Densities, Viscosities, Refractive Indexes, and Surface Tensions for

Jan 3, 2008 - Department of Cosmetic Applications & Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, 807 Taiwan, and. Chen-C...
2 downloads 12 Views 141KB Size
566

J. Chem. Eng. Data 2008, 53, 566–573

Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane Hsu-Chen Ku Department of Cosmetic Applications & Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, 807 Taiwan, and

Chen-Chieh Wang and Chein-Hsiun Tu* Department of Applied Chemistry, Providence University, Shalu, 43301 Taiwan

Densities, viscosities, refractive indexes, and surface tensions of a ternary system (tetrahydofuran + 2-propanol + 2,2,4-trimethylpentane) at T ) 298.15 K and three constituent binary systems at T ) (288.15, 298.15, and 308.15) K were measured at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling ball principle. Refractive indexes were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. These results were used to calculate excess molar volumes VE, deviations in the viscosity ∆η, deviations in the refractive index ∆nD, and deviations in the surface tension ∆σ. The calculated quantities of VE, ∆η, ∆nD, and ∆σ were fitted to variable-degree polynomials. The ternary results were compared with the values estimated by different empirical equations of prediction.

Certain oxygenated compounds are usually added to gasoline to improve the octane number and reduce pollution. The present paper is concerned with the oxygenated compounds of the type {cyclic ether or aliphatic alcohol} and the alkane liquid that generally appears in gasoline. From the viewpoint of association, cyclic ethers can be regarded as an intermediate case between alkanes (inert compounds) and alkanols (highly self-associated compounds). For these reasons, we measured densities, viscosities, refractive indexes, and surface tensions for binary and ternary mixtures of tetrahydrofuran, 2-propanol, and 2,2,4trimethylpentane at atmospheric pressure. As far as we know, no literature data are available for the systems investigated.

Wilhelmy-plate method. The detailed measuring procedures for these measurements have been described in previous studies.1,2 All samples were prepared by mass in a 50 cm3 Erlenmeyer flask provided with a ground glass joint stopper, using a Precisa 262SMA balance with a precision of 10-5 g. The uncertainty in the composition is estimated to within ( 1 · 10-4 mole fraction. All liquids were thermostatically controlled to within ( 0.01 K, ( 0.05 K, ( 0.03 K, and ( 0.05 K for the F, η, nD, and σ measurements, respectively. All measurements were performed at least four times under atmospheric pressure (100.8 ( 0.4) kPa, and the results were averaged to give the final values. The uncertainty in the F, η, nD, and σ measurements was estimated to be ( 1 · 10-5 g · cm-3, ( 0.006 mPa · s, ( 0.00002, and ( 0.05 mN · m-1, respectively.

Experimental Section

Results and Discussion

The chemicals used were of analytical grade and were used without further purification. The mass purities and source of the chemicals employed were as follows: tetrahydrofuran (Merck, > 99.5 %); 2-propanol (Tedia, > 99.5 %); 2,2,4trimethylpentane (Merck, > 99.7 %). The densities, viscosities, refractive indexes, and surface tensions at T ) 298.15 K of these components agreed closely with the accepted literature values (Table 1). Densities F were measured with an Anton Paar DMA-5000 vibrating-tube densimeter (Anton-Paar, Graz, Austria). Viscosities η were determined with an automatic microviscometer (Anton Paar type AMVn), which uses the rolling-ball principle. Refractive indices, nD, were measured with an automatic Anton Paar RXA-156 refractometer, which runs with the wavelength of 589 nm corresponding to the D-ray of sodium. Surface tensions σ were measured with an automatic surface tension meter model CBVP-A3 (Kyowa, Japan), which works by the

The experimental data of F, η, nD, and σ for binary mixtures at T ) (288.15, 298.15, and 308.15) K and ternary mixtures at T ) 298.15 K of tetrahydrofuran, 2-propanol, and 2,2,4trimethylpentane are presented in Tables 2 to 5. Increasing the temperature from T ) 288.15 K to T ) 3018.15 K decreases the values of F, η, nD, and σ for all these binary systems. Tables 6 and 7 list the values of molar excess volumes (VE), viscosity deviations (∆η), deviations in the refractive index (∆nD), and deviations in the surface tension (∆σ) for these binary and ternary mixtures at T ) 298.15 K. The molar excess volumes, VE, were calculated from density data according to the following equation

Introduction

* Corresponding author. E-mail: [email protected].

N

VE )

(

∑ xiMi F1 - F1i i)1

)

(1)

where xi, Mi, and Fi are the mole fraction, molar mass, and density of the pure component i, respectively. F is the density of the mixture, and N is the number of components. As can be seen from

10.1021/je700626v CCC: $40.75  2008 American Chemical Society Published on Web 01/03/2008

Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 567 Table 1. Comparison of Measured Densities G, Viscosities η, Refractive Indexes, and Surface Tensions σ of Pure Components with Literature Values at T ) 298.15 K F

η -3

g · cm

σ

mPa · s

mN · m-1

nD

component

exptl

lit.

exptl

lit.

exptl

lit.

exptl

lit.

tetrahydrofuran 2-propanol 2,2,4-trimethyl pentane

0.88237 0.78116 0.68795

0.8829a 0.88209b 0.78126c 0.68781c 0.68885d

0.470 2.043 0.481

0.530a 0.4637b 2.0436c 0.4802e

1.40487 1.37515 1.38916

1.4049a 1.40496c 1.3752c 1.38898c 1.3892d

26.98 20.90 18.33

26.4c 20.95f 20.93g 18.32h

a Nayak et al., 2003.3 b Rodriguez et al., 1997.4 2005.8 g Ouyang et al., 2003.9 h Vargaftik, 1975.10

c

Riddick et al., 1986.5

d

Aralaguppi et al., 1999.6

e

Bouzas et al., 2000.7 f Azizian and Bashavard,

Table 2. Experimental Densities G, Viscosities η, Refractive Indexes nD, and Surface Tensions σ for the Tetrahydrofuran (1) + 2-Propanol (2) System F

