Density and Surface Tension of Binary Mixtures of 2,2,4

May 27, 2015 - We measure the density and surface tension of four binary mixtures of 2,2,4-trimethylpentane + n-heptane and n-octane, and butanenitril...
9 downloads 0 Views 920KB Size
Article pubs.acs.org/jced

Density and Surface Tension of Binary Mixtures of 2,2,4Trimethylpentane + n‑Heptane, 2,2,4-Trimethylpentane + n‑Octane, Ethyl Acetate + Benzene, and Butanenitrile + Benzene from (293.15 to 323.15) K José de los S. López-Lázaro,‡ Gustavo A. Iglesias-Silva,† Alejandro Estrada-Baltazar,*,† and Juan Barajas-Fernández‡ †

Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya, Guanajuato 38010, México División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco 86690, México



ABSTRACT: We measure the density and surface tension of four binary mixtures of 2,2,4-trimethylpentane + n-heptane and n-octane, and butanenitrile and ethyl acetate + benzene, from (293.15 to 323.15) K at atmospheric pressure. Densities are measured using a vibrating tube densimeter while surface tension is measured with a drop volume tensiometer. Excess molar volumes and surface tension deviations are calculated from the experimental measurements. Results are correlated with Redlich−Kister type equations.

1. INTRODUCTION Physical properties of pure liquids and their mixtures such as density and surface tension are important in combustion, mass and heat transfer, liquid−liquid extraction, and distillation processes. Surface tension is the result of various phenomenological processes in the liquid as well as in the surface.1 Therefore, this property contains information about molecular interactions, and it has been used as a guide to understand the behavior of liquid mixtures.2 Also, excess molar volumes and enthalpies can provide similar information, but surface tension helps to determine the quality of products from the paint, cosmetics, insecticide, and fertilizer industries. Systematic studies of the density and surface tension of binary and multicomponent mixtures are necessary among mixtures with different molecular characteristics. Mixtures with 2,2,4-trimethylpentane + n-heptane and + n-octane are used in the fuel industry as components of gasoline. Mixtures of benzene + ethyl acetate are used in the determination of carboxylic acids in herbal medicines while mixtures of benzene + butanenitrile are used for the extraction of semivolatile compounds from water. We have selected the mixtures in this work to notice the influence in the thermodynamic properties of different molecular interactions. We believe this can give us insight into developing generalized correlations. The interaction between a linear molecule with a nonpolar molecule with alkyl groups is considered with mixtures of n-heptane and n-octane plus 2,2,4-trimethylpentane. The interaction between polar molecules is considered with the mixtures of benzene + ethyl acetate, and finally, with the mixtures of benzene + butanenitrile, we consider the association between © 2015 American Chemical Society

butanenitrile and the aromatic hydrocarbon in the thermodynamic properties. For mixtures of 2,2,4-trimethylpentane + n-heptane, 2,2,4trimethylpentane + n-octane, ethyl acetate + benzene, and butanenitrile + benzene, excess enthalpies have been measured.3−7 Equilibrium vapor liquid,8 excess molar heat capacities,4 and speed of sound8 have been reported for the ethyl acetate + benzene mixture. For 2,2,4-trimethylpentane + n-heptane, Malhotra and Woolf9 measured the density at (298.15 and 313.15) K at atmospheric pressure. Awwad et al.10 measured the density at 298.15 K and Dymond et al.11 at (298.15 and 323.15) K of 2,2,4-trimethylpentane + n-octane, and Artal et al.12 measured the density of butanenitrile + benzene at 298.15 K. Densities for the binary mixture of ethyl acetate + benzene have been measured at 298.15 K by Hu et al.,4 Resa et al.,13 and Shipp.14 Also, Grolier et al.15 and Iloukhani et al.16 reported excess molar volume at (298.15 and 313.15) K, respectively. Unfortunately, surface tension has been reported only for the system ethyl acetate + benzene by Shipp14 and Wohlfarth and Wohlfarth.17 In this work, we have measured the density and surface tension of 2,2,4-trimethylpentane + n-heptane, 2,2,4-trimethylpentane + n-octane, ethyl acetate + benzene, and butanenitrile + benzene from (293.15 to 323.15) K. Excess molar volumes and surface Received: January 3, 2015 Accepted: May 15, 2015 Published: May 27, 2015 1823

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 1. Sample Information

a

chemical name

CAS no.

source

purity

analysis method

2,2,4-trimethylpentane n-heptane n-octane ethyl acetate butanenitrile benzene water

540-84-1 142-82-5 111-65-9 141-78-6 109-74-0 71-43-2 7732-18-5

Fermont Fermont Sigma-Aldrich Fermont Aldrich Sigma-Aldrich Sigma-Aldrich

0.999 0.999 0.997 0.999 0.998 0.999 0.9999

GCa GCa GCa GCa GCa GCa

Gas chromatography.

Table 2. Experimental Density (ρ) and Surface Tension (σ) Values of Pure Liquids with Literature Valuesa 10−3ρ T

10−3ρ

σ

(kg·cm−3)

(mN·m−1)

σ

−3

−1

(kg·cm )

(mN·m )

compd

K

expt

lit.

expt

2,2,4-trimethylpentane

293.15

0.691833

0.69189a 0.69198c

19.13

298.15

0.687735

18.62

303.15

0.683614

0.68777a 0.68768b 0.68778c 0.6879d 0.68364a 0.68361c 0.6836d

18.16

17.9c 18.19x

0.694493

308.15

0.679470

0.67948a 0.67945b 0.6793d

17.69

17.59y

0.690438

313.15

0.675295

0.67528a 0.67523c

17.23

16.9c 17.19x

0.686360

318.15

0.671091

323.15

0.666856

293.15

0.900443

0.67107a 0.67131b 0.66681a 0.66680c 0.90048e 0.90053f

298.15

0.894374

303.15

0.888256

308.15

0.882093

313.15

0.875884

318.15

0.869621

323.15

0.863303

ethyl acetate

lit. 18.8c 19.06x 18.80y 18.3c

compd n-octane

expt

lit.

0.702547

expt

0.70261h 0.70256j

21.89

0.698528

0.6984d 0.69857h 0.69852j 0.6985k 0.6942d 0.69452h 0.69447j 0.6945k 0.6901d 0.69044h 0.69040j 0.6904k 0.68635h 0.68630j 0.6864k 0.68223h 0.6822k 0.67809h

21.35

21.96y 21.78z 21.81aa 21.18ab

0.878930

0.873621

0.682258 0.678130 24.11

23.95ac 23.89ad 24.3ae

0.89481e 0.89444f 0.88714e 0.88831f 0.8889g

23.50

23.30ac 23.34ad 22.797ad 23.0ae

0.88221e 0.88214f 0.8826g 0.87892e 0.87275f 0.8759g

22.35

22.90

21.73

benzene

0.868287

0.862942

21.7ae 21.29af

0.87451e 0.86649f 0.8696g 0.86713e 0.87904f

0.857576

0.852187

0.846775

1824

lit.

20.84

20.80z 20.76aa 20.79ae

20.32

20.41y

19.82

19.82z 19.82aa 19.78ae

0.87895l 0.878918m 0.87898n

29.22

0.87361l 0.873582m 0.86825l 0.868233m 0.86830n 0.86826o 0.86288l 0.862871m 0.86290o 0.85748l 0.857498m 0.85760n 0.85756o 0.85208l 0.85223o

28.52

29.0ag 28.90ad 28.90ai 29.24x 28.18ad 28.15ah 27.49ad 27.48ah 27.60ai 27.85x 26.81ah 26.99aj

27.81

27.14

26.45

26.30ag 26.14ah 26.36ai 26.46x

0.84665l 0.84676n DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 2. continued 10−3ρ T compd n-heptane

10−3ρ

σ

(kg·cm−3)

(mN·m−1)

σ

−3

−1

(kg·cm )

(mN·m )

K

expt

lit.

expt

lit.

compd

expt

expt

lit.

