Density, Viscosities, and Excess Properties for Binary Mixtures of

Jun 11, 2014 - Excess volumes and viscosity deviations were obtained from the experimental data and fit using a Redlich–Kister type equation. VE val...
2 downloads 13 Views 376KB Size
Article pubs.acs.org/jced

Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures Francisca Maria Rodrigues Mesquita,† Filipe Xavier Feitosa,† Martin Aznar,‡ Hosiberto B. de Sant’Ana,*,† and Rílvia S. Santiago-Aguiar† †

Grupo de Pesquisa em Termofluidodinâmica Aplicada, Departamento de Engenharia Química, Centro de Tecnologia, Universidade Federal do Ceará, Campus do Pici, Bloco 709, 60455-760, Fortaleza-CE, Brasil ‡ Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein 500, 13083-852, Campinas-SP, Brasil ABSTRACT: Sulfolane, alcohols, and glycols are commonly used as solvents in different industrial recovery processes. The focus of the present work is to measure volumetric (densities, ρ) and transport (dynamic viscosity, η) properties of the binary mixtures sulfolane + 2-butanol (or 2-propanol, diethylene glycol, or triethylene glycol) within a temperature range from T = 303.15 K to T = 343.15 K, at atmospheric pressure. Densities and viscosities were measured using a viscodensimeter (Anton Paar SVM 3000 Digital Oscillation U-tube). The experimental results of density and viscosity for both pure and binary systems show a decrease with increasing temperature, as expected for liquids. Excess volumes and viscosity deviations were obtained from the experimental data and fit using a Redlich−Kister type equation. VE values show a dual behavior, presenting positive and negative data, depending on the nature of the liquid mixtures, whereas Δη values are negative in the whole composition range in all systems studied. Thermal expansion coefficients were calculated using the experimental data, assuming positive and negative values. data for these mixtures.4 Among these properties, density and viscosity are essential to understand the liquid−liquid interaction.5 Numerous articles have already been published, focusing on densities, viscosities, and excess properties for mixtures involving sulfolane.3−18 In this context, the aim of this work is to report thermodynamics properties (densities, excess volume, thermal expansion coefficients, viscosities, and viscosity deviations) of two sulfolane + alcohol systems (sulfolane + 2-butanol and sulfolane + 2-propanol) and two sulfolane + glycols systems (sulfolane + diethylene glycol DEG and sulfolane + triethylene glycol TEG) at T = (303.15, 313.15, 323.15, 333.15, and 343.15) K at atmospheric pressure, in order to better understand intermolecular interactions behavior for these systems.

1. INTRODUCTION Naphtha is a mixture of hydrocarbons obtained by the fractional distillation of crude oil in petroleum refineries, from which highpurity aromatic hydrocarbons can be recovered. This process plays an important role in the petrochemical industry. Generally, aromatic compounds need to be separated from aliphatic hydrocarbons, both present in the naphtha, by using a solvent extraction unit operation, since distillation is not appropriate.1 Solvents used in solvent extraction should present some important properties, e.g., high selectivity for aromatics, capacity, and density, and low viscosity and reactivity. They also must have suitable characteristics of thermal stability and corrosion. Another interesting feature should be a good partial miscibility with hydrocarbons, especially at low temperatures. Sulfolane, dimethyl sulfoxide, N-methylpyrrolidone, and ionic liquids have been attracting special attention for aromatic extraction,2 especially sulfolane, due to its advantageous physicochemical properties, e.g., the ability to remove monocyclic aromatic hydrocarbons from crude oil products. For this reason, sulfolane + cosolvents (e.g., 2-butanol, 2-propanol, diethylene glycol, and triethylene glycol) are of particular interest.3,4 It is important to mention that thermodynamics, transport, and physical properties are essential for chemical engineering calculations, especially in fluid flow processes. Nevertheless, there is still a lack of complete thermodynamic characterization © XXXX American Chemical Society

2. EXPERIMENTAL SECTION 2.1. Materials. Chemicals used to prepare the binary mixtures are described in Table 1. It should be emphasized here that all chemicals were used without further purification. The mass fraction purity has been determined by chromatography analysis, Received: February 17, 2014 Accepted: May 30, 2014

A

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

with an uncertainty estimated in 0.01 K. Molar fractions uncertainty is estimated to be less than ± 0.0005.

Table 1. Identification of Chemicals Used chemical name

source

mole fraction purity

CAS No.

sulfolane 2-butanol 2-propanol diethylene glycol triethylene glycol

Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich

≥ 0.990 ≥ 0.995 ≥ 0.995 ≥ 0.990 ≥ 0.990

126-33-0 78-92-2 67-63-0 111-46-6 78-92-2

3. RESULTS AND DISCUSSION The quality of our data was verified by comparing densities and viscosities experimental data obtained in this work with literature values,3,6,8,13,14,18−30 showing a good agreement, as may be seen in Table 2. 3.1. Density and Excess Volume. Table 3 shows experimental densities (ρ) of the binary systems of sulfolane + 2butanol, sulfolane + 2-propanol, sulfolane + DEG, and sulfolane + TEG measured at atmospheric pressure and over the temperature range from T = (303.15, 313.15, 323.15, 333.15, and 343.15) K. The excess volume, VE, was calculated from density measurements according to the following equation:

coupled with a FID (flame ionization detector) (Varian CP-3800). 2.2. Measurements. The gravimetric technique (analytical balance, Shimadzu) was used in order to prepare all binary mixtures at T = 298.15 K, in a molar fraction range between w = (0.10 and 0.90), with an uncertainty of ± 0.0001 g. Densities (ρ) and viscosities (η) of pure substances and their mixtures were measured with an Anton Paar SVM 3000 Digital Oscillation U-tube viscodensimeter, as described in detail elsewhere.31 Each measurement is an average of (at least) two measurements. The claimed uncertainties are ± 0.0005 g·cm−3 for density and ± 0.35 %, for viscosity. After analyzes performed in triplicate, to the precision of density and viscosity measurements are ± 0.0002 g·cm−3 and ± 0.3 %, respectively. The temperature was recorded by intermediate of a thermocouple,

n E

V =

∑ xiMi(ρ−1 − ρi−1)

(1)

i=1

where ρ is the density on mixing, n is the number of components in the mixture, and xi, ρi, and Mi denote the molar fractions, densities, and molecular weights of pure components, respectively.