η

x1

g · cm-3

mPa · s

nD

F

η

g · cm-3

mPa · s

nD

mN · m-1

0.0000 0.0500 0.1000 0.1500 0.2001 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.78953 0.79484 0.80009 0.80528 0.81047 0.81562 0.82077 0.82590 0.83103 0.83615 0.84126

2.849 2.238 1.849 1.570 1.356 1.196 1.068 0.965 0.883 0.812 0.757

1.37933 1.38085 1.38233 1.38377 1.38520 1.38662 1.38802 1.38945 1.39088 1.39235 1.39384

T ) 288.15 K 21.75 0.5500 22.18 0.6000 22.53 0.6500 22.85 0.7000 23.13 0.7500 23.38 0.8000 23.65 0.8500 23.93 0.9000 24.22 0.9500 24.52 1.0000 24.83

0.84640 0.85153 0.85668 0.86184 0.86701 0.87219 0.87741 0.88264 0.88778 0.89302

0.713 0.678 0.643 0.613 0.589 0.569 0.554 0.540 0.530 0.520

1.39534 1.39684 1.39838 1.39997 1.40150 1.40301 1.40447 1.40592 1.40734 1.40875

25.15 25.48 25.82 26.16 26.51 26.87 27.23 27.60 27.98 28.37

0.0000 0.0500 0.1000 0.1500 0.2001 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.78116 0.78631 0.79135 0.79635 0.80135 0.80634 0.81133 0.81633 0.82131 0.82630 0.83129

2.043 1.706 1.445 1.248 1.113 0.988 0.896 0.812 0.752 0.703 0.659

1.37515 1.37661 1.37805 1.37946 1.38088 1.38230 1.38374 1.38519 1.38667 1.38816 1.38967

T ) 298.15 K 20.90 0.5500 21.32 0.6000 21.65 0.6500 21.95 0.7000 22.22 0.7500 22.47 0.8000 22.70 0.8500 22.95 0.9000 23.20 0.9500 23.47 1.0000 23.75

0.83632 0.84135 0.84639 0.85145 0.85652 0.86166 0.86681 0.87202 0.87721 0.88237

0.623 0.594 0.567 0.545 0.526 0.511 0.497 0.488 0.480 0.470

1.39118 1.39269 1.39421 1.39578 1.39735 1.39889 1.40041 1.40191 1.40339 1.40487

24.04 24.34 24.65 24.97 25.30 25.63 25.97 26.30 26.64 26.98

0.0000 0.0500 0.1000 0.1500 0.2001 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.77252 0.77745 0.78229 0.78713 0.79197 0.79683 0.80167 0.80653 0.81139 0.81628 0.82117

1.541 1.313 1.142 1.009 0.909 0.824 0.755 0.697 0.646 0.606 0.576

1.37061 1.37192 1.37328 1.37462 1.37596 1.37735 1.37875 1.38017 1.38161 1.38307 1.38454

T ) 308.15 K 20.17 0.5500 20.60 0.6000 20.93 0.6500 21.23 0.7000 21.50 0.7500 21.75 0.8000 21.98 0.8500 22.22 0.9000 22.45 0.9500 22.68 1.0000 22.93

0.82606 0.83096 0.83586 0.84081 0.84580 0.85082 0.85587 0.86097 0.86617 0.87133

0.549 0.526 0.507 0.489 0.474 0.461 0.452 0.444 0.440 0.433

1.38601 1.38748 1.38896 1.39046 1.39197 1.39348 1.39499 1.39651 1.39801 1.39953

23.19 23.47 23.76 24.06 24.37 24.68 25.00 25.32 25.64 25.95

σ mN · m-1

Tables 6 and 7, the VE values are positive at all compositions. The uncertainty of excess molar volumes was estimated to be less than ( 1 · 10-3 cm3 · mol-1. The values of VE at T ) 298.15 K vary from 0.011 cm3 · mol-1 to 0.562 cm3 · mol-1. The excess molar volume VE (x ) 0.5) increases in the order: 0 < tetrahydrofuran + 2,2,4-trimethylpentane < tetrahydrofuran + 2-propanol < 2-propanol + 2,2,4-trimethylpentane. Increasing the temperature from T ) 288.15 K to T ) 308.15 K increases the values of VE for all these binary systems. The dependence of VE on both composition and temperature for the present mixtures may be explained as a balance between positive contributions (hydrogen bond rupture or dispersive interactions between unlike molecules) and negative contributions (intermolecular dipolar interactions or geometrical fitting between components). In the present investigation, tetrahydrofuran is associated through the dipole–dipole interaction and 2-propanol is associated through the hydrogen bonding of its hydroxyl group.

x1

σ

In our systems, the observed VE are positive, and the predominant contribution to the positive VE is most likely from the breaking of these two kinds of interactions upon mixing. Larger VE values in the mixtures of 2,2,4-trimethylpentane with 2-propanol than those with tetrahydrofuran lead us to believe that the contribution to the VE values from the cleavage of the H-bond between 2-propanol molecules is greater than that of the O-O interaction between tetrahydrofuran molecules. The values of the viscosity deviations, ∆η, for the mixtures are calculated from the viscosity values of the pure liquids, ηi, and their mixtures, η, from eq 2 N

∆η ) η -

∑ xiηi

(2)

i)1

It is observed that the binary ∆η values are negative over the whole mole fractions. The values of ∆η are negligibly small

568 Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 Table 3. Experimental Densities G, Viscosities η, Refractive Indexes nD, and Surface Tensions σ for the Tetrahydrofuran (1) + 2,2,4-Trimethylpentane (3) System F

η -3

F

σ -1

g · cm

mPa · s

nD

0.0000 0.0500 0.1001 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.69610 0.70095 0.70607 0.71148 0.71720 0.72326 0.72972 0.73664 0.74066 0.75199 0.76046

0.537

1.39408 1.39443 1.39482 1.39523 1.39566 1.39612 1.39661 1.39715 1.39773 1.39835 1.39902