293.15

0.683892

0.68400h 0.683733i 0.68384j

20.17

butanenitrile

0.790859

0.79099p

27.35

27.48t 26.97al

298.15

0.679645

19.64

0.786254

0.78631q 0.785909r

26.80

303.15

0.675371

0.67975h 0.679494i 0.67964j 0.67548h 0.675229i 0.67533j

20.12u 20.21v 20.27w 20.14ak 19.70v 19.68w

0.781629

0.78171p 0.78167s

26.23

308.15

0.671073

18.65

313.15

0.666741

18.11u 18.19v 18.18ak

0.772321

318.15

0.662375

323.15

0.657975

0.67119h 0.670941i 0.67112j 0.66686h 0.666621i 0.66685j 0.66250h 0.662273i 0.65811h 0.657896i

19.13u 19.17v 19.19w 19.17ak 18.93w

19.13

18.15

lit.

0.776987

26.43t 25.88al

25.65

0.77217p

25.15

25.19t

0.767637 0.762929

a Standard uncertainty in the density measurement = 3·10−2 kg·m−3, standard uncertainty in the surface tension = 0.03 mN·m−1, and standard uncertainty in the temperature measurement = 0.01 K. aReference 35. bReference 36. cReference 37. dReference 38. eReference 39. fReference 40. g Reference 41. hReference 20. iReference 42. jReference 43. kReference 44. lReference 45. mReference 46. nReference 47. oReference 48. pReference 49. qReference 50. rReference 51. sReference 52. tReference 53. uReference 54. vReference 55. wReference 23. xReference 56. yReference 57. z Reference 58. aaReference 59. abReference 60. acReference 61. adReference 62. aeReference 63. afReference 64. agReference 65. ahReference 66. ai Reference 67. ajReference 68. akReference 69. alReference 70.

Table 3. Density (ρ), Surface Tension (σ), Surface Tension Deviations (Δσ), and Excess Molar Volumes (VE) for the Binary Mixture of 2,2,4-Trimethylpentane (1) + n-Heptane (2) at p = 0.1 MPaa 10−3ρ

T

106VE

−1

10−3ρ

106VE

(m ·mol )

(mN·m )

K

(kg·m )

(mN·m )

(m ·mol )

(mN·m−1)

293.15

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000

0.683892 0.684809 0.685708 0.686573 0.687405 0.688202 0.688968 0.689709 0.690430 0.691135 0.691833 0.679645 0.680580 0.681497 0.682381 0.683227 0.684039 0.684819 0.685573 0.686306 0.687025 0.687735 0.675371 0.676326 0.677261

20.17 20.04 19.92 19.80 19.69 19.58 19.48 19.38 19.28 19.19 19.13 19.64 19.52 19.40 19.28 19.17 19.07 18.97 18.87 18.77 18.69 18.62 19.13 19.02 18.90

0.000 −0.007 −0.016 −0.021 −0.024 −0.023 −0.020 −0.015 −0.009 −0.004 0.000 0.000 −0.008 −0.017 −0.023 −0.025 −0.025 −0.021 −0.016 −0.010 −0.004 0.000 0.000 −0.009 −0.018

0.000 −0.026 −0.042 −0.058 −0.064 −0.070 −0.066 −0.062 −0.058 −0.044 0.000 0.000 −0.018 −0.036 −0.054 −0.062 −0.060 −0.058 −0.056 −0.054 −0.032 0.000 0.000 −0.013 −0.036

313.15

0.666741 0.667738 0.668707 0.669647 0.670543 0.671401 0.672224 0.673017 0.673792 0.674550 0.675295 0.662375 0.663392 0.664382 0.665341 0.666254 0.667129 0.667967 0.668774 0.669562 0.670334 0.671091 0.657975 0.659014 0.660023

18.15 18.05 17.95 17.85 17.75 17.65 17.56 17.47 17.39 17.30 17.23

0.000 −0.011 −0.020 −0.029 −0.032 −0.031 −0.027 −0.020 −0.013 −0.006 0.000 0.000 −0.011 −0.022 −0.031 −0.034 −0.034 −0.029 −0.022 −0.014 −0.007 0.000 0.000 −0.012 −0.023

0.000 −0.008 −0.016 −0.024 −0.032 −0.040 −0.038 −0.036 −0.024 −0.022 0.000

1825

323.15

−1

3

−1

Δσ

(mN·m )

318.15

−3

σ

(kg·m )

3

−1

T

x1

303.15

−1

Δσ

K

298.15

−3

σ

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 3. continued 10−3ρ

T K

308.15

−3

σ

106VE −1

−1

Δσ

T −1

x1

(kg·m )

(mN·m )

(m ·mol )

(mN·m )

0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

0.678162 0.679025 0.679852 0.680646 0.681413 0.682160 0.682892 0.683614 0.671073 0.672049 0.673001 0.673921 0.674800 0.675642 0.676451 0.677231 0.677991 0.678736 0.679470

18.80 18.69 18.59 18.50 18.40 18.31 18.23 18.16 18.65 18.54 18.43 18.33 18.22 18.12 18.03 17.93 17.85 17.76 17.69

−0.024 −0.027 −0.027 −0.023 −0.017 −0.010 −0.004 0.000 0.000 −0.010 −0.019 −0.027 −0.030 −0.029 −0.025 −0.018 −0.011 −0.005 0.000

−0.039 −0.052 −0.055 −0.048 −0.051 −0.044 −0.027 0.000 0.000 −0.014 −0.028 −0.032 −0.046 −0.050 −0.044 −0.048 −0.032 −0.026 0.000

3

K

10−3ρ −3

(kg·m )

σ −1

(mN·m )

106VE

Δσ

(m3·mol−1)

(mN·m−1)

−0.033 −0.036 −0.035 −0.032 −0.024 −0.015 −0.008 0.000

0.661003 0.661931 0.662821 0.663679 0.664501 0.665302 0.666088 0.666856

Standard uncertainty in the density measurement = 3·10−2 kg·m−3, standard uncertainty in the surface tension = 0.03 mN·m−1, standard uncertainty in the temperature measurement = 0.01 K, and standard uncertainty in mole fraction = 0.0002.

a

Table 4. Density (ρ), Surface Tension (σ), Surface Tension Deviations (Δσ), and Excess Molar Volumes (VE) for the Binary Mixture of 2,2,4-Trimethylpentane (1) + n-Octane (2) at p = 0.1 MPaa 10−3ρ

T

106VE

−1

10−3ρ

106VE

(m ·mol )

(mN·m )

K

(kg·m )

(mN·m )

(m ·mol )

(mN·m−1)

293.15

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

0.702547 0.701577 0.700604 0.699614 0.69858 0.697518 0.696433 0.695320 0.694188 0.693020 0.691833 0.698528 0.697563 0.696587 0.695588 0.694551 0.693482 0.692387 0.691266 0.690119 0.688938 0.687735 0.694493 0.693524 0.692545 0.691541 0.690500 0.689421 0.688318 0.687184 0.686026 0.684832

21.89 21.57 21.28 20.99 20.71 20.44 20.16 19.89 19.63 19.37 19.13 21.35 21.04 20.76 20.47 20.19 19.92 19.65 19.38 19.12 18.86 18.62 20.84 20.55 20.26 19.98 19.71 19.44 19.17 18.91 18.65 18.40

0.000 −0.027 −0.053 −0.074 −0.084 −0.087 −0.083 −0.073 −0.057 −0.031 0.000 0.000 −0.030 −0.058 −0.079 −0.090 −0.093 −0.089 −0.079 −0.061 −0.033 0.000 0.000 −0.032 −0.061 −0.083 −0.096 −0.099 −0.095 −0.083 −0.064 −0.035