Table 2. Densities, ρ, and Viscosities, η, as a Function of Temperature for Pure Sulfolane, 2-Butanol, 2-Propanol, DEG, and TEGa ρ/g·cm−3 T/K

exp

η/mPa·s

literature 1.2608d 1.2519d 1.2433d 1.2346d

exp Sulfolane 1.2608e

303.15 313.15 323.15 333.15 343.15

1.2629 1.2541 1.2452 1.2366 1.2281

1.2623b 1.2540b 1.2457b 1.2365b 1.2290b

1.2618c 1.2516c

303.15 313.15 323.15 333.15 343.15

0.7993 0.7907 0.7817 0.7721 0.7620

0.7984f 0.7897f 0.7806f 0.7710f 0.7610f

0.7987g

0.7983h

2-Butanol 0.7984i

303.15 313.15 323.15 333.15 343.15

0.7775 0.7688 0.7597 0.7500 0.7395

0.7780j 0.7683j

0.7771k 0.7688k 0.7597k 0.7504k

0.7767h

2-Propanol 0.7772l

303.15 313.15 323.15 333.15 343.15

1.1100 1.1030 1.0959 1.0885 1.0811

1.1099m 1.1027m 1.0955m 1.0883m 1.0810m

1.1095n 1.1021n 1.0949n

1.1122o

DEG 1.1094q

303.15 313.15 323.15 333.15 343.15

1.1165 1.1089 1.1011 1.0934 1.0855

1.116q 1.109q 1.101q 1.093q 1.086q

1.1158r 1.1080r 1.1002r 1.0923r 1.0844r

1.1158p

1.2434e

literature

10.4010 8.0712 6.4460 5.2239 4.3189

10.1800b 7.8500b 6.1500b 4.4000b 3.5700b

10.0304c 7.8365c

10.0742e 6.1936e

2.5077 1.7816 1.3114 0.9964 0.7747

2.6060f 1.8400f 1.3320f 1.0010f 0.7760f

2.4990g

2.5340h

2.4890i

1.7754 1.3404 1.0318 0.7965 0.6424

1.7370j 1.3472j

1.7850k 1.3470k 1.0330k 0.8110k

1.7583h

1.7880m

22.4780 14.9150 10.4280 7.6049 5.7468

22.091m 14.563m 10.029m 7.220m 5.369m

22.1600n 14.7100n 10.1950n

29.5010 19.2610 13.2820 9.5751 7.1622

29.27q 18.96q 12.96q 9.288q 6.906q

TEG 19.5000s 9.6600s

The estimated error in density and viscosity measurements are ± 0.0002 g·cm−3 and ± 0.30 %, respectively. bReference 18. cReference 3. Reference 14. eReference 8. fReference 19. gReference 21. hReference 22. iReference 23. jReference 20. kReference 24. lReference 25. mReference 26. nReference 27. oReference 13. pReference 6. qReference 28. rReference 29. sR. a

d

B

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Densities, ρ, for the Pure Components and Binary Mixtures (Sulfolane + 2-Butanol, Or + 2-Propanol, + DEG, + TEG) at T = (303.15 to 343.15) K and p = 0.1 MPaa ρ/g·cm−3 x1

a

T/K = 303.15

0.000 0.099 0.198 0.298 0.380 0.499 0.593 0.691 0.799 0.900 1.000

0.7993 0.8466 0.8941 0.9417 0.9806 1.0364 1.0796 1.1251 1.1739 1.2190 1.2629

0.000 0.075 0.164 0.250 0.353 0.437 0.536 0.656 0.768 0.880 1.000

0.7775 0.8236 0.8759 0.9240 0.9787 1.0213 1.0693 1.1243 1.1721 1.2193 1.2629

0.000 0.097 0.198 0.319 0.414 0.499 0.614 0.698 0.789 0.887 1.000

1.1100 1.1250 1.1400 1.1582 1.1722 1.1852 1.2029 1.2156 1.2297 1.2450 1.2629

0.000 0.123 0.268 0.505 0.598 0.678 0.768 0.837 0.929 1.000

1.1165 1.1303 1.1476 1.1788 1.1922 1.2045 1.2190 1.2313 1.2488 1.2629

T/K = 313.15

T/K = 323.15

Sulfolane (x1) + 2-Butanol 0.7907 0.7817 0.8378 0.8288 0.8852 0.8760 0.9329 0.9238 0.9717 0.9626 1.0275 1.0184 1.0707 1.0618 1.1162 1.1072 1.1651 1.1562 1.2101 1.2014 1.2541 1.2452 Sulfolane (x1) + 2-Propanol 0.7688 0.7597 0.8146 0.8053 0.8669 0.8575 0.9148 0.9054 0.9696 0.9604 1.0121 1.0029 1.0602 1.0509 1.1153 1.1062 1.1631 1.1541 1.2104 1.2016 1.2541 1.2452 Sulfolane (x1) + DEG 1.1030 1.0959 1.1176 1.1102 1.1325 1.1248 1.1503 1.1423 1.1642 1.1561 1.1769 1.1686 1.1945 1.1860 1.2071 1.1985 1.2211 1.2125 1.2363 1.2275 1.2541 1.2452 Sulfolane (x1) + TEG 1.1089 1.1011 1.1224 1.1146 1.1395 1.1315 1.1705 1.1619 1.1837 1.1751 1.1960 1.1875 1.2103 1.2015 1.2226 1.2139 1.2400 1.2312 1.2541 1.2452

T/K = 333.15

T/K = 343.15

0.7721 0.8193 0.8667 0.9146 0.9533 1.0093 1.0527 1.0982 1.1474 1.1925 1.2366

0.7620 0.8094 0.8570 0.9050 0.9439 1.0000 1.0435 1.0892 1.1385 1.1837 1.2281

0.7500 0.7955 0.8479 0.8960 0.9507 0.9938 1.0416 1.0970 1.1451 1.1926 1.2366

0.7395 0.7852 0.8379 0.8860 0.9411 0.9843 1.0321 1.0877 1.1359 1.1837 1.2281

1.0885 1.1027 1.1170 1.1342 1.1478 1.1603 1.1775 1.1900 1.2038 1.2188 1.2366

1.0811 1.0949 1.1091 1.1261 1.1396 1.1519 1.1690 1.1813 1.1951 1.2101 1.2281

1.0934 1.1066 1.1233 1.1534 1.1666 1.1788 1.1929 1.2052 1.2224 1.2366

1.0855 1.0985 1.1150 1.1450 1.1580 1.1701 1.1843 1.1964 1.2137 1.2281

x1 is the mole fraction of sulfolane. Standard uncertainties, u: u(x1) = 0.0005, u(T) = 0.01 K, and u(ρ) = 0.0002 g·cm−3.