T ) 288.15 K 19.18 0.5500 19.32 0.6000 19.45 0.6500 19.60 0.7000 19.73 0.7500 19.88 0.8000 20.07 0.8500 20.27 0.9000 20.50 0.9500 20.75 1.0000 21.02

0.76953 0.77927 0.78974 0.80102 0.81322 0.82646 0.84087 0.85663 0.87394 0.89302

0.0000 0.0500 0.1001 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.68795 0.69268 0.69770 0.70302 0.70866 0.71465 0.72104 0.72787 0.73518 0.74300 0.75136

0.481

1.38916 1.38949 1.38987 1.39028 1.39071 1.39116 1.39166 1.39222 1.39284 1.39351 1.39423

T ) 298.15 K 18.33 0.5500 18.47 0.6000 18.63 0.6500 18.77 0.7000 18.92 0.7500 19.10 0.8000 19.27 0.8500 19.43 0.9000 19.63 0.9500 19.83 1.0000 20.05

0.76031 0.76992 0.78026 0.79141 0.80347 0.81655 0.83080 0.84638 0.86349 0.88237

0.0000 0.0500 0.1001 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.67962 0.68420 0.68910 0.69433 0.69991 0.70584 0.71216 0.71889 0.72608 0.73377 0.74199

0.434

1.38407 1.38428 1.38461 1.38495 1.38535 1.38580 1.38630 1.38684 1.38743 1.38807 1.38876

T ) 308.15 K 17.35 0.5500 17.55 0.6000 17.73 0.6500 17.90 0.7000 18.10 0.7500 18.27 0.8000 18.48 0.8500 18.70 0.9000 18.90 0.9500 19.12 1.0000 19.37

0.75080 0.76026 0.77045 0.78146 0.79337 0.80629 0.82036 0.83575 0.85265 0.87133

x1

0.534 0.531 0.528 0.527 0.525

0.479 0.477 0.475 0.474 0.473

0.433 0.432 0.432 0.431 0.431

mN · m

η -3

for tetrahydrofuran + 2,2,4-trimethylpentane mixtures. The values of ∆η at T ) 298.15 K vary from –0.680 mPa · s to –0.001 mPa · s. The viscosity deviation ∆η (x ) 0.5) increases in the order: tetrahydrofuran + 2-propanol ≈ 2-propanol + 2,2,4-trimethylpentane < tetrahydrofuran + 2,2,4-trimethylpentane < 0. The values of ∆η increase with a rise in temperature except for those of the tetrahydrofuran + 2,2,4-trimethylpentane system, which show no clear temperature dependence. The deviations in the refractive index, ∆nD, were calculated from a mole fraction basis as: N

∆nD ) nD -

∑ xinD

(3)

i)1

where nD and nDi stand for the refractive index of the mixture and pure liquid i, respectively. The ∆nD values are negative at most of the compositions. For binary mixtures of tetrahydrofuran + 2-propanol, the ∆nD values are negative, while some positive values were found at high tetrahydrofuran mole fractions. On the other hand, the values of ∆nD are positive for the 2-propanol + 2,2,4-trimethylpentane mixture except for some negative values oberved at low 2-propanol mole fractions. The values of ∆nD at T ) 298.15 K vary from -0.0034 to 0.0010. The ∆nD (x ) 0.5) increases in the order: tetrahydrofuran + 2,2,4trimethylpentane < tetrahydrofuran + 2-propanol < 2-propanol + 2,2,4-trimethylpentane. The ∆nD values decrease as the temperature increases from T ) 288.15 K to T ) 308.15 K for all these binary systems.

x1

g · cm

σ nD

mN · m-1

1.39975 1.40053 1.40138 1.40229 1.40324 1.40425 1.40530 1.40640 1.40775 1.40875

21.33 21.68 22.05 22.47 22.97 23.57 24.35 25.32 26.50 28.37

1.39501 1.39585 1.39676 1.39775 1.39880 1.39991 1.40105 1.40225 1.40352 1.40487

20.35 20.68 21.05 21.48 22.00 22.60 23.30 24.15 25.28 26.98

1.38950 1.39031 1.39120 1.39220 1.39326 1.39438 1.39557 1.39682 1.39814 1.39953

19.60 19.90 20.25 20.67 21.20 21.82 22.55 23.45 24.55 25.95

mPa · s

0.524 0.523 0.522 0.521 0.520

0.472 0.472 0.471 0.471 0.470

0.432 0.432 0.432 0.432 0.433

The deviations in the surface tension, ∆σ, were calculated from the following equation: N

∆σ ) σ -

∑ xiσi

(4)

i)1

where σ and σi are the surface tension of the mixture and pure liquid i, respectively. The ∆σ values are negative values except for some positive values that were found for binary mixtures of tetrahydofuran + 2-propanol. The surface tension deviation ∆σ (x ) 0.5) increases in the sequence: tetrahydrofuran + 2,2,4trimethylpentane < 2-propanol + 2,2,4-trimethylpentane < tetrahydrofuran + 2-propanol. The values of ∆σ at T ) 298.15 K vary from -2.90 mN · m-1 to 0.14 mN · m-1. Increasing the temperature from T ) 288.15 K to T ) 308.15 K increases the values of ∆σ for mixtures of tetrahydrofuran + 2,2,4-trimethylpentane and tetrahydrofuran + 2-propanol. However, the system 2-propanol + 2,2,4-trimethylpentane shows a different temperature dependence. The calculated quantities, VE, ∆η, ∆nD, and ∆σ, at T ) 298.15 K for the binary systems of tetrahydrofuran (1) + 2-propanol (2), tetrahydrofuran (1) + 2,2,4-trimethylpentane (3), and 2-propanol (2) + 2,2,4-trimethylpentane (3) have been fitted to the Redlich–Kister equation relation11 m

∆Q(xi, xj) ) xixj

∑ ak(xi - xj)k

k)0

(5)

where ∆Q(xi,xj) refers to binary VE/cm3 · mol-1, ∆η/mPa · s, ∆nD, or ∆σ/mN · m-1 as a function of pure-component mole fractions

Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 569 Table 4. Experimental Densities G, Viscosities η, Refractive Indexes nD, and Surface Tensions σ for the 2-Propanol (2) + 2,2,4-Trimethylpentane (3) System F

η

x2

g · cm-3

mPa · s

nD

F

η

g · cm-3

mPa · s

nD

mN · m-1

0.0000 0.0500 0.1000 0.1501 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.69610 0.69768 0.69961 0.70174 0.70406 0.70659 0.70933 0.71232 0.71561 0.71918 0.72307

0.537 0.541 0.547 0.556 0.569 0.586 0.608 0.636 0.671 0.715 0.768

1.39408 1.39346 1.39285 1.39227 1.39170 1.39114 1.39058 1.39001 1.38942 1.38881 1.38817

T ) 288.15 K 19.18 0.5500 19.21 0.6000 19.23 0.6500 19.27 0.7000 19.30 0.7500 19.33 0.8000 19.37 0.8500 19.40 0.9000 19.45 0.9500 19.50 1.0000 19.57

0.72729 0.73185 0.73684 0.74233 0.74832 0.75493 0.76225 0.77037 0.77942 0.78953

0.836 0.916 1.009 1.126 1.264 1.437 1.652 1.933 2.314 2.849

1.38750 1.38679 1.38604 1.38525 1.38441 1.38352 1.38257 1.38156 1.38048 1.37933

19.65 19.75 19.86 20.00 20.17 20.37 20.60 20.88 21.27 21.75

0.0000 0.0500 0.1000 0.1501 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.68795 0.68936 0.69113 0.69320 0.69548 0.69796 0.70066 0.70364 0.70690 0.71045 0.71431

0.480 0.482 0.486 0.493 0.503 0.515 0.530 0.550 0.576 0.608 0.646

1.38916 1.38845 1.38779 1.38715 1.38656 1.38598 1.38541 1.38484 1.38426 1.38367 1.38305

T ) 298.15 K 18.33 0.5500 18.35 0.6000 18.37 0.6500 18.38 0.7000 18.41 0.7500 18.43 0.8000 18.45 0.8500 18.50 0.9000 18.55 0.9500 18.60 1.0000 18.65

0.71851 0.72309 0.72812 0.73362 0.73968 0.74632 0.75369 0.76183 0.77098 0.78116

0.694 0.751 0.819 0.901 1.003 1.122 1.277 1.407 1.707 2.043

1.38241 1.38175 1.38105 1.38031 1.37954 1.37875 1.37791 1.37705 1.37613 1.37515

18.72 18.80 18.90 19.02 19.18 19.38 19.62 19.95 20.37 20.90

0.0000 0.0500 0.1000 0.1501 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.67962 0.68082 0.68254 0.68454 0.68676 0.68918 0.69184 0.69480 0.69800 0.70151 0.70532

0.434 0.432 0.434 0.440 0.447 0.457 0.468 0.483 0.501 0.524 0.552

1.38407 1.38317 1.38246 1.38181 1.38117 1.38056 1.37998 1.37941 1.37884 1.37826 1.37767

T ) 308.15 K 17.35 0.5500 17.37 0.6000 17.38 0.6500 17.40 0.7000 17.42 0.7500 17.43 0.8000 17.47 0.8500 17.52 0.9000 17.58 0.9500 17.65 1.0000 17.72

0.70950 0.71409 0.71911 0.72465 0.73074 0.73740 0.74487 0.75306 0.76226 0.77252

0.586 0.628 0.677 0.736 0.806 0.898 1.006 1.145 1.310 1.541

1.37706 1.37643 1.37579 1.37512 1.37442 1.37370 1.37294 1.37214 1.37139 1.37061

17.80 17.90 18.00 18.13 18.29 18.50 18.77 19.10 19.52 20.17

σ mN · m-1

x2

σ

Table 5. Experimental Densities G, Viscosities η, Refractive Indexes nD, and Surface Tensions σ for the Tetrahydrofuran (1) + 2-Propanol (2) + 2,2,4-Trimethylpentane (3) System at T ) 298.15 K F x1

x2

0.0500 0.0501 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.3000

0.9000 0.7999 0.7000 0.6000 0.5001 0.4000 0.3000 0.2000 0.1000 0.0500 0.8500 0.7500 0.6500 0.5500 0.4500 0.3499 0.2500 0.1501 0.0500 0.7500 0.6500 0.5500 0.4500 0.3500 0.2500 0.1501 0.0500 0.6500

η -3

F

σ

g · cm

mPa · s

nD

0.77580 0.75809 0.74360 0.73181 0.72207 0.71382 0.70695 0.70117 0.69650 0.69440 0.78061 0.76230 0.74778 0.73581 0.72581 0.71743 0.71036 0.70452 0.69973 0.79010 0.77123 0.75614 0.74373 0.73340 0.72462 0.71740 0.71128 0.79953

1.467 1.122 1.905 0.759 0.655 0.586 0.541 0.509 0.491 0.484 1.256 0.998 0.821 0.701 0.622 0.561 0.523 0.499 0.483 0.991 0.814 0.698 0.617 0.562 0.523 0.498 0.482 0.814

1.37645 1.37804 1.37951 1.38085 1.38208 1.38324 1.38436 1.38551 1.38666 1.38727 1.37445 1.37907 1.38054 1.38187 1.38308 1.38423 1.38534 1.38649 1.38770 1.38028 1.38173 1.38302 1.38422 1.38535 1.38646 1.38756 1.38872 1.38296

-1

mN · m

20.75 20.15 19.67 19.33 19.05 18.89 18.75 18.67 18.60 18.55 21.30 20.20 19.60 19.33 19.12 18.97 18.85 18.75 18.65 21.75 20.75 20.05 19.70 19.45 19.25 19.05 18.87 22.25

x1

x2

0.3000 0.3000 0.3000 0.3001 0.3000 0.3000 0.4000 0.4000 0.4000 0.3999 0.4000 0.4000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6000 0.6000 0.6000 0.6000 0.7000 0.7000 0.6999 0.8000 0.8000 0.8999