0.000 −0.044 −0.058 −0.072 −0.076 −0.070 −0.074 −0.068 −0.052 −0.036 0.000 0.000 −0.037 −0.044 −0.061 −0.068 −0.065 −0.062 −0.059 −0.046 −0.033 0.000 0.000 −0.022 −0.044 −0.056 −0.058 −0.060 −0.062 −0.054 −0.046 −0.028

313.15

0.686360 0.685383 0.684393 0.683379 0.682322 0.681229 0.680103 0.678952 0.677766 0.676545 0.675295 0.682258 0.681275 0.680280 0.679258 0.678194 0.677092 0.675957 0.674792 0.673594 0.672357 0.671091 0.678130 0.677144 0.676141 0.675113 0.674037 0.672926 0.671780 0.670602 0.669391 0.668140

19.82 19.55 19.28 19.01 18.74 18.48 18.22 17.97 17.72 17.47 17.23

0.000 −0.036 −0.067 −0.092 −0.106 −0.110 −0.105 −0.093 −0.071 −0.040 0.000 0.000 −0.037 −0.070 −0.096 −0.111 −0.116 −0.111 −0.098 −0.075 −0.042 0.000 0.000 −0.040 −0.074 −0.102 −0.116 −0.121 −0.116 −0.103 −0.079 −0.044

0.000 −0.011 −0.022 −0.033 −0.044 −0.045 −0.046 −0.037 −0.028 −0.019 0.000

1826

323.15

−1

3

−1

Δσ

(mN·m )

318.15

−3

σ

kg·m )

3

−1

T

x1

303.15

−1

Δσ

K

298.15

−3

σ

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 4. continued 10−3ρ

T K 308.15

−3

σ

106VE −1

−1

Δσ

T −1

x1

kg·m )

(mN·m )

(m ·mol )

(mN·m )

1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

0.683614 0.690438 0.689466 0.688481 0.687474 0.686422 0.685338 0.684226 0.683083 0.681910 0.680703 0.679470

18.16 20.32 20.04 19.76 19.49 19.22 18.95 18.69 18.43 18.18 17.93 17.69

0.000 0.000 −0.034 −0.064 −0.088 −0.100 −0.104 −0.100 −0.088 −0.067 −0.038 0.000

0.000 0.000 −0.017 −0.034 −0.041 −0.048 −0.055 −0.052 −0.049 −0.036 −0.023 0.000

3

K

10−3ρ −3

(kg·m )

σ −1

(mN·m )

0.666856

106VE

Δσ

(m3·mol−1)

(mN·m−1)

0.000

Standard uncertainty in the density measurement = 3·10−2 kg·m−3, standard uncertainty in the surface tension = 0.03 mN·m−1, standard uncertainty in the temperature measurement = 0.01 K, and standard uncertainty in mole fraction = 0.0002.

a

Table 5. Density (ρ), Surface Tension (σ), Surface Tension Deviations (Δσ), and Excess Molar Volumes (VE) for the Binary Mixture of Ethyl Acetate (1) + Benzene (2) at p = 0.1 MPaa T

10−3ρ

σ

106VE

Δσ

T

10−3ρ

σ

106VE

Δσ

K

x1

(kg·m−3)

(mN·m−1)

(m3·mol−1)

(mN·m−1)

K

(kg·m−3)

(mN·m−1)

(m3·mol−1)

(mN·m−1)

293.15

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000

0.878930 0.880728 0.882584 0.884626 0.886734 0.888922 0.891143 0.893406 0.895707 0.898055 0.900443 0.873621 0.875393 0.877202 0.879187 0.881226 0.883333 0.885462 0.887642 0.889850 0.892095 0.894374 0.868287 0.870029 0.871792 0.873715 0.875682 0.877708 0.879751 0.881837 0.883948 0.886087 0.888256 0.862942 0.864648 0.866360 0.868218 0.870107 0.872049

29.22 28.48 27.87 27.30 26.76 26.24 25.73 25.26 24.82 24.44 24.11 28.52 27.81 27.21 26.65 26.12 25.60 25.10 24.64 24.22 23.84 23.50 27.81 27.13 26.55 26.00 25.47 24.96 24.48 24.03 23.62 23.24 22.90 27.14 26.49 25.92 25.38 24.87 24.37

0.000 0.056 0.102 0.124 0.136 0.135 0.126 0.108 0.081 0.045 0.000 0.000 0.051 0.094 0.114 0.125 0.124 0.117 0.099 0.075 0.041 0.000 0.000 0.046 0.085 0.104 0.114 0.113 0.107 0.091 0.068 0.038 0.000 0.000 0.041 0.077 0.094 0.103 0.103

0.00 −0.23 −0.33 −0.39 −0.42 −0.43 −0.42 −0.38 −0.31 −0.18 0.00 0.00 −0.21 −0.31 −0.36 −0.39 −0.41 −0.41 −0.37 −0.28 −0.16 0.00 0.00 −0.19 −0.28 −0.34 −0.38 −0.40 −0.38 −0.34 −0.26 −0.15 0.00 0.00 −0.17 −0.26 −0.32 −0.35 −0.38

313.15

0.857576 0.859238 0.860892 0.862681 0.864497 0.866349 0.868210 0.870109 0.872004 0.873939 0.875884 0.852187 0.853804 0.855399 0.857112 0.858845 0.860609 0.862378 0.864168 0.865965 0.867793 0.869621 0.846775 0.848340 0.849873 0.851508 0.853155 0.854825 0.856499 0.858186 0.859878 0.861594 0.863303

26.45 25.82 25.27 24.74 24.23 23.74 23.28 22.85 22.45 22.09 21.73

0.000 0.036 0.070 0.085 0.093 0.092 0.087 0.074 0.057 0.031 0.000 0.000 0.032 0.062 0.075 0.081 0.082 0.077 0.066 0.051 0.027 0.000 0.000 0.027 0.054 0.065 0.072 0.072 0.068 0.058 0.044 0.024 0.000

0.00 −0.16 −0.24 −0.29 −0.33 −0.35 −0.34 −0.30 −0.22 −0.11 0.00

298.15

303.15

308.15

1827

318.15

323.15

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 5. continued 10−3ρ

T K

−3

σ

106VE −1

−1

Δσ

T −1

x1

(kg·m )

(mN·m )

(m ·mol )

(mN·m )

0.6000 0.7000 0.8000 0.9000 1.0000

0.874002 0.876003 0.877996 0.880040 0.882093

23.91 23.47 23.06 22.70 22.35

0.097 0.081 0.063 0.034 0.000

−0.36 −0.32 −0.25 −0.13 0.00

3

K

10−3ρ −3

(kg·m )

σ −1

(mN·m )

106VE

Δσ

(m3·mol−1)

(mN·m−1)

Standard uncertainty in the density measurement = 3·10−2 kg·m−3, standard uncertainty in the surface tension = 0.03 mN·m−1, standard uncertainty in the temperature measurement = 0.01 K, and standard uncertainty in mole fraction = 0.0002.

a

Table 6. Density (ρ), Surface Tension (σ), Surface Tension Deviations (Δσ), and Excess Molar Volumes (VE) for the Binary Mixture of Butanenitrile (1) + Benzene (2) at p = 0.1 MPaa 10−3ρ

T

σ

106VE

106VE

(mN·m )

K

(kg·m )

(mN·m )

(m ·mol )

(mN·m−1)

293.15

0.0000 0.0500 0.1000 0.1500 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.0500 0.1000 0.1500 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.0500 0.1000 0.1500 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 0.0000 0.0500 0.1000 0.1500 0.2000 0.3000

