Chapter 7
Design of Inhibitors of Herpes Simplex Virus Thymidine Kinase
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
J. A. Martin, I. B. Duncan, and G. J . Thomas Research Division, Roche Products Limited, Ρ.Ο. Box 8, Welwyn Garden City, Hertfordshire AL7 3AY, England The role of herpes simplex virus thymidine kinase in the pathogenesis of infection, i t s mechanism of action and the current status with regard to the design of inhibitors are reviewed. Examples of inhibitors based on substrate and product analogues are described, some of which are very potent and highly selective for the viral enzymes. One class of inhibitors with high in vitro potency and selectivity has shown a protective effect in mice under certain conditions and i t is possible that compounds of this type may have potential as antiviral agents in man. Herpes simplex v i r u s (HSV) t y p e s 1 and 2 c a u s e m i l d t o s e v e r e d i s e a s e i n man, p r i m a r i l y o r o f a c i a l and g e n i t a l i n f e c t i o n s . A f e a t u r e o f t h e s e v i r u s e s i s t h e i r a b i l i t y t o become l a t e n t i n neuronal g a n g l i a , from whence r e - e x p r e s s i o n c a u s e s recurrent c l i n i c a l episodes. Thus f a r , t h e d e s i g n o f a n t i v i r a l agents a g a i n s t HSV i n f e c t i o n s has c e n t e r e d on compounds t h a t i n h i b i t major v i r a l enzymes i n t h e l y t i c c y c l e , whereas p r o c e s s e s t h a t c o n t r o l l a t e n c y and r e a c t i v a t i o n have been r e l a t i v e l y n e g l e c t e d t a r g e t s . The
R o l e o f Thymidine K i n a s e i n Herpes Simplex
Virus Infections
Under normal growth conditions, eukaryotic cells obtain the t h y m i d i n e n u c l e o t i d e s r e q u i r e d f o r DNA s y n t h e s i s t h r o u g h a ds. novo pathway, i n w h i c h t h y m i d i n e monophosphate i s s y n t h e s i s e d f r o m d e o x y u r i d i n e monophosphate. Thus, t h y m i d i n e k i n a s e (TK) i s not r e q u i r e d f o r normal c e l l growth but t h e s y n t h e s i s o f a new s p e c i e s o f TK by HSV i s p r e s u m a b l y n e c e s s a r y t o accommodate t h e i n c r e a s e d demand f o r t h y m i d i n e t r i p h o s p h a t e t o f u e l v i r a l DNA s y n t h e s i s . It is more t h a n twenty-five years s i n c e the first report (D e s t a b l i s h i n g t h e p r e s e n c e o f a v i r u s - e n c o d e d TK i n H S V - i n f e c t e d mouse f i b r o b l a s t s . The r e l e v a n c e o f t h i s v i r u s - i n d u c e d enzyme t o p r o d u c t i v e and l a t e n t i n f e c t i o n b o t h i n c e l l c u l t u r e and i n v i v o has been d e s c r i b e d 11-4). 0097-6156/89A)401-0103$06.00A) ο 1989 A m e r i c a n C h e m i c a l Society
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
104
NUCLEOTIDE
ANALOGUES
V i r u s m u t a n t s have b e e n i s o l a t e d w h i c h do n o t p r o d u c e a t h y m i d i n e k i n a s e (TK~) but r e t a i n an u n i m p a i r e d a b i l i t y t o r e p l i c a t e i n c e l l c u l t u r e (υ). S i n c e TK~ mutants have r e d u c e d p a t h o g e n i c i t y in experimental animal models (6-11) t h e e x p r e s s i o n o f TK i s p r o b a b l y an i m p o r t a n t d e t e r m i n a n t of v i r u l e n c e i n v i v o . These f i n d i n g s t o g e t h e r w i t h i d e n t i f i a b l e d i f f e r e n c e s between t h e v i r a l enzyme and i t s c e l l u l a r c o u n t e r p a r t w i t h r e g a r d t o i m m u n o g e n i c i t y , molecular weight, t h e r m o s t a b i l i t y and particularly substrate specificity (12-16) make t h i s f u n c t i o n an a t t r a c t i v e t a r g e t f o r a n t i v i r a l chemotherapy. W h i l s t i t has been s u g g e s t e d ( 17.18) t h a t s p e c i f i c i n h i b i t o r s o f v i r a l TK may s u p p r e s s one o r more a s p e c t s o f HSV d i s e a s e c o m p l e x , t h e r e have b e e n r e m a r k a b l y few reported a t t e m p t s t o d e v e l o p p o t e n t and s p e c i f i c i n h i b i t o r s o f t h i s v i r a l enzyme. S e v e r a l s t u d i e s have d e s c r i b e d compounds t h a t i n h i b i t TK f r o m E s c h e r i c h i a c o l i (12) , Walker 256 c a r c i n o m a 120.21), Yoshida sarcoma (22. 23) and L1210 cells (2_£) . D i f f e r e n c e s have been identified between the bacterial and mammalian enzymes but s u r p r i s i n g l y t h e s e s t u d i e s (25.) d i d not i n c l u d e t h e v i r a l enzyme.