0.5500 0.4500 0.3500 0.2500 0.1500 0.0500 0.5500 0.4500 0.3500 0.2501 0.1500 0.0500 0.4500 0.3500 0.2500 0.1501 0.0500 0.3500 0.2500 0.1500 0.0500 0.2500 0.1500 0.0500 0.1500 0.0500 0.0501

η -3

σ

g · cm

mPa · s

nD

mN · m-1

0.78019 0.76452 0.75166 0.74092 0.73201 0.72432 0.80914 0.78916 0.77296 0.75965 0.74847 0.73930 0.81873 0.79810 0.78148 0.76772 0.75642 0.82848 0.80773 0.79016 0.77613 0.83850 0.81652 0.79901 0.84840 0.82604 0.85850

0.699 0.621 0.565 0.526 0.508 0.488 0.704 0.621 0.565 0.533 0.499 0.482 0.623 0.566 0.531 0.501 0.482 0.570 0.527 0.498 0.479 0.528 0.499 0.481 0.503 0.482 0.481

1.38424 1.38542 1.38650 1.38765 1.38871 1.38983 1.38572 1.38686 1.38795 1.38901 1.39001 1.39109 1.38857 1.38955 1.39052 1.39148 1.39254 1.39168 1.39255 1.39343 1.39439 1.39462 1.39537 1.39621 1.39760 1.39915 1.40186

21.35 20.50 19.90 19.45 19.25 19.15 22.75 21.63 20.70 20.15 19.85 19.75 23.55 22.20 21.20 20.45 20.10 24.40 22.65 21.25 20.70 25.35 22.85 21.45 26.65 23.25 27.85

570 Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 Table 6. Values of VE, ∆η, ∆nD, and ∆σ for Binary Mixtures of Tetrahydrofuran, 2-Propanol, and 2,2,4-Trimethylpentane at T ) 298.15 K VE x

∆η -1

mPa · s

cm · mol 3

0.0500 0.1000 0.1500 0.2001 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.020 0.048 0.077 0.103 0.124 0.144 0.159 0.173 0.184 0.191

0.0500 0.1001 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.026 0.041 0.076 0.102 0.123 0.143 0.152 0.151 0.144 0.132

0.0500 0.1000 0.1501 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.190 0.314 0.395 0.456 0.506 0.542 0.559 0.562 0.554 0.535

VE

∆σ -1

mN · m

∆nD · 10

3

-0.258 -0.440 -0.559 -0.615 -0.662 -0.675 -0.680 -0.662 -0.632 -0.598

-0.03 -0.07 -0.15 -0.22 -0.28 -0.33 -0.36 -0.37 -0.36 -0.34

x

-2.5 · 10-3 -0.077 -0.150 -0.221 -0.290 -0.356 -0.419 -0.477 -0.529 -0.576 -0.615

x 2-Propanol + (1-x) 2,2,4-Trimethylpentane -0.01 -0.11 0.5500 0.511 0.03 -0.22 0.6000 0.479 0.09 -0.34 0.6500 0.436 0.20 -0.43 0.7000 0.388 0.32 -0.54 0.7500 0.332 0.45 -0.65 0.8000 0.276 0.58 -0.73 0.8500 0.211 0.70 -0.81 0.9000 0.147 0.81 -0.89 0.9500 0.071 0.89 -0.96

-1.8 · 10-3 -2.7 · 10-3 -2.6 · 10-3

∆σ

mPa · s

x Tetrahydrofuran + (1-x) 2-Propanol 0.12 0.5500 0.191 0.14 0.6000 0.189 0.14 0.6500 0.183 0.10 0.7000 0.172 0.05 0.7500 0.157 -0.02 0.8000 0.134 -0.08 0.8500 0.107 -0.13 0.9000 0.071 -0.17 0.9500 0.035 -0.19

x Tetrahydrofuran + (1-x) -0.46 -0.29 -0.86 -0.57 -1.24 -0.86 -1.59 -1.14 -1.93 -1.39 -2.21 -1.65 -2.44 -1.93 -2.60 -2.16 -2.72 -2.39 -2.79 -2.60

-0.9 · 10-3

∆η -1

cm · mol 3

-0.555 -0.506 -0.453 -0.397 -0.337 -0.274 -0.209 -0.139 -0.069

2,2,4-Trimethylpentane 0.5500 0.104 0.6000 0.090 0.6500 0.075 0.7000 0.063 0.7500 0.051 0.8000 0.040 0.8500 0.029 0.9000 0.018 0.9500 0.011

∆nD · 10

mN · m-1

-0.32 -0.29 -0.26 -0.17 -0.09 -0.04 0.00 0.01 0.01

-0.20 -0.21 -0.20 -0.19 -0.16 -0.13 -0.10 -0.07 -0.04

-2.79 -2.74 -2.61 -2.41 -2.14 -1.82 -1.46 -1.05 -0.56

-2.74 -2.84 -2.90 -2.90 -2.82 -2.65 -2.38 -1.96 -1.27

0.96 1.00 1.00 0.96 0.89 0.80 0.66 0.50 0.28

-1.02 -1.07 -1.10 -1.11 -1.08 -1.01 -0.89 -0.69 -0.40

3

-2.4 · 10-3 -1.3 · 10-3 -1.2 · 10-3 -0.1 · 10-3

-0.645 -0.666 -0.677 -0.673 -0.649 -0.608 -0.532 -0.417 -0.258

Table 7. Values of VE, ∆η, ∆nD, and ∆σ for Ternary Mixtures of Tetrahydrofuran (1) + 2-Propanol (2) + 2,2,4-Trimethylpentane (3) at T ) 298.15 K VE x1

x2

0.0500 0.0501 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.3000

0.9000 0.7999 0.7000 0.6000 0.5001 0.4000 0.3000 0.2000 0.1000 0.0500 0.8500 0.7500 0.6500 0.5500 0.4500 0.3499 0.2500 0.1501 0.0500 0.7500 0.6500 0.5500 0.4500 0.3500 0.2500 0.1501 0.0500 0.6500