C

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Excess Volume, VE, for the Binary Mixtures (Sulfolane + 2-Butanol, or + 2-Propanol, + DEG, + TEG) at T = (303.15 to 343.15) Ka VE/cm3·mol−1 x1

T/K = 303.15

T/K = 313.15

0.000 0.099 0.198 0.298 0.380 0.499 0.593 0.691 0.799 0.900 1.000

0.00 −0.03 −0.10 −0.15 −0.21 −0.26 −0.22 −0.24 −0.20 −0.11 0.00

0.00 −0.02 −0.11 −0.18 −0.23 −0.29 −0.24 −0.27 −0.22 −0.12 0.00

0.000 0.075 0.164 0.250 0.353 0.437 0.536 0.656 0.768 0.880 1.000

0.00 −0.19 −0.35 −0.47 −0.53 −0.55 −0.54 −0.50 −0.39 −0.35 0.00

0.00 −0.18 −0.36 −0.48 −0.55 −0.57 −0.56 −0.53 −0.40 −0.36 0.00

0.000 0.097 0.198 0.319 0.414 0.499 0.614 0.698 0.789 0.887 1.000

0.00 −0.02 0.01 0.03 0.08 0.08 0.07 0.08 0.06 0.04 0.00

0.00 0.00 0.02 0.06 0.10 0.12 0.09 0.10 0.08 0.05 0.00

0.000 0.123 0.268 0.505 0.598 0.678 0.768 0.837 0.929 1.000

0.00 −0.07 −0.11 −0.09 −0.06 −0.03 0.00 0.00 0.01 0.00

0.00 −0.05 −0.08 −0.07 −0.03 −0.02 0.02 0.01 0.00 0.00

T/K = 323.15

Sulfolane (x1) + 2-Butanol 0.00 −0.04 −0.12 −0.22 −0.27 −0.33 −0.29 −0.30 −0.25 −0.15 0.00 Sulfolane (x1) + 2-Propanol 0.00 −0.18 −0.37 −0.50 −0.60 −0.61 −0.59 −0.57 −0.44 −0.40 0.00 Sulfolane (x1) + DEG 0.00 0.01 0.04 0.09 0.13 0.14 0.12 0.12 0.08 0.06 0.00 Sulfolane (x1) + TEG 0.00 −0.06 −0.08 −0.04 −0.01 −0.01 0.05 0.01 0.00 0.00

T/K = 333.15

T/K = 343.15

0.00 −0.07 −0.18 −0.29 −0.33 −0.39 −0.35 −0.35 −0.29 −0.15 0.00

0.00 −0.11 −0.25 −0.36 −0.41 −0.47 −0.41 −0.41 −0.33 −0.17 0.00

0.00 −0.19 −0.42 −0.56 −0.63 −0.69 −0.64 −0.60 −0.46 −0.40 0.00

0.00 −0.23 −0.49 −0.64 −0.73 −0.79 −0.71 −0.66 −0.49 −0.42 0.00

0.00 0.01 0.06 0.12 0.16 0.17 0.15 0.15 0.11 0.08 0.00

0.00 0.04 0.09 0.15 0.20 0.21 0.19 0.19 0.15 0.11 0.00

0.00 −0.04 −0.05 0.00 0.02 0.03 0.07 0.04 0.03 0.00

0.00 −0.02 −0.02 0.03 0.06 0.07 0.10 0.07 0.05 0.00

x1 is the mole fraction of sulfolane. Standard uncertainties, u: u(x1) = ± 0.0005, u(T) = ± 0.01 K, and u(VE) = ± 0.005 cm3·mol−1, and the combined expanded uncertainties Uc is Uc (V E) = 0.01 g·cm−3.

a

D

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 1. Influence of temperature on excess molar volumes of binary mixtures. (a): x1 sulfolane + (1 − x1) 2-butanol: ■, 303.15 K; □, 343.15 K. x1 sulfolane + (1 − x1) 2-propanol: ▲, 303.15 K; △, 343.15 K. (b): x1 sulfolane + (1 − x1) DEG: ■, 303.15 K; □, 343.15 K. x1 sulfolane + (1 − x1) TEG: ▲, 303.15 K; △, 343.15 K. All lines were obtained from a Redlich−Kister polynomial fit.

Figure 2. Influence of temperature on dynamic viscosity, Δη, of binary mixtures. (a): x1 sulfolane + (1 − x1) 2-butanol: ■, 303.15 K; □, 343.15 K. x1 sulfolane + (1 − x1) 2-propanol: ▲, 303.15 K; △, 343.15 K. (b): x1 sulfolane + (1 − x1) DEG: ■, 303.15 K; □, 343.15 K. x1 sulfolane + (1 − x1) TEG: ▲, 303.15 K; △, 343.15 K. All lines were obtained from Redlich−Kister polynomial fit.

Experimental results of the excess volume in the binary systems of sulfolane + 2-butanol, or + 2-propanol and sulfolane + DEG, or + TEG at T = (303.15, 313.15, 323.15, 333.15, and 343.15) K are summarized in Table 4. The dependence of VE at various temperatures is plotted in Figure 1a and b. In Figure 1a it can be observed that values of V E for sulfolane + 2-butanol and sulfolane + 2-propanol systems decreases, become more negative, with increasing temperature. It could be observed by the analysis of VE data that all values are negative for all binary mixtures with alcohols (sulfolane + 2-butanol, or + 2-propanol) over the entire range of composition. A minimum VE is observed around x1 ≈ 0.50 (sulfolane + 2-butanol) and x1 ≈ 0.44 (sulfolane + 2-propanol) for all temperatures studied, as presented in Table 4. It can be seen from Figure 1a that the higher alcohol carbon chain (2-butanol) presents less negative VE values. This behavior, negative VE, could be explained by the breaking of hydrogen bonds of the alcohol molecules, when mixed with sulfolane; as a result, alcohol chain fragments can experience an association process or interact weakly with sulfolane molecules. In this way, the excess volume is directly influenced by different interactions and geometry of the molecules.5

