 1.400 1.415 1.435 1.450 1.467 1.485 1.502 1.518

1.071 1.081 1.091 1.104 1.114 1.125 1.136 1.147 1.158

0.856 0.864 0.870 0.880 0.887 0.895 0.903 0.911 0.918

0.713 0.718 0.723 0.729 0.734 0.739 0.745 0.750 0.755

1.605 1.628 1.651 1.672 1.694 1.714 1.733

1.245 1.260 1.275 1.288 1.303 1.316 1.329

0.984 0.994 1.005 1.014 1.025 1.034 1.043

0.809 0.816 0.823 0.830 0.836 0.843 0.849

2.045 2.087 2.115 2.160 2.190 2.237 2.274 2.359

1.579 1.606 1.624 1.653 1.673 1.703 1.727 1.781 (+)-D-maltose anhydrous

1.231 1.249 1.260 1.279 1.291 1.310 1.325 1.360

0.978 0.988 0.995 1.007 1.015 1.027 1.036 1.058

1.234 1.261 1.290 1.317 1.345 1.370 1.399 1.428

0.957 0.977 0.998 1.018 1.038 1.057 1.078 1.098

0.772 0.787 0.804 0.819 0.834 0.849 0.865 0.880

0.645 0.657 0.670 0.682 0.694 0.706 0.719 0.732

1.430 1.465 1.503 1.505 1.532 1.560

1.108 1.133 1.161 1.163 1.182 1.203

0.885 0.905 0.926 0.927 0.942 0.957

0.738 0.753 0.769 0.771 0.782 0.794

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Table 3. continued η, mPa·s mAa

mol·kg

−1

T = 288.15 K

T = 298.15 K

η, mPa·s

T = 308.15 K

0.16670 0.18773

1.483 1.501

1.140 1.152

0.906 0.915

0.05090 0.06730 0.07800 0.10072 0.12732 0.15063 0.17202 0.19524

1.614 1.634 1.647 1.675 1.708 1.737 1.762 1.791

1.251 1.265 1.274 1.292 1.314 1.333 1.350 1.369

0.989 0.999 1.005 1.019 1.035 1.048 1.061 1.074

0.05329 0.06714 0.08825 0.09466 0.12280 0.14403 0.16612 0.18938

2.058 2.088 2.134 2.148 2.208 2.253 2.300 2.349

1.592 1.612 1.643 1.652 1.693 1.723 1.755 1.788

1.241 1.254 1.274 1.281 1.307 1.328 1.348 1.370

T = 318.15 K

mAa

mol·kg

mBb = 0.5 mol·kg−1 0.753 0.14874 0.759 0.16612 0.18400 mBb = 1.0 mol·kg−1 0.814 0.04890 0.821 0.06596 0.826 0.08217 0.836 0.10446 0.847 0.12522 0.857 0.14876 0.866 0.16402 0.876 0.19207 mBb = 2.0 mol·kg−1 0.987 0.04266 0.996 0.06338 1.010 0.08382 1.015 0.09938 1.033 0.12887 1.047 0.14927 1.061 0.16273 1.076 0.18559

−1

T = 288.15 K

T = 298.15 K

T = 308.15 K

T = 318.15 K

1.603 1.633 1.663

1.234 1.256 1.277

0.981 0.997 1.014

0.812 0.825 0.838

1.669 1.710 1.748 1.801 1.849 1.904 1.939 2.002

1.294 1.323 1.350 1.387 1.422 1.460 1.485 1.531

1.020 1.041 1.061 1.088 1.113 1.141 1.159 1.192

0.839 0.855 0.870 0.890 0.909 0.930 0.943 0.968

2.097 2.171 2.243 2.298 2.400 2.470 2.516 2.593

1.623 1.676 1.728 1.766 1.839 1.889 1.922 1.976

1.269 1.308 1.345 1.373 1.426 1.463 1.486 1.526

1.009 1.037 1.064 1.084 1.122 1.148 1.165 1.194

mA is the molality of solute in aqueous Et4NBr. bmB is the molality of Et4NBr in water. Standard uncertainties are u(T) = 0.01 K, u(m) = 1 × 10−5 mol·kg−1, u(p) = 0.001 MPa and u (η) = 2%. a

Figure 5. Viscosity B-coefficients of transfer, ΔtB, vs molalities, mB, of Et4NBr(aq) of (a) (+)-D-xylose and (b) xylitol at (◆) 288.15 K, (■) 298.15 K, (▲) 308.15 K, and (×) 318.15 K.