0.878930 0.875009 0.871003 0.866924 0.862779 0.854249 0.845528 0.836701 0.827703 0.818583 0.809399 0.800152 0.790859 0.873621 0.869759 0.865809 0.861784 0.857694 0.849254 0.840620 0.831855 0.822920 0.813854 0.804716 0.795509 0.786254 0.868287 0.864486 0.860593 0.856625 0.852585 0.844236 0.835684 0.826989 0.818113 0.809101 0.800012 0.790845 0.781629 0.862942 0.859199 0.855364 0.851447 0.847456 0.839200

29.22 29.23 29.20 29.18 29.14 29.04 28.87 28.65 28.41 28.14 27.87 27.61 27.35 28.52 28.54 28.55 28.53 28.51 28.42 28.26 28.06 27.83 27.58 27.31 27.05 26.80 27.81 27.87 27.89 27.91 27.88 27.78 27.64 27.45 27.23 27.00 26.74 26.49 26.23 27.14 27.24 27.27 27.28 27.27 27.18

0.000 −0.042 −0.076 −0.104 −0.126 −0.148 −0.154 −0.151 −0.134 −0.106 −0.075 −0.039 0.000 0.000 −0.045 −0.082 −0.112 −0.136 −0.160 −0.168 −0.165 −0.146 −0.117 −0.082 −0.042 0.000 0.000 −0.048 −0.088 −0.120 −0.146 −0.173 −0.182 −0.179 −0.159 −0.127 −0.090 −0.046 0.000 0.000 −0.051 −0.093 −0.128 −0.156 −0.186

0.00 0.10 0.17 0.24 0.29 0.38 0.40 0.37 0.31 0.23 0.15 0.07 0.00 0.00 0.11 0.20 0.27 0.33 0.42 0.43 0.40 0.34 0.26 0.17 0.08 0.00 0.00 0.14 0.24 0.34 0.39 0.44 0.46 0.43 0.37 0.30 0.19 0.10 0.00 0.00 0.18 0.28 0.36 0.43 0.49

313.15

0.857576 0.853894 0.850110 0.846246 0.842297 0.834141 0.825744 0.817190 0.808433 0.799532 0.790539 0.781462 0.772321 0.852187 0.848562 0.844834 0.841020 0.837122 0.829052 0.820739 0.812250 0.803560 0.794713 0.785769 0.776736 0.767637 0.846775 0.843206 0.839531 0.835769 0.831921 0.823940 0.815705 0.807289 0.798661 0.789869 0.780977 0.771989 0.762929

26.45 26.59 26.67 26.68 26.68 26.60 26.48 26.34 26.16 25.94 25.69 25.42 25.15

0.000 −0.054 −0.099 −0.136 −0.165 −0.198 −0.209 −0.206 −0.184 −0.148 −0.105 −0.055 0.000 0.000 −0.057 −0.105 −0.144 −0.175 −0.210 −0.223 −0.219 −0.196 −0.159 −0.113 −0.059 0.000 0.000 −0.060 −0.110 −0.152 −0.185 −0.223 −0.236 −0.233 −0.209 −0.169 −0.120 −0.063 0.000

0.00 0.21 0.35 0.43 0.49 0.54 0.55 0.54 0.49 0.40 0.28 0.14 0.00

1828

323.15

−1

3

−1

Δσ

(m ·mol )

318.15

−3

σ

(mN·m )

308.15

−1

10−3ρ

(kg·m )

3

−1

T

x1

303.15

−1

Δσ

K

298.15

−3

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 6. continued 10−3ρ

T K

−3

σ

Δσ

106VE −1

−1

T −1

x1

(kg·m )

(mN·m )

(m ·mol )

(mN·m )

0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

0.830726 0.822102 0.813287 0.804330 0.795287 0.786163 0.776987

27.04 26.88 26.68 26.45 26.18 25.92 25.65

−0.195 −0.192 −0.171 −0.138 −0.097 −0.050 0.000

0.50 0.49 0.43 0.35 0.23 0.12 0.00

3

K

10−3ρ −3

(kg·m )

σ −1

(mN·m )

106VE

Δσ

(m3·mol−1)

(mN·m−1)

Standard uncertainty in the density measurement = 3·10−2 kg·m−3, standard uncertainty in the surface tension = 0.03 mN·m−1, standard uncertainty in the temperature measurement = 0.01 K, and standard uncertainty in mole fraction = 0.0002.

a

Figure 1. Excess molar volume for (a) 2,2,4-trimethylpentane (1) + n-heptane (2) and (b) 2,2,4-trimethylpentane (1) + n-octane (2) as a function of the mole fraction at the following temperatures: ●, 293.15 K; ○, 298.15 K; ▼, 303.15 K; △, 308.15 K; ■, 313.15 K; □, 318.15 K; ⧫, 323.15 K. Solid lines correspond to eq 4.

Figure 2. Excess molar volume for (a) ethyl acetate (1) + benzene (2) and (b) butanenitrile (1) + benzene (2) as a function of the mole fraction at the following temperatures: ●, 293.15 K; ○, 298.15 K; ▼, 303.15 K; △, 308.15 K; ■, 313.15 K; □, 318.15 K; ⧫, 323.15 K. Solid lines correspond to eq 4.

Table 1 shows the name of the substance used, CAS number, and purity in mole fraction. Also the purity of the samples was checked by measuring the density and surface tension of the pure components, as shown in Table 2. Mixtures are prepared gravimetrically using an analytical balance Ohaus (Voyager AS120S) with a precision of ± 0.1·10−6 kg. Substances are maintained at 273.15 K to avoid evaporation. The mole fraction total uncertainty is ± 0.0002.

tension deviations have been calculated from experimental results and correlated with Redlich−Kister equations.18

2. EXPERIMENTAL SECTION 2.1. Samples. Substances are acquired commercially, and their purity is verified using gas chromatography. All liquid substances are dried using a molecular sieve 4A from Sigma-Aldrich. 1829

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Figure 3. Surface tension deviation for (a) 2,2,4-trimethylpentane (1) + n-heptane (2) and (b) 2,2,4-trimethylpentane (1) + n-octane (2) as a function of the mole fraction at the following temperatures: ●, 293.15 K; ○, 298.15 K; ▼, 303.15 K; △, 308.15 K; ■, 313.15 K. Solid lines correspond to eq 4.

Figure 4. Surface tension deviation for (a) ethyl acetate (1) + benzene (2) and (b) butanenitrile (1) + benzene (2) as a function of the mole fraction at the following temperatures: ●, 293.15 K; ○, 298.15 K; ▼, 303.15 K; △, 308.15 K; ■, 313.15 K. Solid lines correspond to eq 4.

traveled distance by the embolus. The critical volume is related to the surface tension by

2.2. Density Measurement. Densities are measured using a vibrating tube densimeter (DMA 5000, Anton Paar). Description of the apparatus has appeared previously.19 The cell contains a platinum resistance thermometer that measures the temperature with an uncertainty of ± 0.01 K on ITS-90. Repeatability of the density and temperature measurements given by the manufacturer is ± 1.0·10−3 kg·m−3 and ± 0.001 K, respectively. The densimeter is calibrated periodically using ultrapure water for HPLC and dry air. The estimated uncertainty in the density measurement is ± 3·10−2 kg·m−3.20 2.3. Surface Tension Measurement. Surface tensions are measured using an automated tensiometer (Lauda, TVT2) which uses the volume drop principle. This technique consists of measuring the volume of a drop falling from a capillary tube of 1.385 mm internal radius which is connected to a syringe of 2.5 mL containing the sample. The drop is formed by pressurizing the syringe embolus until the drop has a critical volume. At this point, the weight of the drop cannot be held by the surface tension forces and it falls. The drop volume is determined from the diameter of the capillary tube and the