For sulfolane + DEG, the VE values are positive in most of the range of composition studied, showing negative values in x1 ≈ 0.10 at T = 303.15 K. The maximum value of VE presented in this system was in the x1 ≈ 0.50 at T = 343.15 K. For the sulfolane + TEG mixture, the VE values are negative and positive, with a minimum value in x1 ≈ 0.38 at T = 303.15 K and maximum value in x1 ≈ 0.77 at T = 343.15 K. Figure 1b shows that for sulfolane + DEG and sulfolane + TEG systems values of VE increase with increasing temperature. From Table 4 and Figure 1b, it could be observed that the sulfolane + glycols systems present positive and negative values of VE. Nevertheless, for sulfolane + DEG binary systems, only x1 = 0.097 has a negative value for VE. This effect could be attributed to an expansion of this mixture. Additionally, this effect increases with increasing temperature. For sulfolane + TEG binary systems, there are a dual effect (contraction and expansion), as shown in Table 4. As described by Kinart et al. (2007),32 the magnitude of VE is dependent on many effects, e.g., physical, chemical, and structural contributions. Physical interactions are responsible for producing positive VE values due to disruption of liquid order on E

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Viscosities, η, for the Pure Components and Binary Mixtures (Sulfolane + 2-Butanol, or + 2-Propanol, + DEG, + TEG) at T = (303.15 to 343.15) K and p = 0.1 MPaa η/mPa·s x1

a

T/K = 303.15

T/K = 313.15

0.000 0.099 0.198 0.298 0.380 0.499 0.593 0.691 0.799 0.900 1.000

2.51 2.16 2.17 2.34 2.56 2.98 3.46 4.19 5.41 7.23 10.4

1.78 1.62 1.67 1.83 2.01 2.37 2.77 3.36 4.32 5.72 8.07

0.000 0.075 0.164 0.250 0.353 0.437 0.536 0.656 0.768 0.880 1.000

1.78 1.62 1.69 1.85 2.14 2.43 2.91 3.75 4.97 6.92 10.4

1.34 1.27 1.34 1.48 1.71 1.96 2.35 3.03 3.99 5.48 8.07

0.000 0.097 0.198 0.319 0.414 0.499 0.614 0.698 0.789 0.887 1.000

22.5 19.1 16.3 13.8 12.2 11.2 10.2 9.72 9.35 9.39 10.4

14.9 12.9 11.2 9.62 8.70 8.07 7.49 7.25 7.08 7.23 8.07

0.000 0.123 0.268 0.505 0.598 0.678 0.768 0.837 0.929 1.000

29.5 25.6 21.2 15.6 13.9 12.6 11.4 10.8 10.3 10.4

19.3 16.9 14.3 10.9 9.90 9.13 8.40 8.11 7.89 8.07

T/K = 323.15

Sulfolane (x1) + 2-Butanol 1.31 1.26 1.33 1.49 1.63 1.93 2.27 2.76 3.53 4.63 6.45 Sulfolane (x1) + 2-Propanol 1.03 1.01 1.08 1.20 1.41 1.62 1.95 2.50 3.27 4.45 6.45 Sulfolane (x1) + DEG 10.4 9.13 8.04 7.03 6.46 6.07 5.72 5.61 5.54 5.72 6.45 Sulfolane (x1) + TEG 13.3 11.8 10.1 8.00 7.36 6.88 6.43 6.29 6.22 6.45

T/K = 333.15

T/K = 343.15

0.99 1.00 1.08 1.21 1.35 1.61 1.89 2.31 2.94 3.82 5.22

0.78 0.80 0.89 1.01 1.14 1.37 1.62 1.97 2.49 3.21 4.32

0.79 0.81 0.89 1.00 1.18 1.36 1.64 2.11 2.73 3.68 5.22

0.64 0.66 0.74 0.84 0.99 1.14 1.40 1.80 2.32 3.10 4.32

7.60 6.74 6.01 5.35 4.97 4.72 4.50 4.47 4.46 4.64 5.22

5.75 5.15 4.65 4.19 3.94 3.78 3.64 3.64 3.66 3.84 4.32

9.58 8.60 7.49 6.09 5.67 5.36 5.09 5.01 5.02 5.22

7.16 6.49 5.74 4.78 4.49 4.29 4.12 4.10 4.13 4.32

x1 is the mole fraction of sulfolane. Standard uncertainties, u: u(x1) = 0.0005, u(T) = 0.01 K, and u(η) = 0.3 %.

F

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. Viscosities Deviations, Δη, for the Binary Mixtures (Sulfolane + 2-Butanol, or + 2-Propanol, + DEG, + TEG) at T = (303.15 to 343.15) Ka Δη/mPa·s x1

T/K = 303.15

0.000 0.099 0.198 0.298 0.380 0.499 0.593 0.691 0.799 0.900 1.000

0.000 −1.135 −1.898 −2.518 −2.947 −3.461 −3.726 −3.765 −3.404 −2.378 0.000

0.000 0.075 0.164 0.250 0.353 0.437 0.536 0.656 0.768 0.880 1.000

0.000 −0.798 −1.500 −2.079 −2.681 −3.112 −3.491 −3.687 −3.431 −2.452 0.000

0.000 0.097 0.198 0.319 0.414 0.499 0.614 0.698 0.789 0.887 1.000

0.000 −2.176 −3.766 −4.872 −5.223 −5.263 −4.880 −4.330 −3.600 −2.369 0.000

0.000 0.123 0.268 0.505 0.598 0.678 0.768 0.837 0.929 1.000

0.000 −1.582 −3.171 −4.013 −4.223 −4.175 −3.925 −3.470 −2.705 0.000

T/K = 313.15

T/K = 323.15

Sulfolane (x1) + 2-Butanol 0.000 0.000 −0.784 −0.563 −1.355 −1.002 −1.832 −1.376 −2.159 −1.633 −2.550 −1.938 −2.747 −2.087 −2.767 −2.101 −2.488 −1.883 −1.724 −1.304 0.000 0.000 Sulfolane (x1) + 2-Propanol 0.000 0.000 −0.577 −0.427 −1.106 −0.837 −1.546 −1.180 −2.002 −1.535 −2.322 −1.781 −2.598 −1.989 −2.730 −2.081 −2.521 −1.917 −1.784 −1.348 0.000 0.000 Sulfolane (x1) + DEG 0.000 0.000 −1.370 −0.916 −2.385 −1.601 −3.117 −2.125 −3.378 −2.322 −3.425 −2.370 −3.225 −2.261 −2.883 −2.036 −2.434 −1.747 −1.617 −1.174 0.000 0.000 Sulfolane (x1) + TEG 0.000 0.000 −0.977 −0.643 −1.965 −1.319 −2.511 −1.685 −2.684 −1.827 −2.673 −1.835 −2.544 −1.768 −2.270 −1.601 −1.788 −1.277 0.000 0.000