mol·kg−1 Et4NBr (Figure S3b), the deviations are large at 298.15 K. The η values of (+)-D-glucose in (0.05, 0.50, 1.0, and 2.0) mol·kg−1 Et4NBr(aq) ternary solution at 298.15 K (Figure S4a−d), show good agreement at low mB values of Et4NBr13 (Figure S4a,b); however, deviation is observed at higher concentration of Et4NBr (Figure S4c,d). The viscosity Bcoefficients for all studied saccharides and their polyols in Et4NBr(aq) solutions are positive (Supporting Information, Table S6), and their magnitudes increase with complexity of saccharides. The magnitudes of B-values are higher in Et4NBr(aq) solutions compared with those in water, indicating that Et4NBr strengthens the structure of solution. Further, the values of B-coefficients are higher in the case of polyols than their respective saccharides. The B-coefficients for Et4N+ ions are (0.406, 0.385, 0.346, and 0.324) dm3·mol−1, and those for Br− ions are (−0.058, −0.033, −0.026, and −0.014) dm3·mol−1

at (288.15, 298.15, 308.15, and 318.15) K, respectively.4,35,36 Therefore, the B-coefficients for Et4NBr are (0.348, 0.344, 0.320, and 0.320) dm3·mol−1, which are higher than the values for NH4Br,4 (−0.065, −0.041, −0.029, and −0.010) dm3·mol−1 at (288.15, 298.15, 308.15, and 318.15) K, respectively. The structure making tendencies of saccharides and their polyols increase in presence of Et4NBr in comparison to NH4Br. The signs of temperature coefficients of B values, that is, dB/dT, provide better information about kosmotropic or chaotropic characteristics of the solute (Supporting Information, Table S7). The dB/dT coefficients are negative in Et4NBr(aq) solutions and increase with molality of cosolute. This indicates that overall the saccharides and their polyols behave as kosmotropes in Et4NBr(aq) solutions. The viscosity B-coefficients of transfer, ΔtB, have been calculated using the equation analogous to eq 3. The ΔtB values 1774

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Funding

are positive (Supporting Information, Table S8), and their magnitudes increase with molalities of Et4NBr but decrease with increase in temperature in each case (Figure 5). The ΔtB values follow the order Mal > Gal > Glc > Sor > Ara > Xyl. Viscometric interaction coefficients have been calculated from an equation analogous to eq 5. The pair viscometric interaction coefficients, ηAB, are positive, but triplet coefficients, ηABB, are negative (Supporting Information, Table S9). Both the pair and triplet coefficients decrease with temperature. The contributions of pair interaction coefficients, ηAB, increase linearly, whereas, those of triplet, ηABB, coefficients vary nonlinearly at all temperatures. Among the pentoses and hexoses, Ara and Gal each containing −OH(4a) groups have higher ηAB values than Xyl and Glc containing −OH(4e). However, among polyols, Xyol and Srol having nonplanar sickle conformations have higher values of ηAB than Arol and Gaol having planar zigzag conformations in aqueous solutions. Therefore, rheological studies support the volumetric studies.

Authors are grateful to the University Grants Commission (Scheme No.: MRP-MAJOR-CHEM-2013-37407), New Delhi, India, for the financial support. Notes

The authors declare no competing financial interest.



4. CONCLUSIONS The partial molar volumes, V2°, and the Jones−Dole viscosity Bcoefficients of some saccharides and their polyols were determined in aqueous (0.05, 0.5, 1.0, and 2.0) mol·kg−1 tetraethylammonium bromide (Et4NBr) solutions over temperature range (288.15 to 318.15) K. The corresponding negative ΔtV2° values have been attributed to the dominance of hydrophobic−ionic interactions between alkyl (R) groups of polyhydroxy solutes and Et4N+/Br− ions of cosolute. The ΔtV°2 values are less in Et4NBr than in NH4Br because hydrophobic ion (Et4N+) undergoes hydrophobic hydration or the caging effect of water molecules, which causes a maximum destabilization of Et4N+ ions. The ΔtB values are positive and dB/dT coefficients are negative, indicating structure-making behavior of polyhydroxy solutes in Et4NBr(aq) solutions. Polyols having nonplanar sickle conformations have higher values of interaction coefficients than planar zigzag conformations in mixed aqueous solutions.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.5b00940. Partial molar volumes, V2°, at infinite-dilution (Table S1), partial molar volumes of transfer, ΔtV°2 (Table S2), partial molar expansion coefficients, (∂V°2 /∂T)P, and second-order derivatives, (∂2V°2 /∂T2)P (Table S3), pair, VAB, and triplet, VABB, interaction coefficients (Table S4), apparent massic volumes, vϕ (Table S5), viscosity Bcoefficients (Table S6), dB/dT values (Table S7), viscosity B-coefficients of transfer, ΔtB (Table S8), and pair, ηAB, and triplet, ηABB, interaction coefficients (Table S9) of polyhydroxy solutes in Et4NBr(aq) solutions over temperature range (288.15, 298.15, 308.15, and 318.15) K at pressure (p = 0.1 MPa) (PDF)