σ=

ΔρgV 2πrcapf

(1)

where σ is the surface tension, V is the drop critical volume, g is the gravitational constant, Δρ is the difference between the vapor and liquid densities, rcap is the external radius of the capillary tube, and f is a correction factor. This factor is a correction of the drop form since it falls with a different shape and different diameter from the capillary tube. Wilkinson21 has expressed the correction factor as a function of rcap/V1/3. A polynomial is used by the manufacturer to determine the value of this correction. The precision in the displacement of the syringe is ± 0.1 μm. Drops are formed in a minimum of 30 s to avoid hydrodynamic effects. Also, the cell contains 3 mL of sample to obtain a saturated atmosphere. This is to ensure vapor−liquid equilibrium and to avoid changes in temperature and in composition of the drop. Temperature in the syringe and in the cell is controlled by a recirculation bath (VWR model 1162) with a thermal stability 1830

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

Table 7. Parameters ci of Equation 4 and Standard Deviation (SD) of Excess Molar Volume and Surface Tension Deviation at Different Temperatures T/K

c0

c1

c2

c3

c4

SD

2,2,4-Trimethylpentane (1) + n-Heptane (2) 106VE/(m3·mol−1)

293.15 298.15 303.15 308.15 313.15 318.15 323.15 Δσ/(mN·m−1) 293.15 298.15 303.15 308.15 313.15 2,2,4-Trimethylpentane (1) + n-Octane (2) 106VE/(m3·mol−1) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 Δσ/(mN·m−1) 293.15 298.15 303.15 308.15 313.15 Ethyl Acetate (1) + Benzene (2) 106VE/(m3·mol−1) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 Δσ/(mN·m−1) 293.15 298.15 303.15 308.15 313.15 Butanenitrile (1) + Benzene (2) 106VE/(m3·mol−1) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 Δσ/(mN·m−1) 293.15 298.15 303.15 308.15 313.15

−0.0932 −0.0997 −0.1067 −0.1149 −0.1239 −0.1338 −0.1430 −0.2670 −0.2466 −0.2115 −0.1896 −0.1486

0.0416 0.0466 0.0501 0.0528 0.0565 0.0599 0.0594 −0.0027 −0.0142 −0.0147 −0.0384 −0.0503

0.0492 0.0525 0.0532 0.0542 0.0551 0.0585 0.0536 −0.1517 −0.0760 −0.0538 −0.0194 0.0218

−0.0241 −0.0307 −0.0335 −0.0334 −0.0405 −0.0454 −0.0443 −0.1995 −0.2155 −0.1206 −0.0426 −0.0435

0.0002 0.0002 0.0001 0.0001 0.0003 0.0003 0.0051 0.0132 0.0139 0.0104 0.0089 0.0111

−0.3502 −0.3755 −0.3980 −0.4196 −0.4417 −0.4644 −0.4867 −0.2987 −0.2699 −0.2417 −0.2130 −0.1876

0.0112 0.0069 0.0088 0.0032 0.0038 −0.0003 −0.0005 0.0133 0.0169 0.0069 −0.0370 −0.0133

0.0310 0.0230 0.0277 0.0278 0.0279 0.0306 0.0243 −0.1350 −0.0294 −0.1659 −0.0015 0.1492

−0.0682 −0.0487 −0.0574 −0.0489 −0.0597 −0.0581 −0.0594 0.0607 0.0160 −0.0620 −0.0173 −0.0607

0.0030 0.0023 0.0026 0.0027 0.0033 0.0038 0.0038 0.0065 0.0049 0.0084 0.0064 0.0059

0.5425 0.5012 0.4573 0.4141 0.3730 0.3318 0.2903 −1.7053 −1.6397 −1.5639 −1.4790 −1.3900

−0.0983 −0.0878 −0.0780 −0.0690 −0.0588 −0.0488 −0.0411 −0.1096 −0.1503 −0.1279 −0.0671 −0.1297

0.0532 0.0428 0.0361 0.0294 0.0301 0.0220 0.0131 −0.8514 −0.6100 −0.4147 −0.2987 −0.1432

−0.5986 −0.6538 −0.7094 −0.7638 −0.8177 −0.8716 −0.9263 1.4787 1.6145 1.7145 1.9251 2.1331

0.2561 0.2678 0.2812 0.2932 0.3036 0.3153 0.3251 −0.7973 −0.8674 −0.9740 −0.6733 −0.6064

−0.0665 −0.0634 −0.0638 −0.0627 −0.0639 −0.0639 −0.0646 −0.2355 −0.1329 0.3285 0.4383 0.7887

of ± 0.20 K. Also, the temperature near the tip of the capillary tube (where the drops are formed) is measured with a digital thermometer (UEi, model DT150) with a standard uncertainty of ± 0.05 K, and this is the reported temperature. Each experimental value is an average of 10 replicas, and each one is a result of a formation of five drops.

−0.1104 −0.3042 −0.1687 −0.0750 −0.1790

0.6461 0.7401 0.6022 0.5070 0.4474

0.0152 0.0136 0.0121 0.0107 0.0092 0.0077 0.0065 0.0272 0.0285 0.0230 0.0236 0.0198

−0.7974 −1.3063

0.0413 0.0432 0.0453 0.0473 0.0490 0.0509 0.0524 0.1301 0.1404 0.1573 0.1664 0.1878

A detailed description of the experimental procedure is given by Miller et al.22 After each measurement the syringe and capillary tube are cleaned with water, methanol, and acetone. The precision in the surface tension given by the manufacturer is ± 0.01 mN·m−1. However, the surface tension uncertainty depends upon the measurement of the drop volume, the diameter of the 1831

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

within a maximum difference of 0.688 mN·m−1 and with the values reported by Wohlfarth and Wohlfarth17 within a maximum difference of 1.274 mN·m−1. We have calculated surface tension deviations using

capillary tube, and the density as mentioned by Vijande et al.23 In the literature, it appears uncertainties range from24 (± 0.02 to ± 0.1) mN·m−1.25−27 In this work, the estimated uncertainty is less than the ± 0.03 mN·m−1 reported by Piñeiro et al.,28 Granados et al.,29 Giner et al.,30 and Calvo et al.31

2

Δσ = σ −

3. RESULTS AND DISCUSSION We have measured the density of 2,2,4-trimethylpentane + n-heptane, 2,2,4-trimethylpentane + n-octane, ethyl acetate + benzene, and butanenitrile + benzene from (293.15 to 323.15) K as shown in Tables 3−6. Excess molar volumes are calculated from the density measurements using VE =

⎛x M x1M1 + x 2M 2 xM ⎞ − ⎜⎜ 1 1 + 2 2 ⎟⎟ ρ ρ2 ⎠ ⎝ ρ1

∑ xiσi

(3)

i=1

where σ is the surface tension of the mixture, σi is the surface tension of component i, and xi is the mole fraction of component i. The estimated uncertainty of the surface tension deviation is ± 0.04 mN·m−1. Figures 3 and 4 show the surface tension deviations for the mixtures. Surface tension deviations are negative and decrease with temperature except for the surface tension deviations of the system butanenitrile + benzene. Tsierkezos and Filippou33 suggest that surface tension deviations indicate an uneven distribution of the components in the surface as in the bulk. They said that negative values indicate that the concentration in the surface of the component with the smallest surface tension is greater that its concentration in the bulk. The positive values indicate the contrary. According to this, 2,2,4trimethylpentane and ethyl acetate concentrations are greater in the surface than in the bulk. On the other hand, the benzene concentration in the surface is greater than in the bulk. Composition dependence of the excess molar and surface tension deviation is represented by the Redlich−Kister equation,18