Mechanism of Action Thymidine k i n a s e c a t a l y s e s the p h o s p h o r y l a t i o n of thymidine i n the presence o f d i v a l e n t c a t i o n s s u c h as magnesium w i t h adenosine triphosphate (ATP) as t h e c o n v e n t i o n a l p h o s p h a t e d o n o r . The phosphoryl t r a n s f e r occurs with i n v e r s i o n of c o n f i g u r a t i o n at p h o s p h o r u s , which has been e x p l a i n e d (26) by a s i n g l e i n - l i n e g r o u p t r a n s f e r between ATP and t h y m i d i n e w i t h i n t h e enzyme complex. A more e x t e n s i v e s y s t e m has been d e s c r i b e d (22) i n w h i c h ADP o r AMP may a l s o a c t as t h e p h o s p h a t e d o n o r i n 5 - p h o s p h o t r a n s f e r a s e r e a c t i o n s t o t h y m i d i n e and i n s u p p o r t o f t h i s t h e r e i s e v i d e n c e (2&) t h a t HSV-1 TK i s t r a n s l a t e d as t h r e e p o l y p e p t i d e s t h a t may e x i s t as a heteromultimer with a p o t e n t i a l m u l t i p l i c i t y of s u b s t r a t e b i n d i n g sites. Earlier studies (2 9-31 ) h a d been r e p o r t e d i n which p h o s p h o r y l a t e d s p e c i e s o f t h y m i d i n e a f f e c t e d TK c a t a l y s e d r e a c t i o n s b u t t h i s work u s e d c r u d e enzyme p r e p a r a t i o n s and t h e p r e s e n c e o f i n t e r f e r i n g components cannot be r u l e d o u t . However, now t h a t t h e n u c l e o t i d e and p r i m a r y amino a c i d s e q u e n c e s o f v i r a l TK a r e known ( 3 2 - 3 4 ) , t h e enzyme has been c l o n e d and e x p r e s s e d i n p r o k a r y o t e s (35 36), and d i r e c t e d m u t a g e n e s i s s t u d i e s have begun (37.38), t h e r e i s t h e p r o s p e c t t h a t a f u l l s t r u c t u r a l a n a l y s i s o f t h e enzyme may be a v a i l a b l e soon. E v i d e n c e c o u l d t h e n be o b t a i n e d t o e x p l a i n t h e s e e a r l i e r o b s e r v a t i o n s and e n a b l e t h e d e s i g n o f b e t t e r i n h i b i t o r s f r o m molecular modelling studies. Thus f a r , t h e d e s i g n o f i n h i b i t o r s has been based i n s t e a d on either an understanding of the enzyme-catalysed c h e m i c a l t r a n s f o r m a t i o n s t h a t o c c u r o r on the b i o c h e m i c a l p r o p e r t i e s o f t h e enzyme i t s e l f . Future s y n t h e t i c programmes c o u l d be b a s e d on s u b s t r a t e a n a l o g u e s , p r o d u c t analogues, metal c h e l a t i o n or a l l o s t e r i c i n h i b i t i o n . 1
r
S u b s t r a t e A n a l o g u e s as
Inhibitors
W h i l s t t h e mammalian TK has a v e r y s t r i n g e n t s u b s t r a t e the v i r a l enzyme i s c o n s i d e r a b l y more t o l e r a n t of analogues ( ϋ ) . More p r e c i s e l y , t h e c e l l u l a r enzyme can
specificity nucleoside process
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T AL.