∆η -1

cm · mol

mPa · s

∆nD · 10

0.104 0.242 0.382 0.477 0.531 0.567 0.545 0.474 0.304 0.210 0.131 0.290 0.387 0.462 0.512 0.526 0.500 0.399 0.214 0.186 0.314 0.391 0.436 0.450 0.446 0.363 0.235 0.237

-0.419 -0.608 -0.669 -0.658 -0.606 -0.519 -0.407 -0.283 -0.144 -0.073 -0.552 -0.653 -0.674 -0.638 -0.560 -0.465 -0.347 -0.214 -0.074 -0.659 -0.680 -0.640 -0.564 -0.463 -0.346 -0.214 -0.074 -0.679

-0.89 -0.70 -0.63 -0.69 -0.86 -1.10 -1.38 -1.63 -1.88 -1.97 -4.37 -1.15 -1.08 -1.16 -1.35 -1.60 -1.89 -2.14 -2.33 -1.51 -1.47 -1.58 -1.78 -2.05 -2.34 -2.64 -2.88 -1.81

3

VE

∆σ 3

-1

mN · m

-0.02 -0.62 -0.91 -1.15 -1.20 -1.09 -0.93 -0.78 -0.57 -0.49 -0.23 -0.87 -1.17 -1.31 -1.25 -1.14 -1.09 -0.93 -0.77 -0.39 -0.98 -0.02 -0.62 -0.91 -1.15 -1.20 -1.09 -0.93

xi and xj. The binary interaction coefficients, ak, have been determined from a least-squares procedure, and the results are

x1

x2

0.3000 0.3000 0.3000 0.3001 0.3000 0.3000 0.4000 0.4000 0.4000 0.3999 0.4000 0.4000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6000 0.6000 0.6000 0.6000 0.7000 0.7000 0.6999 0.8000 0.8000 0.8999

0.5500 0.4500 0.3500 0.2500 0.1500 0.0500 0.5500 0.4500 0.3500 0.2501 0.1500 0.0500 0.4500 0.3500 0.2500 0.1501 0.0500 0.3500 0.2500 0.1500 0.0500 0.2500 0.1500 0.0500 0.1500 0.0500 0.0501

∆η -1

∆σ

cm · mol

mPa · s

∆nD · 10

mN · m-1

0.324 0.381 0.400 0.390 0.322 0.241 0.256 0.320 0.353 0.346 0.317 0.208 0.265 0.309 0.304 0.271 0.173 0.247 0.255 0.225 0.140 0.190 0.196 0.118 0.136 0.090 0.052

-0.638 -0.559 -0.459 -0.342 -0.203 -0.067 -0.632 -0.558 -0.458 -0.334 -0.211 -0.072 -0.556 -0.456 -0.335 -0.208 -0.071 -0.451 -0.338 -0.211 -0.073 -0.336 -0.209 -0.070 -0.204 -0.068 -0.068

-1.93 -2.15 -2.47 -2.72 -3.06 -3.34 -2.02 -2.28 -2.59 -2.93 -3.33 -3.65 -2.14 -2.56 -2.99 -3.43 -3.77 -2.00 -2.53 -3.05 -3.50 -2.03 -2.69 -3.24 -2.03 -1.88 -0.74

-1.32 -1.52 -1.61 -1.55 -1.45 -1.29 -0.59 -1.09 -1.53 -1.77 -1.87 -1.81 -1.65 -0.80 -1.45 -1.94 -2.18 -2.23 -2.12 -0.81 -1.45 -2.10 -2.54 -2.63 -0.92 -1.76 -2.31

3

3

presented in Table 8. The parameters ak were then used to calculate the curves of VE for these binary systems as shown in Figure 1.

Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 571 Table 8. Binary Coefficients ak of the Redlich–Kister Equation and Standard Deviations δ of VE, ∆η, ∆nD, and ∆σ for the Binary Systems at T ) (288.15, 298.15, and 308.15) K ∆Qij

T/K

VE / cm3 · mol-1

288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15

∆η / mPa · s

∆nD ∆σ / mN · m-1

VE / cm3 · mol-1 ∆η / mPa · s

∆nD ∆σ / mN · m-1

VE / cm3 · mol-1 ∆η / mPa · s

∆nD ∆σ / mN · m-1

∆Q123 VE/cm3 · mol-1 ∆η/mPa · s ∆nD ∆σ/mN · m-1

a0

288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15

0.5638 0.7547 0.8939 -3.7128 -2.3927 -1.6463 -0.00086 -0.00143 -0.00218 -0.9260 -0.7771 -0.5069

a2

a3

Tetrahydrofuran (1) + 2-Propanol (2) 0.1368 -0.0254 0.1712 0.0644 0.1672 0.1750 2.6990 -1.5144 1.5854 -0.9562 1.0358 -0.5160 0.00114 0.00427 0.00100 0.00166 0.00092 0.00009 -0.5818 1.1945 -0.8017 1.8818 -1.3267 1.9717

-0.0027 -0.0072 0.0500 0.5500 0.4833 0.0844 -0.00113 -0.00046 -0.00031 -1.6191 -1.1263 -0.5006

2-Propanol (2) + 2,2,4-Trimethylpentane (3) 1.7639 -0.7583 0.2085 2.1563 -0.9141 0.1610 2.5797 -1.0039 0.0456 -3.6903 -2.2474 -1.2547 -2.4618 -1.3794 -0.7282 -1.7357 -0.9740 -0.5055 0.00585 0.00336 -0.00051 0.00357 0.00299 -0.00118 0.00129 0.00300 -0.00136 -3.5883 -2.1691 -0.6106 -3.8499 -2.6157 -1.9065 -4.1566 -2.4301 -2.5014

a4

δ · 103

-0.1496 -0.3167 -0.2654 -1.9308 -0.5101 -0.4356 -0.00227

2.3 1.2 2.1 3.8 3.4 1.2 0.014 0.013 0.011 4.6 4.1 5.4

0.6266

Tetrahydrofuran (1) + 2,2,4-Trimethylpentane (3) 0.3793 -0.5651 0.1511 0.4676 0.4766 -0.5690 0.1754 0.3050 0.5954 -0.4757 0.1481 -0.0782 -0.0135 0.0091 -0.0027 -0.0018 -0.0104 0.0097 -0.0001 -0.0215 -0.0079 0.0058 0.0019 -0.0066 -0.00959 -0.00153 0.00143 0.00139 -0.01119 -0.00122 0.00164 -3.18 × 10-6 -0.01219 -0.00201 0.00019 0.00176 -11.0210 -6.4838 -4.8004 -6.3588 -10.3780 -6.4989 -1.7021 -4.7612 -9.1965 -7.2081 -4.0309 -1.1641