(2)

where ρ is the mass density and M1, M2, x1, x2, ρ1, and ρ2 are the molar masses, mole fractions, and mass densities of components 1 and 2, respectively. Using a propagation error formula,32,20 the estimated uncertainty in the excess molar volume is 0.008·10−6 m3·mol−1. Excess molar volumes are shown in Tables 3−6 and Figures 1 and 2. In this work, excess molar volumes for all binary mixtures are negative except for the system ethyl acetate + benzene. The excess molar volume decreases with increasing temperature for all systems. As expected, 2,2,4-trimethylpentane + n-heptane presents an ideal solution behavior in the excess molar volume. Their small values suggest that the n-heptane molecule accommodates in the interstices of the 2,2,4-trimethylpentane. Positive excess molar volumes for the system ethyl acetate + benzene are due to induced dipole−dipole interaction in the mixture as suggested by Hu et al.4 while negative values in the butanenitrile + benzene mixture are due to the strong associations among molecules as mentioned by Artal et al.12 Densities and/or excess molar volumes of ethyl acetate + benzene have been reported by Hu et al.,4 Resa et al.,13 Shipp,14 Grolier et al.,15 and Iloukhani et al.16 Our excess molar volumes at 298.15 K compare with the excess molar volumes of Grolier et al.,15 Hu et al.,4 Resa et al.,13 and Shipp14 within a maximum deviation of (0.023, 0.006, 0.014, and 0.111)·10−6 m3·mol−1. Hu et al.4 reported excess molar volumes at 313.15 K. Their values compare with our excess molar volumes within a maximum deviation of 0.018·10−6 m3·mol−1. Malhotra and Woolf9 reported the density and excess molar volume of 2,2,4-trimethylpentane + n-heptane at (298.15 and 313.15) K. The maximum difference between our values and theirs is 0.0059·10−6 m3·mol−1. Awwad et al.10 reported densities and excess molar volumes for 2,2,4-trimethylpentane + n-octane at 298.15 K. Our values agree within a maximum deviation of 0.0440·10−6 m3·mol−1; Dymond et al.11 also measured the densities for the same mixture at (298.15 and 323.15) K, but they only reported a value of this mixture for each temperature at an equimolar composition. For the butanenitrile + benzene mixture, Artal et al.12 calculated the excess molar volume at 298.15 K and their calculations show a maximum deviation of 0.007·10−6 m3·mol−1. Experimental surface tensions and calculated surface tension deviations for the four mixtures from (293.15 to 313.15) K are shown in Tables 3−6. For the surface tension, we have found reported in the literature values for ethyl acetate + benzene by Shipp14 at 298.15 K and by a compilation of Wohlfarth and Wohlfarth17 at temperatures of (293.15 K, 298.15, and 303.15) K. Our measurements agree with the values by Shipp14

N

f (x) = x(1 − x) ∑ ci(2x − 1)i i=0

(4)

where f(x) is VE or Δσ, N is the number of adjusting parameters, and ci are parameters obtained from a curve fit using a least-squares method in SAS.34 The t-test and F-test with a 95% confidence interval were used to determine the validity of the coefficients. Parameters are depicted in Table 7 together with the standard deviation calculated with SD =

∑ [f (x)expt − f (x)calc ]2 ND − NC

(5)

where ND is the number of experimental measurements, NC is the number of adjusting parameters, and expt and calc stand for experimental value and calculated value from eq 4, respectively. Standard deviations of the excess molar volume and surface tension deviations are less than 0.0051 m3·mol−1 and 0.0235 mN·m−1, respectively.

4. CONCLUSIONS We have presented densities and surface tensions of binary mixtures of 2,2,4-trimethylpentane with n-heptane and n-octane and binary mixtures of benzene with butanenitrile and ethyl acetate at atmospheric pressure and at temperatures from (293.15 to 313.15) K. Our density measurements agree with the literature values within an absolute average percentage deviation of 0.412 %, and our surface tension measurements agree within an average absolute percentage of 2.44 %. Calculated excess molar volumes agree with literature values within an absolute deviation of (0.0020, 0.0223, 0.0168, and 0.0046)·10−6 m3·mol−1 for 2,2,4-trimethylpentane + n-heptane, 2,2,4-trimethylpentane + n-octane, ethyl acetate + benzene, and butanenitrile + benzene, respectively. Surface tension deviations agree with the literature values within an absolute deviation of 0.469 mN·m−1 for the ethyl acetate + benzene mixture. 1832

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data



Article

(15) Grolier, J.-P. E.; Ballet, D.; Viallard, A. Thermodynamics of EsterContaining Mixtures. Excess Enthalpies and Excess Volumes for Alkyl Acetates and Alkyl Benzoates + Alkanes, + Benzene, + Toluene, and + Ethylbenzene. J. Chem. Thermodyn. 1974, 6, 895−908. (16) Iloukhani, H.; Reddy, K. D.; Rao, M. V. P. Excess Volumes of the Binary Mixtures of Substituted Benzenes with Ethyl Acetate and Butyl Acetate. J. Chem. Eng. Data 1984, 29, 474−476. (17) Wohlfarth, Ch.; Wohlfarth, B. Numerical Data and Functional Relationships in Science and Technology. In Surface Tension of Pure Liquids and Binary Liquids and Binary Liquid Mixtures; Lechner, M. D., Ed.; New Series Group IV Physical Chemistry; Landoldt-Börnstein Springer: Heidelberg, Germany, 1997; Vol. 16. (18) Myers, D. B.; Scott, R. L. Thermodynamic Functions for Nonelectrolyte Solutions. Ind. Eng. Chem. 1963, 55 (7), 43−46. (19) Bernal-García, J. M.; Hall, K. R.; Estrada-Baltazar, A.; IglesiasSilva, G. A. Density and Viscosity of Aqueous Solutions of N,Ndimethylethanolamine at p = 0.1 MPa from T = (293.15 to 363.15) K. J. Chem. Thermodyn. 2005, 37, 762−767. (20) Landaverde-Cortes, D. C.; Estrada-Baltazar, A.; Iglesias-Silva, G. A.; Hall, K. R. Densities and Viscosities of MTBE + Heptane or Octane at p = 0.1 MPa from (273.15 to 363.15) K. J. Chem. Eng. Data 2007, 52, 1226−1232. (21) Wilkinson, M. C. Extended Use of, and Comments on, the DropWeight (Drop-Volume) Technique for the Determination of Surface and Interfacial Tension. J. Colloid Interface Sci. 1972, 40, 14−26. (22) Miller, R.; Hofmann, A.; Hartmann, R.; Schano, K.-H.; Halbig, A. Measuring Dynamic Surface and Interfacial Tension. Adv. Mater. 1992, 4, 370−374. (23) Vijande, J.; Piñeiro, M. M.; García, J.; Valencia, J. L.; Legido, J. L. Density and Surface Tension Variation with Temperature for Heptane + 1-Alkanol. J. Chem. Eng. Data 2006, 51, 1778−1782. (24) Piñeiro, A.; Banquy, X.; Pérez.Casas, S.; Tovar, E.; García, A.; Villa, A.; Amigo, A.; Mark, A. E.; Costas, M. On the Characterization of Host−Guest Complexes: Surface Tension, Calorimetry, and Molecular Dynamics of Cyclodextrins with a Non-ionic Surfactant. J. Phys. Chem. B 2007, 111, 4383−4392. (25) Svitova, T.; Hill, R. M.; Smirnova, Yu.; Stuermer, A.; Yakubov, G. Wetting and Interfacial Transitions in Dilute Solutions of Trisiloxane Surfactants. Langmuir 1998, 14, 5023−5031. (26) Pereiro, A. B.; Verdía, P.; Tojo, E.; Rodríguez, A. Physical Properties of 1-Butyl-3-methylimidazolium Methyl Sulfate as a Function of Temperature. J. Chem. Eng. Data 2007, 52, 377−380. (27) Gómez, E.; González, B.; Calvar, N.; Tojo, E.; Domínguez, A. Physical Properties of Pure 1-Ethyl-3-methyllimidazolium Ethylsulfate and its Binary Mixtures with Ethanol and Water at Several Temperatures. J. Chem. Eng. Data 2006, 51, 2096−2102. (28) Piñeiro, A.; Brocos, P.; Amigo, A.; Pintos, M.; Bravo, R. Surface Tensions and Refractive Indices of (Tetrahydrofuran + n-Alkanes) at T=298.15 K. J. Chem. Thermodyn. 1999, 31, 931−942. (29) Granados, K.; Gracia-Fadrique, J.; Amigo, A.; Bravo, R. Refractive Index, Surface Tension, and Density of Aqueous Mixtures of Carboxylic Acids at 298.15 K. J. Chem. Eng. Data 2006, 51, 1356−1360. (30) Giner, B.; Martín, S.; Artigas, H.; López, M. C.; Lafuente, C. Study of Weak Molecular Interactions through Thermodynamic Mixing Properties. J. Phys. Chem. B 2006, 110, 17683−17690. (31) Calvo, E.; Penas, A.; Pintos, M.; Bravo, R.; Amigo, A. Refractive Indices and Surface Tensions of Binary Mixtures of 1,4-Dioxane + 1Alkanol at 298.15 K. J. Chem. Eng. Data 2001, 46, 692−695. (32) Hall, K. R. Reporting Precision of Experimental Data. Chem. Eng. Educ. 1975, 9 (1), 24−30. (33) Tsierkezos, N. G.; Filippou, A. C. Thermodynamic Investigation of N,N-Dimethylformamide/Toluene Binary Mixtures in the Temperature Range from 278.15 to 293.15 K. J. Chem. Thermodyn. 2006, 38, 952−961. (34) SAS. The SAS System for Windows, Release 6.08; SAS Institute: Cary, NC, USA, 1991. (35) Fortin, T. J.; Laesecke, A.; Freund, M.; Outcalt, S. Advanced Calibration, Adjustment, and Operation of a Density and Sound Speed Analyzer. J. Chem. Thermodyn. 2013, 57, 276−285.