T/K = 333.15

T/K = 343.15

0.000 −0.418 −0.757 −1.049 −1.250 −1.490 −1.605 −1.608 −1.432 −0.978 0.000

0.000 −0.323 −0.588 −0.821 −0.980 −1.172 −1.259 −1.258 −1.113 −0.753 0.000

0.000 −0.317 −0.639 −0.904 −1.182 −1.375 −1.530 −1.594 −1.462 −1.010 0.000

0.000 −0.264 −0.507 −0.725 −0.954 −1.105 −1.211 −1.251 −1.148 −0.777 0.000

0.000 −0.634 −1.120 −1.500 −1.652 −1.692 −1.639 −1.477 −1.268 −0.854 0.000

0.000 −0.457 −0.816 −1.102 −1.220 −1.256 −1.227 −1.111 −0.960 −0.645 0.000

0.000 −0.441 −0.914 −1.174 −1.288 −1.305 −1.264 −1.150 −0.922 0.000

0.000 −0.318 −0.660 −0.855 −0.945 −0.966 −0.938 −0.858 −0.683 0.000

x1 is the mole fraction of sulfolane. Standard uncertainties, u: u(x1) = ± 0.0005, u(T) = ± 0.01 K, and u(Δη) = ± 0.003 mPa·s, and the combined expanded uncertainties Uc is Uc(Δη) = 0.006 mPa·s. a

G

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. Estimated Parameters for Excess Molar Volume, VE, of the Binary Mixtures at Different Temperatures, Along with the Standard Deviation, σ T/K = 303.15

T/K = 313.15

A0 A1 A2 A3 A4 σ

−0.9605 0.3102 −0.0242 0.4878 0.4421 0.08

−1.0644 0.3078 −0.1263 0.6112 0.8195 0.08

A0 A1 A2 A3 A4 σ

−2.2112 −0.5639 −0.0986 1.6072 −2.0280 0.05

−2.2947 −0.5374 −0.1504 1.6634 −1.8163 0.05

A0 A1 A2 A3 A4 σ

0.3120 −0.1290 −0.3988 −0.4084 0.1714 0.04

0.4425 −0.1431 −0.6229 −0.3035 0.5788 0.04

A0 A1 A2 A3 A4 σ

−0.3776 −0.5539 0.5378 0.2203 −0.8502 0.09

−0.2916 −0.5383 0.6985 0.2872 −0.8956 0.09

T/K = 323.15 Sulfolane + 2-Butanol −1.2492 0.3428 0.1904 0.7088 0.1016 0.09 Sulfolane + 2-Propanol −2.4562 −0.6150 −0.0816 2.0964 −1.9623 0.07 Sulfolane + DEG 0.5567 −0.1066 −0.6240 −0.2802 0.5601 0.03 Sulfolane + TEG −0.1854 −0.5768 0.2560 0.1590 −0.5819 0.10

T/K = 333.15

T/K = 343.15

−1.4800 0.2391 −0.2036 0.6266 0.8032 0.07

−1.7933 0.1215 −0.3149 0.5376 1.0496 0.05

−2.6780 −0.7499 −0.2130 2.0964 −1.5008 0.07

−3.0195 −1.0549 −0.0513 2.1905 −1.7837 0.09

0.6823 −0.0510 −0.5312 −0.5907 0.3590 0.04

0.8370 −0.1530 −0.4621 −0.4339 0.5653 0.05

−0.0183 −0.5490 0.1448 0.1088 −0.1671 0.10

0.1040 −0.5792 0.3412 0.0383 −0.2154 0.10

Table 8. Estimated Parameters for Viscosity Deviations, Δη, of the Binary Mixtures at Different Temperatures, Along with the Standard Deviation, σ T/K = 303.15

T/K = 313.15

A0 A1 A2 A3 A4 σ

−13.8806 6.9392 −5.9043 2.4315 −4.5718 1.20

−10.2252 5.1955 −3.9818 1.9121 −2.8558 0.90

A0 A1 A2 A3 A4 σ

−13.4896 7.3719 −5.0003 1.0913 −2.4525 1.71

−10.0504 5.3346 −3.4555 0.7926 −1.4466 1.26

A0 A1 A2 A3 A4 σ

−20.9873 −3.0692 −3.7133 3.9894 −2.6620 0.16

−13.6749 −1.2643 −2.5075 2.7602 −1.8904 0.11

A0 A1 A2 A3 A4 σ

−17.0004 1.3045 −3.0405 5.0853 3.0588 0.91

−10.7847 1.4340 −2.0126 3.2013 1.4723 0.57

T/K = 323.15 Sulfolane + 2-Butanol −7.7704 3.9909 −2.7639 1.6545 −2.0675 0.70 Sulfolane + 2-Propanol −7.6995 4.0089 −2.5005 0.6999 −0.9046 0.96 Sulfolane + DEG −9.4729 −0.4305 −1.7456 2.1963 −1.5289 0.15 Sulfolane + TEG −7.3261 1.3056 −1.7454 2.4687 1.0576 0.40 H

T/K = 333.15

T/K = 343.15

−5.9711 3.1083 −1.9695 1.1098 −1.3005 0.54

−4.6937 2.4468 −1.3918 0.7677 −0.9733 0.42

−5.9264 3.0475 −1.8508 0.4299 −0.3085 0.74

−4.7282 2.2745 −1.2209 0.3082 −0.4007 0.57

−6.7829 −0.0329 −1.2232 1.4801 −0.9825 0.14

−5.0341 0.1391 −1.0006 1.1063 −0.5282 0.13

−5.1628 1.1451 −1.2920 1.6688 0.7462 0.28

−3.7912 0.9886 −0.9312 1.1121 0.4890 0.21

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 9. Thermal Expansion Coefficients, α, for the Binary Mixtures (Sulfolane + 2-Butanol, or + 2-Propanol, + DEG, + TEG) at T = (303.15 to 343.15) Ka η/mPa·s x1