Inhibitors of Herpes Simplex Virus
105
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
o n l y t h y m i d i n e and a few c l o s e a n a l o g u e s , whereas t h e v i r a l enzyme has an a b i l i t y t o p h o s p h o r y l a t e a wide range o f p y r i m i d i n e s and even some p u r i n e n u c l e o s i d e s . T h i s marked d i f f e r e n c e has been e x p l o i t e d by many r e s e a r c h g r o u p s i n t h e s e a r c h f o r new a n t i v i r a l agents, r e s u l t i n g n o t a b l y i n t h e d i s c o v e r y o f a c y c l o v i r (40-42) . Such compounds depend on s e l e c t i v e a c t i v a t i o n by v i r a l TK and c e l l u l a r k i n a s e s t o t h e i r t r i p h o s p h a t e s , which t h e n i n h i b i t t h e v i r a l DNA p o l y m e r a s e . C l e a r l y t h e mode o f a c t i o n o f such a n t i v i r a l n u c l e o s i d e s i s not i n h i b i t i o n o f TK p e r s e . a l t h o u g h t h e y do compete w i t h t h e n a t u r a l s u b s t r a t e , t h y m i d i n e , f o r p h o s p h o r y l a t i o n and w i l l t h e r e f o r e d e p l e t e the p o o l of thymidine n u c l e o t i d e s i n i n f e c t e d c e l l s .
1 A n a l o g u e s o f a c y c l o v i r have been s y n t h e s i s e d w i t h m o d i f i c a t i o n s i n t h e g u a n i n e and s i d e c h a i n m o i e t i e s (43 4 4 ) . These compounds had e i t h e r weak o r no a c t i v i t y a g a i n s t HSV-1 i n a plaque reduction assay. In an attempt t o r a t i o n a l i s e t h e l a c k o f a n t i v i r a l a c t i v i t y t h e a c c e p t a b i l i t y o f t h e s e compounds as s u b s t r a t e s f o r v i r a l TK was measured. As m i g h t have been e x p e c t e d none o f t h e compounds, i n c l u d i n g t h e a c y c l i c a n a l o g u e s 1 and 2, were p h o s p h o r y l a t e d . Both 1 and 2 i n h i b i t e d t h e p h o s p h o r y l a t i o n o f a c y c l o v i r , i n d i c a t i n g t h a t t h e y d i d b i n d t o t h e enzyme. The development o f more p o t e n t and s e l e c t i v e i n h i b i t o r s b a s e d on t h e s e l e a d s t r u c t u r e s has n o t been reported. A s e r i e s of N - p h e n y l s u b s t i t u t e d guanine d e r i v a t i v e s was s c r e e n e d a g a i n s t HSV-1 TK i n o r d e r t o i d e n t i f y l e a d s t r u c t u r e s t h a t c o u l d be m o d i f i e d t o g i v e p o t e n t and s e l e c t i v e i n h i b i t o r s (45. 46) . From t h e r a n g e o f g u a n i n e s s c r e e n e d ( T a b l e I) i t i s c l e a r t h a t substitution i n t h e N 2 - p h e n y l m o i e t y has a marked e f f e c t on potency; f o r example, an e l e c t r o n - w i t h d r a w i n g group i n e i t h e r the meta o r p a r a p o s i t i o n e n h a n c e d p o t e n c y , whereas a l k y l g r o u p s s u c h as m e t h y l o r b u t y l i n t h e p a r a p o s i t i o n r e d u c e d a c t i v i t y . However, a m e d i u m - s i z e d a l k y l r e s i d u e s u c h as e t h y l was t o l e r a t e d i n t h e meta p o s i t i o n . G l y c o s y l a t i o n o f t h e u n s u b s t i t u t e d g u a n i n e 3 gave t h e c o r r e s p o n d i n g 2'-deoxyguanosine d e r i v a t i v e 9 which was t h e most a c t i v e compound r e p o r t e d . D e t a i l e d s t u d i e s have shown 9 t o be s e l e c t i v e f o r t h e i s o l a t e d v i r a l enzyme and i t a l s o i n h i b i t e d TK i n i n f e c t e d c e l l s as m e a s u r e d by t h e e n t r a p m e n t o f r a d i o l a b e l l e d t h y m i d i n e as nucleotides. At h i g h c o n c e n t r a t i o n and with p r o l o n g e d e x p o s u r e 9 d i d e x e r t some t o x i c i t y a g a i n s t t h e mammalian h o s t c e l l s b u t t h e l e a d s g e n e r a t e d i n t h i s s t u d y may provide a s t a r t i n g p o i n t f o r t h e d e v e l o p m e n t o f more p o t e n t and selective inhibitors. P