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Tel.: 011 52 461 611 7575. Fax: 011 52 461 611 7744. Funding

We thank CONACyT and DGEST for the financial support of this project. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS



REFERENCES

́ We thank Prof. Jesús Gracia-Fadrique of Facultad de Quimica, UNAM for their helpful comments in the realization of the experimental work.

(1) Villares, A.; Sanz, L.; Giner, B.; Lafuente, C.; López, M. C. Study of the Surface Tension of Chlorocyclohexane or Bromocyclohexane with Some Cyclic Ethers. J. Chem. Eng. Data 2005, 50, 1334−1337. (2) Sheu, Y.-W.; Tu, Ch.-H. Refractive Indices and Surface Tensions of Binary Mixtures of Ethyl Acetoacetate, Ethyl Isovalerate, Methyl Benzoate, Benzyl Acetate, Ethyl Salicylate, and Benzyl Propionate with Ethanol at (288.15, 298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2006, 51, 1690−1697. (3) Ratnam, A. V.; Rao, C. V.; Murti, P. S. Thermodynamic Properties of Liquid MixturesHeats of Mixing at 35 °C: Systems: BenzeneCyclohexane-Ethyl Acetate and the Three Related Binaries. Chem. Eng. Sci. 1962, 17, 392−396. (4) Hu, J.; Tamura, K.; Murakami, S. Excess Thermodynamic Properties of Binary Mixtures of Ethyl Acetate with Benzene, Etanol, and 2,2,2-Trifluoroethan-1-ol at 298.15 K. Fluid Phase Equilib. 1997, 134, 239−253. (5) Letcher, T. M.; Naicker, P. K. Excess Molar Enthalpies for (Butanenitrile + an Aromatic Hydrocarbon) at T=298.15 K. J. Chem. Thermodyn. 2000, 32, 1439−1445. (6) Peng, D.-Y.; Horikawa, Y.; Wang, Z.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of 2,2,4-Trimethypentane + n-Alkane Binary Mixtures at 298.15 K. J. Chem. Eng. Data 2001, 46, 237−238. (7) Lundberg, G. W. Thermodynamics of Solutions XI. Heats of Mixing of Hydrocarbons. J. Chem. Eng. Data 1964, 9, 193−198. (8) Chao, K. C.; Hougen, O. A. Vapour-Liquid Equilibria in the Ternary System Ethyl Acetate-Benzene-Ciclohexane. Chem. Eng. Sci. 1958, 7, 246−260. (9) Malhotra, R.; Woolf, L. A. Thermodynamic Properties and Excess Volumes of 2,2,4-Trimethylpentane + n-Heptane Mixtures from 298.15 to 338 K for Pressures Up to 400 MPa. Int. J. Thermophys. 1991, 12, 163−170. (10) Awwad, A. M.; Kanbour, F. I.; Allos, E. I. Effect of Molecular Shape on the Excess Volumes of Mixtures of (an Isomeric Octane + nOctane). J. Chem. Thermodyn. 1984, 16, 917−920. (11) Dymond, J. H.; Malhotra, R.; Awan, M. A. (p, ρ, T) of {0.5C8H18 + 0.5(1-C8H16)}, {0.5(CH3)2CHCH2C(CH3)3 + 0.5(1-C8H16) or 0.5C 8 H 1 8 }, and {0.333C 8 H 18 + 0.333(1-C 8 H 16 ) + 0.333(CH2)2CHCH2C(CH3)3}, in the range 298 to 373 K and 0.1 to 500 MPa. J. Chem. Thermodyn. 1988, 20, 1217−1222. (12) Artal, M.; Embid, J. M.; Marras, G.; Velasco, I.; Otín, S. Isothermal Vapor-Liquid Equilibria and Excess Volumes of Propanenitrile or Butanenitrile + Heptane or + Benzene Mixtures. J. Chem. Eng. Data 1995, 40, 1154−1157. (13) Resa, J. M.; González, C.; Ortiz de Landaluce, S.; Lanz, J. Densities, Excess Molar Volumes, and Refractive Indices of Ethyl Acetate and Aromatic Hydrocarbon Binary Mixtures. J. Chem. Thermodyn. 2002, 34, 995−1004. (14) Shipp, W. E. Surface Tension of Binary Mixtures of Several Organic Liquids at 25 °C. J. Chem. Eng. Data 1970, 15, 308−311. 1833