T/K = 303.15

0.000 0.099 0.198 0.298 0.380 0.499 0.593 0.691 0.799 0.900 1.000

11.286 10.473 9.712 8.399 7.672 6.415 5.316 4.480 3.295 2.279 1.543

0.000 0.075 0.164 0.250 0.353 0.437 0.536 0.656 0.768 0.880 1.000

10.885 10.415 9.368 8.392 7.002 6.312 5.182 3.952 3.036 2.119 1.543

0.000 0.097 0.198 0.319 0.414 0.499 0.614 0.698 0.789 0.887 1.000

−16.151 −14.322 −12.538 −10.230 −8.649 −7.027 −5.103 −3.738 −2.259 −0.504 1.543

0.000 0.123 0.268 0.505 0.598 0.678 0.768 0.837 0.929 1.000

27.851 25.493 22.470 17.023 14.511 11.993 9.618 7.125 4.026 1.543

T/K = 313.15

T/K = 323.15

Sulfolane (x1) + 2-Butanol 10.839 11.219 10.072 10.315 9.369 9.485 8.295 8.461 7.693 7.832 6.674 6.830 5.812 6.029 5.141 5.343 4.218 4.482 3.453 3.783 2.862 3.155 Sulfolane (x1) + 2-Propanol 11.138 11.666 10.519 10.787 9.439 9.543 8.526 8.567 7.338 7.436 6.659 6.656 5.795 5.924 4.797 5.007 4.065 4.327 3.345 3.672 2.862 3.155 Sulfolane (x1) + DEG −18.075 −19.159 −15.927 −16.872 −13.797 −14.581 −11.111 −11.745 −9.189 −9.659 −7.318 −7.698 −4.994 −5.188 −3.327 −3.376 −1.532 −1.435 0.516 0.723 2.862 3.155 Sulfolane (x1) + TEG 30.407 31.914 27.965 29.396 24.817 26.125 19.085 20.105 16.470 17.392 13.923 14.820 11.314 11.978 8.806 9.457 5.530 6.007 2.862 3.155

T/K = 333.15

T/K = 343.15

12.070 10.932 9.877 8.798 8.054 6.946 6.106 5.303 4.390 3.652 2.886

13.017 11.632 10.339 9.185 8.316 7.077 6.180 5.240 4.254 3.456 2.532

12.484 11.276 9.786 8.670 7.494 6.542 5.852 4.915 4.197 3.520 2.886

13.608 12.051 10.281 8.986 7.724 6.564 5.873 4.867 4.067 3.326 2.532

−19.850 −17.519 −15.163 −12.291 −10.132 −8.163 −5.578 −3.702 −1.701 0.473 2.886

−20.595 −18.220 −15.805 −12.902 −10.674 −8.698 −6.041 −4.104 −2.046 0.141 2.532

32.891 30.285 26.888 20.579 17.765 15.160 12.089 9.550 5.923 2.886

33.887 31.187 27.651 21.034 18.106 15.458 12.148 9.579 5.763 2.532

x1 is the mole fraction of sulfolane. Standard uncertainties, u: u(x1) = ± 0.0005, u(T) = ± 0.01 K, and u(α) = ± 0.004·10−3 K−1, and the combined expanded uncertainties Uc is Uc(α) = 0.008.10−3 K−1.

a

of intermolecular complexity. Additionally, alcohols themselves are strongly self-associated with the degree of association strongly dependent on molecular size, position of the OH group, and temperature (Bhattacharjee, 2012).34 3.2. Viscosity and Viscosity Deviation. Table 5 show measured values of dynamic viscosity (η) with differences in function of sulfolane mass fractions for sulfolane + 2-butanol, sulfolane + 2-propanol, sulfolane + DEG, and sulfolane + TEG

mixing. In addition, association and/or dissociation chemical interactions could occur due to hydrogen bonding or other complex interactions, especially when a volume decreasing is observed. Finally, structural effects contribute to VE negative values as a result of interstitial accommodation, that is, molar volume gradients. In this way, free molecules of glycols (DEG and TEG) and sulfolane may interact by intermolecular hydrogen bonds and/or dipole−dipole forces resulting clusters I

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

systems at T = (303.15, 313.15, 323.15, 333.15, and 343.15) K and atmospheric pressure. Viscosity deviations (Δη) calculation was carried out by using the equation:

In Table 9 the values of thermal expansion coefficient are reported. In sulfolane + 2-butanol and sulfolane + 2-propanol systems the values of thermal expansion coefficient decreasing with the increase of the concentration of sulfolane in mixture and increasing with increase of the temperature, with exception at T = 313.15 K in the sulfolane + 2-butanol system. The values of thermal expansion coefficient of sulfolane + DEG decrease with the increase of temperature. The sulfolane + TEG system shows inverse behavior. With the increase of the sulfolane concentration in mixtures, the values of thermal expansion coefficient decrease. A five degree polynomial equation has been used for estimating the thermal expansion coefficients, by correlating the temperature gradient and excess volume. For that, these equations were analytically differentiated. It should be emphasized that, for pure compounds, an equation differentiation procedure has been done at x1 = 0 or 1.

n

Δη = η −

∑ xiηi

(2)

i=1

where η is the dynamic viscosity of the mixture and ηi and xi denote viscosities and mole fractions of pure components, respectively. The viscosity deviations (Δη) of the mixtures of sulfolane + 2-butanol or + 2-propanol and sulfolane + DEG or + TEG at T = (303.15, 313.15, 323.15, 333.15, and 343.15) K are listed in Table 6. A negative viscosity deviation was observed for all binary mixtures and temperature studied for the entire composition range, as depicts Figure 2a and b. Moreover, it follows from Table 4 that Δη values become less negative with increasing temperatures. It should be stressed that negative values of the viscosity deviations indicate a predominance of dispersion forces (Dubey et al., 2008).33 The values of the excess volume and viscosity deviation (VE and Δη) were fit by using the Redlich−Kister equation,3