2
W i g d a h l and P a r k h u r s t (Al) have shown 5 - t r i f l u o r o t h y m i d i n e t o be a c o m p e t i t i v e i n h i b i t o r o f t h y m i d i n e p h o s p h o r y l a t i o n by b o t h c e l l u l a r and more e f f e c t i v e l y HSV-1 TK. I t has a l s o been p r o p o s e d t h a t the t r i p h o s p h a t e of t h i s compound m i g h t m i m i c thymidine t r i p h o s p h a t e f e e d b a c k r e g u l a t i o n o f b o t h enzymes. I t has been
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
106
ΝϋίΧΕΟΉΌΕ ANALOGUES
I . I n h i b i t i o n o f H S V - 1 Thymidine K i n a s e by Derivatives
Table
R
N2-Phenylguanine
3
IC50
HSV-1
Rl
R2
R3
3
Η
Η
Η
8
4 5 6
Me n-Bu
Η
Η
50
Η
Η
50
Et
Η
3
7
Br
Η
Η
1
8 9
Η
Cl
Η
1.3
Η
Η
Compound
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
[μΜ]
Η
2-deoxy-fi-Dribofuranosyl
0.3
shown (A3.) t h a t 5 - t r i f l u o r o t h y m i d i n e i s a s u b s t r a t e f o r b o t h v i r a l and host cell TK, and a l s o t h a t 5·'-amino-5 -deoxythymidine s e l e c t i v e l y i n h i b i t s i t s p h o s p h o r y l a t i o n by t h e c e l l u l a r r a t h e r t h a n t h e v i r a l enzyme, so i t i s p o s s i b l e t h a t c l o s e l y related a n a l o g u e s may s e l e c t i v e l y i n h i b i t t h e v i r a l enzyme. 1
Product
A n a l o g u e s as I n h i b i t o r s
D e r i v a t i v e s of 2'-Deoxy-5-iodouridine. I n an attempt t o improve the a n t i v i r a l e f f i c a c y o f 5 ' - a m i n o - 2 ' , 5 - d i d e o x y - 5 - i o d o u r i d i n e a s e r i e s o f N - a c y l d e r i v a t i v e s was p r e p a r e d as p o t e n t i a l prodrugs (AiL) . W h i l s t none o f t h e compounds showed a n t i v i r a l a c t i v i t y i n t i s s u e c u l t u r e , some were f o u n d t o be i n h i b i t o r s o f H S V - 1 TK ( T a b l e II) . R e c e n t l y , a d d i t i o n a l d a t a have b e e n r e p o r t e d (5SL) w h i c h i n c l u d e a c t i v i t y a g a i n s t t h e t y p e 2 enzyme. 1
A l l o f t h e compounds shown i n T a b l e I I were more a c t i v e a g a i n s t H S V - 2 TK t h a n a g a i n s t t h e t y p e 1 enzyme w h i c h may be a p r o p e r t y o f t h e 5 - i o d o s u b s t i t u e n t as was o b s e r v e d w i t h t h e p a r e n t 5'-amino n u c l e o s i d e . I n h i b i t o r y a c t i v i t y against both viral enzymes a p p e a r e d t o c o r r e l a t e r e a s o n a b l y w e l l w i t h c h a n g e s i n l i p o p h i l i c i t y a r i s i n g from m o d i f i c a t i o n s i n t h e 5 ' - s u b s t i t u e n t . The most a c t i v e compound i n t h e s e r i e s , 14, c o n t a i n e d t h e v a l e r y l s i d e c h a i n and was a p p r o x i m a t e l y twenty t i m e s more a c t i v e a g a i n s t t h e t y p e 2 enzyme. Interestingly, the separation i n a c t i v i t y between t h e two v i r a l enzymes i n c r e a s e d w i t h i n c r e a s i n g o v e r a l l potency of these i n h i b i t o r s . The m e t h a n e s u l p h o n a m i d e 16 was a p p r o x i m a t e l y t w i c e as a c t i v e as t h e c o r r e s p o n d i n g a c e t a m i d e 10 a g a i n s t H S V - 2 TK b u t from t h i s s i n g l e example i t i s i m p o s s i b l e t o p r e d i c t whether s u l p h o n a m i d e s a r e i n g e n e r a l more p o t e n t t h a n t h e c o r r e s p o n d i n g amides. In a l l c a s e s a c y l a t i o n o f t h e 3 - h y d r o x y 1 1
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T AJL
107
Inhibitors of Herpes Simplex Virus
f u n c t i o n markedly reduced potency. None o f t h e amides i n T a b l e I I showed a n t i v i r a l a c t i v i t y i n c e l l c u l t u r e and t h e s e compounds were i n a c t i v e a g a i n s t an HSV-1 i n f e c t i o n i n vivo· Table
II.