REFERENCES

(1) Zhuo, K.; Liu, Q.; Wang, Y.; Ren, Q.; Wang, J. Volumetric and Viscosity Properties of Monosaccharides in Aqueous Amino Acid Solutions at 298.15 K. J. Chem. Eng. Data 2006, 51, 919−927. (2) Carneiro, A. P.; Rodríguez, O.; Macedo, E. A. Solubility of Xylitol and Sorbitol in Ionic Liquids − Experimental Data and Modelling. J. Chem. Thermodyn. 2012, 55, 184−192. (3) Zhao, Q.; Sun, Z. J.; Zhang, Q.; Xing, S. K.; Liu, M.; Sun, D. Z.; Li, L. W. Densities and Apparent Molar Volumes of Myo-Inositol in Aqueous Solutions of Alkaline Earth Metal Salts at Different Temperatures. Thermochim. Acta 2009, 487, 1−7. (4) Banipal, P. K.; Arti, S.; Banipal, T. S. Influence of NH4Br on Solvation Behavior of Polyhydroxy Solutes in Aqueous Solutions at Different Temperatures and Atmospheric Pressure. J. Chem. Eng. Data 2015, 60, 1023−1047. (5) Wurzburger, S.; Sartorio, R.; Guarino, G.; Nisi, M. Volumetric Properties of Aqueous Solutions of Polyols between 0.5°C and 25°C. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2279−2287. (6) Xu, X.; Zhu, C.; Ma, Y. Densities and Viscosities of Sugar Alcohols in Vitamin B6 Aqueous Solutions at (293.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1535−1543. (7) Jiang, X.; Zhu, C.; Ma, Y. Densities and Viscosities of Erythritol, Xylitol, and Mannitol in L-Ascorbic Acid Aqueous Solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 2013, 58, 2970−2978. (8) Banipal, P. K.; Aggarwal, N.; Banipal, T. S. Effects of PhosphateBased Monobasic and Tribasic Inorganic Salts on Hydration Characteristics of Saccharides and their Derivatives. J. Mol. Liq. 2015, 211, 78−89. (9) Oroian, M.; Ropciuc, S.; Amariei, S.; Gutt, G. Correlations Between Density, Viscosity, Surface Tension and Ultrasonic Velocity of Different Mono- and Di-saccharides. J. Mol. Liq. 2015, 207, 145− 151. (10) Ryshetti, S.; Gupta, A.; Tangeda, S. J.; Gardas, R. L. Acoustic and volumetric Properties of Betaine Hydrochloride Drug in Aqueous D(+)-Glucose and Sucrose Solutions. J. Chem. Thermodyn. 2014, 77, 123−130. (11) Galema, S. A.; Hoeiland, H. Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions; Density and Ultrasound Measurements. J. Phys. Chem. 1991, 95, 5321−5326. (12) Shekaari, H.; Kazempour, A. Density and Viscosity in Ternary D-Xylose + Ionic Liquid (1-Alkyl-3-Methylimidazolium Bromide) + Water Solutions at 298.15 K. J. Chem. Eng. Data 2012, 57, 3315−3320. (13) Banipal, P. C.; Gautam, S.; Dua, S.; Banipal, T. S. Effect of Ammonium Salts on the Volumetric and Viscometric Behavior of D(+)-Glucose, D(−)-Fructose and Sucrose in Aqueous Solutions at 25°C. J. Solution Chem. 2006, 35, 815−844. (14) Jin, H. X.; Chen, H. Y. Volumetric Properties of 1-Butyl-3Methylimidazolium Tetrafluoroborate-Glucose-Water System. J. Chem. Eng. Data 2012, 57, 1134−1138. (15) Blanco, L. H.; Salamanca, Y. P.; Vargas, E. F. Apparent Molal Volumes and Expansibilities of Tetraalkylammonium Bromides in Dilute Aqueous Solutions. J. Chem. Eng. Data 2008, 53, 2770−2776. (16) Moreno, N.; Buchner, R.; Vargas, E. F. Partial Molar Volume and Isentropic Compressibility of Symmetrical and Asymmetrical Quaternary Ammonium Bromides in Aqueous Solution. J. Chem. Thermodyn. 2015, 87, 103−109. (17) Blanco, L. H.; Edgar, F. V. Apparent Molar Volumes of Symetric and Asymetric Tetraalkylammonium Salts in Dilute Aqueous Solutions. J. Solution Chem. 2006, 35, 21−28. (18) Ali, A.; Khan, S.; Hyder, S.; Tariq, M. Interactions of Some αAmino Acids with Tetra-n-alkylammonium Bromides in Aqueous