288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15 288.15 298.15 308.15 C00 2.123 9.649 -0.401 167.020

a1

0.6411 0.2627 0.0690 -1.0125 -0.7792 -0.4382 0.00027 0.00041 0.00041 -0.9420 -1.0292 -2.1210

-0.3115 -0.1720 0.1854 0.0028 -0.00108 -3.8660 -6.5641

0.2645 0.6696 1.0753 -1.2662 -0.5956 -0.3545

-0.00197 -1.1769

Tetrahydrofuran (1) + 2-Propanol (2) + 2,2,4-Trimethylpentane (3) C10 C01 C11 C20 -14.050 -6.596 16.332 18.265 -57.105 20.372 3.974 -4.599 1.105 1.173 -1.293 -1.036 -157.361 -419.990 -281.812 375.711

C02 10.260 -1.162 528.591

2.6 1.8 0.7 0.04 0.03 0.02 0.040 0.011 0.014 27.0 26.8 15.9 3.2 2.9 4.2 0.9 2.4 2.0 0.005 0.008 0.015 5.3 4.9 11.5 δ · 103 10.5 6.5 0.61 40.7

Table 9. Standard Deviations of Equations 7 to 12 in Estimating VE, ∆η, ∆nD, and ∆σ for the Tetrahydrofuran + 2-Propanol + 2,2,4-Trimethylpentane Ternary System at T ) 298.15 K ∆Q123

Scatchard et al.

Tsao and Smith

Toop

Kohler

Colinet

Jacob and Fitzner

VE/cm3 · mol-1 ∆η/mPa · s ∆nD ∆σ/mN · m-1

0.022 0.108 0.0016 0.30

0.074 0.199 0.0020 0.18

0.024 0.117 0.0018 0.29

0.027 0.086 0.0018 0.16

0.046 0.021 0.0017 0.21

0.023 0.062 0.0018 0.16

The derived data, VE, ∆η, ∆nD, and ∆σ, for ternary mixtures of tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K were correlated, respectively, using the equation

∆Q123 ) ∆Q(x1,x2) + ∆Q(x1,x3) + ∆Q(x2,x3)+ 2 2-i

x1x2x3

∑ ∑ Cijxi1xj2

(6)

i)0 j)0

where ∆Q123 refers to ternary VE/cm3 · mol-1, ∆η/mPa · s, ∆nD, or ∆σ/mN · m-1 and x3 ) 1 - x1 - x2. ∆Q is the binary contribution functions for VE, ∆η, ∆nD, or ∆σ as defined in eq

5. The ternary parameters Cij were determined with the optimization algorithm similar to that for the binary parameters. The parameters Cij and the corresponding standard deviations are also given in Table 8. The curves of constant VE, ∆η, ∆nD, and ∆σ at T ) 298.15 K for the ternary mixtures were calculated from eq 6 and plotted in Figures 2 to 5, respectively. As can be expected from the behavior of the binary mixtures, the experimental values of ternary VE are positive at all compositions (Figure 2). A maximum VE value is found near the 2-propanol + 2,2,4trimethylpentane side with a composition at about x ) 0.4 of 2-propanol. As shown in Figure 3, the values of ternary ∆η are

572 Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008

Figure 1. Variation of excess molar volume VE with mole fraction xi for the binary systems at T ) 298.15 K: O, tetrahydrofuran (1) + 2-propanol (2), xi ) x1; ∆, tetrahydrofuran (1) + 2,2,4-trimethylpentane (3), xi ) x1; , 2-propanol (2) + 2,2,4-trimethylpentane (3), xi ) x2. Solid curves were calculated from the Redlich–Kister equation.

Figure 3. Iso-lines of ∆η for the ternary system tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K.

Figure 4. Iso-lines of ∆nD for the ternary system tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K.

Tsao and Smith13 Figure 2. Iso-lines of VE for the ternary system tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K.

negative at all compositions, with a minimum value near the tetrahydrofuran + 2-propanol side at the composition about x ) 0.7 of 2-propanol. Curves of constant ∆nD and ∆σ in Figures 4 and 5 show negative values at almost all compositions, with a minimum value close to the side of tetrahydrofuran + 2,2,4trimethylpentane. The ternary VE, ∆η, ∆nD, and ∆σ for the system tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K may be estimated, from binary functions ∆Q, using the following expressions: Scatchard et al.12

∆Q123 )

x2 x3 ∆Q(x1, 1 - x1) + ∆Q(x1, 1 - x1) + 1 - x1 1 - x1 x3 x2 ∆Q , (7) x2 + x3 x2 + x3

(

)

∆Q123 )

x2 x3 ∆Q(x1, 1 - x1) + ∆Q(x1, 1 - x1) + 1 - x1 1 - x1 x3 x2 (1 - x1)∆Q , (8) x2 + x3 x2 + x3

(

)

Toop14

∆Q123 )

x2 x3 ∆Q(x1, 1 - x1) + ∆Q(x1, 1 - x1) + 1 - x1 1 - x1 x3 x2 (1 - x1)2∆Q , (9) x2 + x3 x2 + x3

(

)

15

Kohler

(

(

)

x2 x1 , + (x1 + x3)2∆Q x1 + x2 x1 + x2 x3 x3 x1 x2 , , + (x2 + x3)2∆Q (10) x1 + x3 x1 + x3 x2 + x3 x2 + x3

∆Q123 ) (x1 + x2)2∆Q

)

(

)

Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008 573

The ternary VE, ∆η, ∆nD, and ∆σ data were compared with those estimated from binary results using the empirical equations of Scatchard et al., Tsao and Smith, Toop, Kohler, Colinet, and Jacob and Fitzner. As we have pointed out above, the Toop equation leads to a good agreement with experimental values of VE, whereas the same equation does not predict good values for ∆σ. Alternately, the Scatchard at al. equation predicts good results for VE, while the same equation does not give good values for ∆σ.