I n h i b i t i o n o f Thymidine K i n a s e by N - A c y l D e r i v a t i v e s 5'-Amino-2 ,5 -dideoxy-5-iodouridine
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
1
of
1
HO
IC50
Compound
HSV-1
10 11 12 13 14 15 16
[μΜ]
R HSV-2
CH3CO
>200
78
C2H5CO
159
21
(CH3)2CHCO
55
7
(CH3)2CHCH2CO
68
8
CH3(CH2)3CO
38
2
PhCO
85 >200
16 35
CH3SO2
The 5 ' - a z i d o d e r i v a t i v e 17 has been r e p o r t e d (4_&) t o be an i n h i b i t o r o f HSV-1 TK ( I C 5 0 280 μ Μ ) . A l t h o u g h 17 was a n t i v i r a l i n v i v o i t was n o t a c t i v e i n c e l l c u l t u r e . Mechanism o f a c t i o n s t u d i e s have n o t been r e p o r t e d , and so t h e r e i s no e v i d e n c e t o a s s o c i a t e t h e o b s e r v e d a n t i v i r a l a c t i v i t y w i t h i n h i b i t i o n o f TK.
HO 17
D e r i v a t i v e s of Thymidine. S'-amino-S'-deoxythymidine
A s e r i e s of sulphonamide d e r i v a t i v e s of ( T a b l e I I I ) have been shown t o i n h i b i t
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
108
NUCLEOTIDE ANALOGUES
HSV TK (5JL) a n d have b e e n compared described i n the previous section. Table I I I .
t h e amide
derivatives
I n h i b i t i o n o f Thymidine K i n a s e by Sulphonamide D e r i v a t i v e s of 5 -amino-5 -deoxythymidine 1
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
with
1
HO
IC50
Compound
HSV-1
18 19 20 21 22 23 24
[μΜ]
R HSV-2
P-CH3C6H4SO2
>200
88
P-CH3OC6H4SO2
>200
116
P-NO2C6H4SO2
127
21
p-BrCgH4S02
171
13
CF3SO2
>200
>200
P-HOSO2C6H4SO2
>200
>200
HOS02(CH2)3S02
>200
>200
In common w i t h amide d e r i v a t i v e s ( T a b l e I I ) a l l o f t h e a c t i v e s u l p h o n a m i d e s were s i g n i f i c a n t l y more p o t e n t a g a i n s t t h e t y p e - 2 enzyme. In the case of the benzenesulphonamides an e l e c t r o n - w i t h d r a w i n g group i n t h e benzene r i n g m a r k e d l y enhanced t h e potency, p a r t i c u l a r l y against t h e t y p e - 2 enzyme. Compounds c o n t a i n i n g an a c i d i c m o i e t y i n t h e 5 ' - s i d e c h a i n were t o t a l l y i n a c t i v e a g a i n s t b o t h enzymes. An e v a l u a t i o n o f t h e a n t i v i r a l e f f i c a c y o f t h e s e compounds has n o t been r e p o r t e d .