4. CONCLUSIONS This study focused on the determination of experimental volumetric (densities, ρ) and transport (dynamic viscosity, η) properties for the binary systems (sulfolane + 2-butanol, sulfolane + 2-propanol, sulfolane + DEG, and sulfolane + TEG), at T = (303.15, 313.15, 323.15, 333.15, and 343.15) K and atmospheric pressure. Densities and viscosities values for pure components and the binary systems studied decrease with increasing temperatures. Regarding excess volume (VE) and viscosity deviations (Δη), these properties have been calculated from experimental densities and viscosities data, respectively, by correlating to a Redlich−Kister type polynomial equation. In all systems (sulfolane + 2-butanol or + 2-propanol), it should be particularly noted that the VE data showed a negative behavior, indicating a contractive trend in terms of molecular interactions. In the systems (sulfolane + DEG or + TEG), VE values are positive and negative. Moreover, Δη values are negative, which can be attributed to the predominance of dispersion forces.

k

y = x1(1 − x1) ∑ Aj (1 − 2x1) j (3)

j=1

where y denotes V and Δη, x1 is the mole fraction, Aj is a parameter, and k is the degree of the polynomial expansion. Aj values were obtained using a nonlinear least-squares fitting procedure. The corresponding standard deviations were given by E

σ (y ) =

∑ (yexp − ycal )2 (n − p)

(4)

where yexp is the experimental excess properties and ycal is the calculated (adjusted) excess properties, n is the number of experimental points, and p is the number of parameters retained in the respective equation. The adjustable parameters, Aj, and standard deviation, σ, calculated using eq 4 are listed in Tables 7 and 8. The results were based on a third or fourth-degree polynomial expansion. The thermal expansion coefficient was calculated using eq 5: ⎛ ∂ρ ⎞ α = − ρ− 1 ⎜ ⎟ ⎝ ∂T ⎠ P



*E-mail: [email protected]. Funding

The authors are grateful to CNPq (Conselho Nacional de ́ Desenvolvimento Cientifico e Tecnológico, Brasil), CAPES ́ (Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior, Brasil), and FUNCAP (Fundaçaõ Cearense de Apoio ́ e Tecnológico) for the financial ao Desenvolvimento Cientifico support.

(5)

The relation between molar volume and excess molar volume is shown through eq 6:

Notes

The authors declare no competing financial interest.

2

V=

∑ xiVi + VmE



(6)

i=1

⎤ ∑ (αixiVi )⎥⎥ i=1 ⎦

REFERENCES

(1) Santiago, R. S.; Aznar, M. Quinary liquid−liquid equilibria for mixtures of nonane + undecane + two pairs of aromatics (benzene/ toluene/m-xylene) + sulfolane at 298.15 and 313.15 K. Fluid Phase Equilib. 2007, 259, 71−76. (2) Ashour, I.; Abu-Eishah, S. I. Liquid-liquid equilibria for cyclohexane + ethylbenzene + sulfolane at (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2006, 51, 859−863. (3) Patwari, M. K.; Bachu, R. K.; Boodida, S.; Nallani, S. Densities, viscosities, and speeds of sound of binary liquid mixtures of sulfolane with ethyl acetate, n-propyl acetate, and n-butyl acetate at temperature of (303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2009, 54, 1069− 1072.

where xi and Vi are the mole fraction and the molar volume of component i, respectively. In the case of mixtures, by differentiating eq 6, and dividing by V and reversing the order of terms we then obtain36 ⎡ E 1 ⎢⎛ ∂Vm ⎞ ⎟ + α = ⎢⎜ V ⎝ ∂T ⎠ ⎣ P , xi

AUTHOR INFORMATION

Corresponding Author

2

(7)

where α and αi are the thermal expansion coefficients of the mixtures and pure component, respectively. J

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(4) Yu, Y.; Li, Y. Excess molar volumes of sulfolane in binary mixtures with six aromatic hydrocarbons at 298.15 K. Fluid Phase Equilib. 1998, 147, 207−213. (5) Sacco, A.; Rakshit, A. K. Thermodynamic and physical properties of binary mixtures involving sulfolane III. Excess volumes of sulfolane with each of nine alcohols. J. Chem. Thermodyn. 1975, 7, 257−261. (6) Kinart, C. M.; Ć wikliń s ka, A.; Maj, M.; Kinart, W. J. Thermodynamic and physicochemical properties of binary mixtures of sulfolane with ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol systems at 303.15 K. Fluid Phase Equilib. 2007, 262, 244−250. (7) Motin, M. A.; Ali, M. A.; Sultana, S. Density and excess molar volumes of binary mixtures of sulfolane with methanol, n-propanol, n-butanol, and n-pentanol at 298.15−323.15 K and atmospheric pressure. Phys. Chem. Liq. 2007, 45, 221−229. (8) Yang, C.; Ma, P.; Zhou, Q. Excess molar volumes and viscosities of binary mixtures of sulfolane with benzene, toluene, ethylbenzene, p-xylene, o-xylene, and m-xylene at 303.15 and 323.15 K and atmospheric pressure. J. Chem. Eng. Data 2004, 49, 881−885. (9) Sacco, A.; Petrella, G.; Castagnolo, M.; Dell’atti, A. Excess volumes and viscosity of water-sulfolane mixtures at 30, 40, and 50 °C. Thermochim. Acta 1981, 44, 59−66. (10) Lopez, A.; Jannelli, L.; Silvestri, L. Thermodynamic properties of binary mixtures involving sulfolane. 1 Excess volumes on mixing sulfolane and propionitrile, butyronitrile, and valeronitrile. J. Chem. Eng. Data 1982, 27, 183−186. (11) Chen, G.; Knapp, H. Densities and excess molar volumes for sulfolane + ethylbenzene, sulfolane + 1-methylnaphthalene, water + n,ndimethylformamide, water + methanol, water + n-formylmorpholine, and water + n-methylpyrrolidone. J. Chem. Eng. Data 1995, 40, 1001− 1004. (12) Yu, Y. X.; Liu, J. G.; Gao, G. H. Isobaric vapor-liquid equilibria and excess volumes for the binary mixtures water + sulfolane, water + tertraethylene glycol, and benzene + tetraethylene glycol. J. Chem. Eng. Data 2000, 45, 570−574. (13) Awwad, A. M.; Al-Dujaili, A. H.; Salman, H. E. Relative permittivities, densities, and refractive indices of the binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and poly(ethylene glycol) at 303.15 K. J. Chem. Eng. Data 2002, 47, 421−424. (14) Yang, C.; Yu, W.; Ma, P. Densities and viscosities of binary mixtures of ethylbenzene + n-methyl-2-pyrrolidone, ethylbenzene + sulfolane, and styrene + octane from (303.15 to 353.15) K and atmospheric pressure. J. Chem. Eng. Data 2005, 50, 1197−1203. (15) Saleh, M. A.; Shamsuddin Ahmed, M.; Begum, S. K. Density, viscosity and thermodynamic activation for viscous flow of water + sulfolane. Phys. Chem. Liq. 2006, 44, 153−165. (16) Kinart, C. M.; Maj, M.; Ć wiklińska, A.; Kinart, W. J. Densities, viscosities and relative permittivities of some n-alkoxyethanols with sulfolane at T = 303.15 K. J. Mol. Liq. 2008, 139, 1−7. (17) Chen, W.; Ko, J.; Chang, C. J. Vapor-liquid equilibria and density measurement for binary mixtures of benzene + nonane, methylbenzene + 1,2-dimethylbenzene, 1,3-dimethylbenzene + 2,3,4,5-tetrahydrothiophene-1,1-dioxide (sulfolane), 1,2-dimethylbenzene + sulfolane, 1,2dimethylbenzene + n-methylformamide (NMF), 1,3-dimethylbenzene + NMF, and 1,4-dimethylbenzene + NMF from (333.15 to 353.15) K at vacuum conditions. J. Chem. Eng. Data 2010, 55, 4352−4361. (18) Kelayeh, S. A.; Jalili, A. H.; Ghotbi, C.; Hosseini-Jenab, M.; Taghikhani, V. Densities, Viscosities, and surface tensions of aqueous mixtures of sulfolane + triethanolamine and sulfolane + diisopropanolamine. J. Chem. Eng. Data 2011, 56, 4317−4324. (19) Bravo-Sánchez, M. G.; Iglesias-Silva, G. A.; Estrada-Baltazar, A.; Hall, K. R. Densities and viscosities of binary mixtures of n-butanol with 2-butanol, isobutanol, and tert-butanol from (303.15 to 343.15) K. J. Chem. Eng. Data 2010, 55, 2310−2315. (20) Lomte, S. B.; Bawa, M. J.; Lande, M. K.; Arbad, B. R. Densities and viscosities of binary liquid mixtures of 2-butanone with branched alcohols at (293.15 to 313.15) K. J. Chem. Eng. Data 2009, 54, 127−130. (21) Doghaei, A. V.; Rostami, A. A.; Omrani, A. Densities, viscosities, and volumetric properties of binary mixtures of 1,2-propanediol + 1-