Literature Cited

Figure 5. Iso-lines of ∆σ for the ternary system tetrahydrofuran (1) + 2-propanol (2) + 2,2,4-trimethylpentane (3) at T ) 298.15 K.

[

Colinet16

∆Q123 ) 0.5 x1 x2 ∆Q(x1, 1 - x1) + ∆Q(1 - x2, x2)+ 1 - x1 1 - x2 x1 x3 ∆Q(x1, 1 - x1) + ∆Q(1 - x3, x3)+ 1 - x1 1 - x3 x2 x3 ∆Q(x2, 1 - x2) + ∆Q(1 - x3, x3) 1 - x2 1 - x3 Jacob and Fitzner17

∆Q123 )

4x1x2

(

∆Q

)

1 + x1 - x2 1 - x1 + x2 + , 2 2

1 - (x1 - x2) 1 + x1 - x3 1 - x1 + x3 4x1x3 ∆Q + , 2 2 2 1 - (x1 - x3) 4x2x3 1 + x2 - x3 1 - x2 + x3 ∆Q , 2 2 1 - (x2 - x3)2 2

(

]

(11)

(

)

)

(12)

The standard deviations for these estimations are shown in Table 9. As can be seen from this result, the Scatchard equation gives lower deviations for estimating the ternary VE, whereas the Colinet equation predicts better values for the ternary ∆η. With respect to the ternary ∆nD, there are no significant differences between the various equations. On the other hand, the Kohler equation and the Jacob and Fitzner equation predict equally well for ternary ∆σ.

Conclusion This paper reports the experimental data of densities F, viscosities η, refractive indexes nD, and surface tensions σ for the systems formed by tetrahydrofuran, 2-propanol, and 2,2,4trimethylpentane at atmospheric pressure. The values of VE are positive at all compositions, while the ∆η, ∆nD, and ∆σ values are negative at most of the compositions. The calculated VE, ∆η, ∆nD, and ∆σ data were fitted to variable-degree polynomials in terms of liquid mole fractions.

(1) Wang, C. C.; Chen, H. W.; Tu, C. H. Densities, Viscosities, and Refractive Indices for Binary and Ternary Mixtures of Ethanol, 2-Methylpropan-2-ol, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 2005, 50, 1687–1693. (2) Sheu, Y. W.; Tu, C. H. Refractive Indices and Surface Tensions of Binary Mixtures of Ethyl Acetoacetate, Ethyl Isovalerate, Methyl Benzoate, Benzyl Acetate, Ethyl Salicylate, and Benzyl Propionate with Ethanol at (288.15, 298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2006, 51, 1690–1697. (3) Nayak, J. N.; Aralaguppi, M. I.; Toti, U. S.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-n-butylamine, + Tetrahydrofuran, + Tetradecane, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2003, 48, 1483–1488. (4) Rodriguez, S.; Lafuente, C.; Cea, P.; Royo, F. M.; Urieta, J. Density and Viscosity of Binary Mixtures of Some Cyclic Ethers + Chlorocyclohexane at 298.15 and 313.15 K. J. Chem. Eng. Data 1997, 42, 1285–1289. (5) Riddick, A.; Bunger, W. B.; Sakano, T. K. Organic SolVents, Physical Properties and Method of Purification, 4th ed.; Wiley Interscience: NY, 1986. (6) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 43–438. (7) Bouzas, A.; Burguet, M. C.; Monton, J. B.; Munoz, R. Densities, Viscosities, and Refractive Indices of the Binary Systems Methyl tertButyl Ether + 2-Methylpentane, + 3-Methylpentane, + 2,3-Dimethylpentane, + and 2,2,4-Trimethylpentane at 298.15 K. J. Chem. Eng. Data 2000, 45, 331–333. (8) Azizian, S.; Bashavard, N. Surface Tensions of Dilute Solutions of Linear Alcohols in Benzyl Alcohol. J. Chem. Eng. Data 2005, 50, 1303–1307. (9) Quyang, G.; Huang, Z.; Ou, J.; Wu, W.; Kang, B. Excess Molar Volumes and Surface Tensions of Xylene with 2-Propanol or 2-Methyl-2-propanol at 298.15 K. J. Chem. Eng. Data 2003, 48, 195–197. (10) Vargaftik, N. B. Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed.; Hemisphere Publishing Co.: Washington, D.C., 1975. (11) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345–348. (12) Scatchard, G.; Ticknor, L. B.; Goates, J. R.; McCartney, E. R. Heat of Mixing in Some Non-electrolyte Solutions. J. Am. Chem. Soc. 1952, 74, 3721–3724. (13) Tsao, C. C.; Smith, J. M. Heat of Mixing of Liquids. Applied Thermodynamics. Chem. Eng. Prog. Symp. Ser. 1953, 49, 107–117. (14) Toop, G. W. Predicting Ternary Activities using Binary Data. Trans. TMS-AIME 1965, 223, 850–855. (15) Kohler, F. Estimation of the Thermodynamic Data for a Ternary System from the Corresponding Binary Systems. Monatsh. Chem. 1960, 91, 738–740. (16) Colinet, C. Ph.D Thesis, University of Grenoble, France, 1967. (17) Jacob, K. T.; Fitzner, K. The Estimation of the Thermodynamic Properties of Ternary Alloys from Binary Data using the Shortest Distance Composition Path. Thermochim. Acta 1977, 18, 197–206. Received for review August 5, 2007. Accepted November 29, 2007. The authors wish to extend their deep gratitude for the support by the National Science Council of the Republic of China under grant NSC 95-2221-E-126-010-MY3.

JE700626V