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834

Journal of Chemical & Engineering Data

Article

(36) Morávková, L.; Wagner, Z.; Sedláková, Z.; Linek, J. Volumetric Behaviour of Binary and Ternary Liquid Systems Composed of Ethanol, Isooctane, and Toluene at Temperatures from (298.15 to 328.15) K. Experimental Data and Correlation. J. Chem. Thermodyn. 2011, 43, 1906−1916. (37) Kao, Y.-Ch.; Tu, Ch.-H. Densities, Viscosities, Refractive Indices, and Surface Tensions for Binary and Ternary Mixtures of 2-Propanol, Tetrahydropyran, and 2,2,4-Trimethylpentane. J. Chem. Thermodyn. 2011, 43, 216−226. (38) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 435−440. (39) Djojoputro, H.; Ismadji, S. Density and Viscosity Correlation for Several Common Fragrance and Flavor Esters. J. Chem. Eng. Data 2005, 50, 727−731. (40) Resa, J. M.; González, C.; Goenaga, J. M.; Iglesias, M. Temperature Dependence of Excess Molar Volumes of Ethanol + Water + Ethyl Acetate. J. Solution Chem. 2004, 33, 169−198. (41) Nallani, S.; Boodida, S.; Tangeda, S. J. Density and Speed of Sound of Binary Mixtures of N-Methylacetamide with Ethyl Acetate, Ethyl Chloroacetate, and Ethyl Cyanoacetate in the Temperature Interval (303.15 to 318.15) K. J. Chem. Eng. Data 2007, 52, 405−409. (42) Radovic, I. R.; Kijevcanin, M. Lj.; Serbanovic, S. P.; Djordjevic, B. D. 1-Butanol + Hexylamine + n-Heptane at Temperature Range (288.15−323.15 K): Experimental Density Data, Excess Molar Volumes Determination and Modeling with Cubic EOS. Fluid Phase Equilib. 2010, 298, 117−130. (43) Cisneros-Pérez, E.; Reza-San Germán, C. M.; ManríquezRamírez, M. E.; Zúñiga-Moreno, A. Densities and Excess Molar Volumes of Alkane (Heptane, Octane, Nonane, or Decane) + Thiophene from T=293.15 to 313.15 K. J. Solution Chem. 2012, 41, 1054−1066. (44) Orge, B.; Rodríguez, A.; Canosa, J. M.; Marino, G.; Iglesias, M.; Tojo, J. Variation of Densities, Refractive Indices, and Speeds of Sound with Temperature of Methanol or Ethanol with Hexane, Heptane, and Octane. J. Chem. Eng. Data 1999, 44, 1041−1047. (45) Malek, N. I.; Ijardar, S. P.; Master, Z. R.; Oswal, S. B. Temperature Dependence of Densities, Speed of Sound, and Derived Properties of Cyclohexylamine + Cyclohexane or Benzene in the Temperature Range 293.15−323.15 K. Thermochim. Acta 2012, 547, 106−119. (46) Smiljanic, J. D.; Kijevcanin, M. Lj.; Djordjevic, B. D.; Grozdanic, D. K.; Serbanovic, S. P. Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and Its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene). Int. J. Thermophys. 2008, 29, 586−609. (47) Kolská, Z.; Dvoráková, D.; Mika, J.; Boublík, T. Volumetric Behavior of the Binary Systems Benzene-Cyclohexane and Benzene2,2,4-Trimethylpentane at Temperatures 293.15−323.15 K. Fluid Phase Equilib. 2011, 303, 157−161. (48) Nain, A. K.; Sharma, R.; Ali, A.; Gopal, S. Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 to 318.15 K. Int. J. Thermophys. 2010, 31, 1073−1091. (49) Lopez, A.; Jannell, L.; Silvestri, L. Thermodynamic Properties of Binary Mixtures Involving Sulfolane. 1. Excess Volumes on Mixing Sulfolane and Propionitrile, Butyronitrile, and Valeronitrile. J. Chem. Eng. Data 1982, 27, 183−186. (50) Delitala, C.; Marongiu, B.; Porcedda, S.; Rosa, A. Thermodynamic Properties of Binary Mixtures Containing Alkanenitriles. II. Excess Volumes of Alkanenitriles + 1-Chloroalkanes. Fluid Phase Equilib. 1996, 126, 195−202. (51) Marras, G.; Blanco, S. T.; Otín, S. Excess Molar Volumes of Nitrile + Ketone Mixtures at 298.15 K. Thermochim. Acta 1994, 242, 27−32. (52) Lopez, A.; Pansini, M.; Jannell, L. Excess Enthalpies of Mixing Sulfolane + Acetonitrile, + Propionitrile, + Butyronitrile, + Valeronnitrile at 303.16 K. J. Chem. Eng. Data 1983, 28, 173−175.

(53) Aguila-Hernández, J.; Hernández, I.; Trejo, A. Temperature Dependence of the Surface Tension for Binary Mixtures of nButanenitrile + n-Alkanes. Int. J. Thermophys. 1995, 16, 45−52. (54) Mohsen-Nia, M.; Rasa, H.; Naghibi, S. F. Experimental and Theorical Study of Surface Tension of n-Pentane, n-Heptane, and Some of Their Mixtures at Different Temperatures. J. Chem. Thermodyn. 2010, 42, 110−113. (55) McLure, I. A.; Sipowska, J. T.; Pegg, I. L. Surface Tension of (an Alkanol + an Alkane) 1. Propan-1-ol + Heptane. J. Chem. Thermodyn. 1982, 14, 733−741. (56) Bonnet, J. C.; Pike, F. P. Surface Properties of Nine Liquids. J. Chem. Eng. Data 1972, 17, 145−150. (57) Tschamler, H.; Wettig, F.; Richter, E. Die Mischungen von Chlorex Mit n-Oktan und 2,2,4-Trimethylpentane. Monatsh. Chem. 1949, 80, 572−582. (58) Jasper, J. J.; Kerr, E. R.; Gregorich, F. The Orthobaric Surface Tensions and Thermodynamic Properties of the Liquid Surfaces of the n-Alkanes, C5 to C26. J. Am. Chem. Soc. 1953, 75, 5252−5254. (59) Quayle, O. R.; Day, R. A.; Brown, G. M. A Study of Organic Parachors. VII. A Series of Saturated Hydrocarbons. J. Am. Chem. Soc. 1944, 66, 938−941. (60) Dewan, R. K.; Mehta, S. K. Correlation Between Topological Features and Surface Tension of Binary Liquid Mixtures. Monatsh. Chem. 1990, 121, 593−600. (61) Mumford, S. A.; Phillips, W. C. The Physical of Some Aliphatic Compounds. J. Chem. Soc. 1950, 75−84. (62) Wanchoo, R. K.; Narayan, J.; Raina, G. K.; Rattan, V. K. Excess Properties of (2-Propanol + Ethylacetate or Benzene) Binary Liquid Mixture. Chem. Eng. Commun. 1989, 81, 145−156. (63) Vargaftik, N. B. Dictionary of Thermophysical Properties of Gases and Liquids; Izd. Nauka: Moscow, Russia, 1972. (64) Sumarokova, T. N. Calculation of Physico-Chemical Properties of Binary Systems with Chemical Interaction. III. Zh. Obshch. Khim. 1989, 59, 1484−1493. (65) Bowden, S. T. Variation of Surface Tension and Heat of Vaporization with Temperature. J. Chem. Phys. 1955, 23, 2454−2455. (66) Schmidt, R. L.; Randall, J. C.; Clever, H. L. The Surface Tension and Density of Binary Hydrocarbon Mixtures: Benzene-n-Hexane and Benzene-n-Dodecane. J. Chem. Phys. 1966, 70, 3912−3916. (67) Patel, M.; Ramakrishna, V. Effect of Temperature on Adsorption Behavior of Alumina from Two Binary Mixtures. J. Chem. Eng. Data 1985, 30, 18−21. (68) Richards, T. W.; Speyers, C. L.; Carver, E. K. The Determination of Surface Tension with Very Small Volumes of Liquid, and the Surface Tensions of Octanes and Xylenes at Several Temperatures. J. Am. Chem. Soc. 1924, 46, 1196−1207. (69) Jasper, J. J.; Kring, E. V. The Isobaric Surface Tension and Thermodynamic Properties of the Surface of a Series of n-Alkanes, C5 to C18, 1-Alkenes, C6 to C16, and of n-Decylcyclopentane, n-Decylcyclohexane and n-Decylbenzene. J. Chem. Phys. 1955, 59, 1019−1021. (70) Turner, W. E. S.; Merry, E. W. CCXVIII.The Molecular Complexity, in the Liquid State, of Tervalent Nitrogen Compounds. J. Chem. Soc., Trans. 1910, 97, 2069−2083.

1834

DOI: 10.1021/acs.jced.5b00009 J. Chem. Eng. Data 2015, 60, 1823−1834