1
I t i s p o s s i b l e t h a t 5 - e t h y n y l t h y m i d i n e 26 (ILL) was d e v e l o p e d f r o m t h e i n h i b i t o r s 17 and 25 (4_£) , and i t i s n o t e w o r t h y t h a t 2 6 has a t o t a l l y d i f f e r e n t s p e c t r u m o f a c t i v i t y compared w i t h t h e
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
109
Inhibitors of Herpes Simplex Virus
MARTIN E T AL.
i n h i b i t o r s d e s c r i b e d t h u s f a r , b e i n g more p o t e n t a g a i n s t t h e t y p e 1 ( K i 0.09 μΜ) t h a n t h e t y p e 2 enzyme ( K i 0.38 μΜ) . S i n c e 26 d i d n o t i n h i b i t human c y t o s o l i c TK, i t must a l s o be s e e n as h i g h l y s e l e c t i v e f o r t h e v i r a l enzymes. I t was n o t c y t o t o x i c i n c e l l c u l t u r e and d i d not i n h i b i t h o s t c e l l u l a r DNA s y n t h e s i s . Thymidine kinases with altered substrate specificity isolated from bromovinyldeoxyuridine (BVDU) and a c y c l o v i r - r e s i s t a n t v i r u s s t r a i n s were a l s o i n h i b i t e d by t h i s compound. Mechanism o f a c t i o n s t u d i e s i n c e l l c u l t u r e showed t h a t t h e p o o l s i z e o f t h y m i d i n e t r i p h o s p h a t e was r e d u c e d but not t h e c o r r e s p o n d i n g p o o l s o f t r i p h o s p h a t e s d e r i v e d f r o m a d e n o s i n e , g u a n o s i n e and c y t o s i n e r e s p e c t i v e l y . As e x p e c t e d c o m p o u n d 26 was not a n t i v i r a l i n v i t r o . i n agreement w i t h the o b s e r v a t i o n t h a t v i r a l TK i s not e s s e n t i a l f o r HSV r e p l i c a t i o n i n c e l l culture. However, 26 d i d r e v e r s e t h e a n t i v i r a l e f f e c t o f a c y c l o v i r , DHPG, FIAC, BVDU and 5 - a m i n o - 5 ' - d e o x y t h y m i d i n e , a l l o f which r e q u i r e an i n i t i a l p h o s p h o r y l a t i o n by v i r a l TK f o r e x p r e s s i o n of a c t i v i t y . The e v a l u a t i o n o f 26 i n v i v o has not been r e p o r t e d so f a r .
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
1
1
D e r i v a t i v e s of 2 -Deoxy-5-ethyluridine. A r a t i o n a l approach t o the d e s i g n o f p o t e n t and s e l e c t i v e i n h i b i t o r s o f HSV TK has been d e s c r i b e d r e c e n t l y (52-56). The d i s s o c i a t i o n c o n s t a n t s o f a s e r i e s o f 5 - s u b s t i t u t e d u r i d i n e a n a l o g u e s a g a i n s t HSV and c e l l u l a r TK (ϋ2) were examined (Table IV) i n o r d e r t o i d e n t i f y t h e n u c l e o s i d e m o i e t y most l i k e l y t o c o n f e r s e l e c t i v i t y f o r t h e v i r a l enzyme. Table
IV.
D i s s o c i a t i o n Constants
of Nucleoside D e r i v a t i v e s
D i s s o c i a t i o n Constant Compound
R
Viral HSV-1
27 28
I CF
29 30 31
TK HSV-2
[μΜ]
Cellular Cytosol 7.4 4.2
TK
Mitochondria 8 2 30
0 6 0 4
0 3 0 5
C2H5 n-C3H
0 7
0 3
82
30
0 6
0 7
21
18
n-C4H9
1 6
4 0
100
40
32
CH=CH2
0 5
0 5
35
33
CH=CHBr
0 4
3 0
3
7
>100
1 7 0 9
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
N U C L E O T I D E ANALOGUES
110
The h i g h a f f i n i t y o f i d o x u r i d i n e 27 and t r i f l u o r o t h y m i d i n e 28 f o r t h e c e l l u l a r c y t o s o l i c enzyme a n d t h e s t r o n g a f f i n i t y o f vinyldeoxyuridine 32 a n d b r o m o v i n y l d e o x y u r i d i n e 33 f o r t h e m i t o c h o n d r i a l enzyme was i n d i c a t i v e o f p o o r s e l e c t i v i t y . The e t h y l , p r o p y l a n d b u t y l d e r i v a t i v e s , 2 9 , 30 and 31 r e s p e c t i v e l y , were more s e l e c t i v e f o r t h e v i r a l enzymes and i t was r e a s o n e d t h a t i n h i b i t o r s b a s e d on 29 c o u l d be e x p e c t e d t o show t h e h i g h e s t p o t e n c y and s e l e c t i v i t y f o r HSV TK.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
T a b l e V.