AUTHOR INFORMATION

Corresponding Author

*Tel.: +91 183 2451357, Fax: +91 183 2258819/20. E-mail: [email protected] (P.K. Banipal). 1775

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776

Journal of Chemical & Engineering Data

Article

Medium at Different Temperatures. J. Chem. Thermodyn. 2007, 39, 613−620. (19) Sharma, S. K.; Singh, G.; Kumar, H.; Kataria, R. Densities, Sound Speed, and Viscosities of Some Amino Acids with Aqueous Tetra-Butyl Ammonium Iodide Solutions at Different Temperatures. J. Chem. Eng. Data 2015, 60, 2600−2611. (20) Badarayani, R.; Kumar, A. Effect of Tetra-n-alkylammonium Bromides on the Volumetric Properties of Glycine, L-Alanine and Glycylglycine at T = 298.15 K. J. Chem. Thermodyn. 2004, 36, 49−58. (21) Banerjee, T.; Kishore, N. Insights into the Energetics and Mechanism Underlying the Interaction of Tetraethylammonium Bromide with Proteins. J. Chem. Thermodyn. 2008, 40, 483−491. (22) Marcus, Y. Tetraalkylammonium Ions in Aqueous and Nonaqueous Solutions. J. Solution Chem. 2008, 37, 1071−1098. (23) Jain, S.; Ahluwalia, J. C. Differential Scanning Calorimetric Studies on the Effect of Ammonium and Tetraalkylammonium Halides on the Stability of Lysozyme. Biophys. Chem. 1996, 59, 171−177. (24) Takekiyo, T.; Yoshimura, Y. Raman Spectroscopic Study on the Hydration Structures of Tetraethylammonium Cation in Water. J. Phys. Chem. A 2006, 110, 10829−10833. (25) Kell, G. S. Density, Thermal Expansivity, and Compressibility of Liquid Water from 0 to 150°C: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale. J. Chem. Eng. Data 1975, 20, 97−105. (26) Gurney, R. W. Ionic Processes in Solution; McGraw Hill: New York, 1953; Vol. 3, Chapter 1, pp 1−20. (27) Banipal, P. K.; Singh, V.; Kaur, G.; Kaur, M.; Banipal, T. S. Thermodynamic and Transport Properties of Some Disaccharides in Aqueous Ammonium Sulfate Solutions at Various Temperatures. J. Chem. Eng. Data 2008, 53, 1713−1724. (28) Marcus, Y. Thermodynamics of Solvation of Ions. Part 6 - The Standard Partial Molar Volumes of Aqueous Ions at 298.15 K. J. Chem. Soc., Faraday Trans. 1993, 89, 713−718. (29) Nightingale, E. R., Jr. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381−1387. (30) Hepler, L. G. Thermal Expansion and Structure in Water and Aqueous Solutions. Can. J. Chem. 1969, 47, 4613−4617. (31) McMillan, W. G., Jr; Mayer, J. E. The Statistical Thermodynamics of Multicomponent Systems. J. Chem. Phys. 1945, 13, 276− 305. (32) Angyal, S. J.; Le Fur, R. The 13C-N.M.R. Spectra of Alditols. Carbohydr. Res. 1980, 84, 201−209. (33) Parke, S. A.; Birch, G. G.; Dijk, R. Some Taste Molecules and Their Solution Properties. Chem. Senses 1999, 24, 271−279. (34) Out, D. J. P.; Los, J. M. Viscosity of Aqueous Solutions of Univalent Electrolytes from 5 to 95°C. J. Solution Chem. 1980, 9, 19− 35. (35) Wen, W.-Y. Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes; Horne, R. A., Ed; Wiley: New York, Chapter 15, 1972. (36) Donald, H.; Jenkins, B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695−2724.

1776

DOI: 10.1021/acs.jced.5b00940 J. Chem. Eng. Data 2016, 61, 1756−1776