heptanol or 1-hexanol and 1,2-ethanediol + 2-butanol or 2-propanol at T = (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2010, 55, 2894− 2899. (22) Iloukhani, H.; Almasi, M. Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine−Flory−Patterson theory. Thermochim. Acta 2009, 495, 139−148. (23) Farhan, A. M.; Awwad, A. M. Densities, viscosities, and excess molar enthalpies of 2-pyrrolidone + butanol isomers at T = (293.15, 298.15, and 303.15) K. J. Chem. Eng. Data 2009, 54, 2095−2099. (24) Pang, F.; Seng, C.; Teng, T.; Ibrahim, M. H. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 to 333.15 K. J. Mol. Liq. 2007, 136, 71−78. (25) Omrani, A.; Rostami, A. A.; Mokhtary, M. Densities and volumetric properties of 1,4-dioxane with ethanol, 3-methyl-1-butanol, 3-amino-1-propanol and 2-propanol binary mixtures at various temperatures. J. Mol. Liq. 2010, 157, 18−24. (26) Bernal-García, J. M.; Guzmán-López, A.; Cabrales-Torres, A.; Rico-Ramírez, V.; Iglesias-Silva, G. A. Supplementary Densities and Viscosities of Aqueous Solutions of Diethylene Glycol from (283.15 to 353.15) K. J. Chem. Eng. Data 2008, 53, 1028−1031. (27) Begum, S. K.; Clarke, R. J.; Ahmed, M. S.; Begum, S.; Saleh, M. A. Densities, Viscosities, and Surface Tensions of the System Water + Diethylene Glycol. J. Chem. Eng. Data 2011, 56, 303−306. (28) Tsai, C.; Soriano, A. N.; Li, M. Vapour pressures, densities, and viscosities of the aqueous solutions containing (triethylene glycol or propylene glycol) and (LiCl or LiBr). J. Chem. Thermodyn. 2009, 41, 623−631. (29) Valtz, A.; Teodorescu, M.; Wichterle, I.; Richon, D. Liquid densities and excess molar volumes for water + diethylene glycolamine, and water, methanol, ethanol, 1-propanol + triethylene glycol binary systems at atmospheric pressure and temperatures in the range of 283.15−363.15 K. Fluid Phase Equilib. 2004, 215, 129−142. (30) Sun, T.; Teja, A. S. Density, Viscosity, and Thermal Conductivity of Aqueous Ethylene, Diethylene, and Triethylene Glycol Mixtures between 290 and 450 K. J. Chem. Eng. Data 2003, 48, 198−202. ́ (31) Feitosa, F. X.; Caetano, A. C. R.; Cidade, T. B.; de SantAna, H. B. Viscosity and density of binary mixtures of ethyl alcohol with n-alkanes (C6, C8, C10). J. Chem. Eng. Data 2009, 54, 2957−2963. (32) Kinart, C. M.; Maj, M.; Bald, A.; Kinart, Z. Volumetric properties of ternary mixtures of sulfolane with 2-alkoxyethanols and ethylene glycols at T=303.15K. J. Mol. Liq. 2012, 169, 87−94. (33) Dubey, G. P.; Sharma, M.; Dubey, N. Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K. J. Chem. Thermodyn. 2008, 40, 309−320. (34) Bhattacharjee, A.; Roy, M. N. Density, Viscosity, and Speed of Sound of (1-Octanol + 2-Methoxyethanol), (1-Octanol + N,NDimethylacetamide), and (1-Octanol + Acetophenone) at Temperatures of (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2010, 55, 5914−5920. (35) Redlich, O.; Kister, A. T. Thermodynamics of non-electrolyte solutions, x-y-t relations in a binary system. Ind. Eng. Chem. 1948, 40, 341−345. (36) Resa, J. M.; Gonzalez, C.; Goenaga, J. M. Temperature dependence of excess molar volumes of ethanol + water + ethyl acetate. J. Solution Chem. 2004, 33, 169−198.

K

dx.doi.org/10.1021/je500153g | J. Chem. Eng. Data XXXX, XXX, XXX−XXX