Product
Analogues
HO
IC50
Compound
[μΜ]
R HSV-1
HSV-2 40
34 35 36 37
i-PrOP(0)(OH)O MeP(0)(0H)0 PhP(O) (0H)0 MeS020
208 320 72.6 8.1
38
p-MeC6H4S020
12.7
4.1
39
MeS02NH
6.0
7.5
40
PhS02NH
15.2
4.6
41 42 43
MeCONH PhCONH PhCH2C0NH
15.8 3.1 1.0
4.7 3.2 0.3
44
Ph0CH2C0NH
0.7
0.3
-
20.3 4.8
Having i d e n t i f i e d 29 as t h e p r e f e r r e d n u c l e o s i d e m o i e t y , d e r i v a t i v e s c o n t a i n i n g f u n c t i o n a l groups i s o s t e r i c and i s o e l e c t r o n i c w i t h t h e p h o s p h a t e r e s i d u e were p r e p a r e d ( T a b l e V) . The p h o s p h a t e 34 and p h o s p h o n a t e s 35 and 36 were r a t h e r p o o r i n h i b i t o r s , whereas several other s t r u c t u r a l classes showed s i g n i f i c a n t l y better inhibition o f b o t h t h e HSV-1 a n d HSV-2 enzyme. In g e n e r a l , s u l p h o n a t e s and s u l p h o n a m i d e s were more p o t e n t a g a i n s t t h e t y p e 2 t h a n t h e t y p e 1 enzyme, w h i l e t h e benzamide 42 was i d e n t i f i e d as a p o t e n t i n h i b i t o r o f b o t h enzymes w i t h scope f o r e a s y m a n i p u l a t i o n t o a f f o r d a n a l o g u e s w i t h enhanced p o t e n c y . I t was n o t e d d u r i n g t h e s e s t u d i e s t h a t h o m o l o g a t i o n o f t h e benzamide 42 i n c r e a s e d p o t e n c y , suggesting the presence of a hydrophobic i n t e r a c t i o n i n the v i c i n i t y of the i n h i b i t o r b i n d i n g s i t e . I n t h i s s e r i e s 43 and 44 w e r e i d e n t i f i e d as good i n h i b i t o r s , e s p e c i a l l y a g a i n s t t h e t y p e 2 enzyme.
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN ET A K
111
Inhibitors of Herpes Simplex Virus
H a v i n g o p t i m i s e d t h e l e n g t h o f t h e l i n k a g e between t h e a r y l r e s i d u e and t h e n u c l e o s i d e r e s i d u e i n 4 3 , additional analogues were p r e p a r e d t h a t c o n t a i n e d s p a c e r groups t h a t were i s o s t e r i c w i t h t h e acetamide moiety. Whereas c a r b a m a t e (OCONH NHCOO) and u r e a (NHCONH) d e r i v a t i v e s were l e s s a c t i v e , amine ( C H 2 C H 2 N H ) , ketone ( C H 2 C O C H 2 ) and a l k a n e ( C H 2 C H 2 C H 2 ) a n a l o g u e s had s i m i l a r p o t e n c y t o the amide 4 3 , s u g g e s t i n g t h a t t h e s p a c e r group i s n o t i n v o l v e d i n i n t e r a c t i o n s w i t h t h e enzyme b u t s e r v e s o n l y t o l o c a t e t h e a r y l r e s i d u e i n t h e optimum p o s i t i o n .
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
f
A number o f a n a l o g u e s o f t h e p h e n y l a c e t a m i d e 43 w h i c h were s u b s t i t u t e d e i t h e r i n t h e p h e n y l r i n g , o r on t h e α - c a r b o n atom were prepared. I t was f o u n d t h a t a medium s i z e d s u b s t i t u e n t i n t h e o r t h o p o s i t i o n o f t h e p h e n y l r i n g i n c r e a s e d p o t e n c y by as much as t e n - f o l d , as d i d a m e t h y l o r e t h y l g r o u p on t h e α - c a r b o n . In c o n t r a s t , s u b s t i t u t i o n on t h e α - c a r b o n w i t h p o l a r g r o u p s s u c h as h y d r o x y l o r amino l e d t o d e c r e a s e d a c t i v i t y . When t h e s e s t u d i e s were e x t e n d e d t o p o l y - s u b s t i t u t e d d e r i v a t i v e s i t was f o u n d t h a t 2, β - d i s u b s t i t u t e d analogues were particularly active, the 2 , 6 - d i c h l o r o and 2 , 6 - d i m e t h y l d e r i v a t i v e s , 45 and 4 6 , had IC50 v a l u e s o f 0.003 μΜ and 0.008 μΜ r e s p e c t i v e l y a g a i n s t t h e t y p e 2 enzyme. As had been o b s e r v e d w i t h t h e p h e n y l a c e t a m i d e 43 t h e c o r r e s p o n d i n g amine, k e t o n e and a l k a n e d e r i v a t i v e s a l s o showed enhanced p o t e n c y when 2 , 6 - d i c h l o r o o r 2 , 6 - d i m e t h y l s u b s t i t u t i o n was i n t r o d u c e d i n t o the phenyl r i n g . I n f a c t , compound 47 i s one o f the most p o t e n t i n h i b i t o r s o f HSV-2 TK known, w i t h an I C 5 0 o f 0.0024 μΜ.
A similar series of substituted analogues of the phenoxyacetamide 44 was also studied. As i n t h e c a s e o f p h e n y l a c e t a m i d e s , s u b s t i t u t i o n i n t h e s i d e c h a i n by an a l k y l group gave an i n c r e a s e i n p o t e n c y o f a l m o s t t w e n t y - f o l d . I n c o n t r a s t t o the p h e n y l a c e t a m i d e s , however, o p t i m a l a c t i v i t y was o b s e r v e d w i t h a 2 , 4 - d i s u b s t i t u t e d phenyl residue.
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
112
NUCLEOTIDE ANALOGUES
Replacement o f t h e e t h e r l i n k a g e by a s u l p h i d e , s u l p h o x i d e , s u l p h o n e o r m e t h y l e n e group gave analogues with s i g n i f i c a n t l y reduced activity. One o f t h e more p o t e n t compounds i n t h e p h e n o x y a c e t a m i d e s e r i e s was 48 w i t h an I C 5 0 o f 0.004 μΜ a g a i n s t t h e t y p e 2 enzyme. The p o t e n t i n h i b i t o r s 4 5 , 47 and 48 were e v a l u a t e d a g a i n s t c y t o p l a s m i c TK d e r i v e d from two mammalian c e l l l i n e s ( T a b l e V I ) , and a h i g h d e g r e e o f s e l e c t i v i t y f o r t h e v i r a l enzyme was o b s e r v e d i n each c a s e . Table VI.
I n h i b i t i o n of V i r a l
IC
5 0
and C e l l u l a r Thymidine
[μΜ] Selectivity
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
Compound
45 47 48
Kinase
HSV-2
Hela
Vero
0.003 0.0024 0.004
>200 >200 >200
>200 >200 >200
>60,000 >83,000 >54,000
A s t u d y o f t h e k i n e t i c s o f i n h i b i t i o n o f HSV-2 TK by t h e amide 48 showed i t t o be c o m p e t i t i v e w i t h r e s p e c t t o t h y m i d i n e , a n d n o n - c o m p e t i t i v e w i t h r e s p e c t t o ATP. I t was c o n c l u d e d t h a t t h i s compound l o c a t e d , as e x p e c t e d , a t t h e t h y m i d i n e b i n d i n g s i t e o f t h e enzyme, and that the additional binding a f f o r d e d by t h e 2,4-dichlorophenoxypropionamide r e s i d u e , which c o n t r i b u t e d t o t h e marked p o t e n c y o f t h i s i n h i b i t o r , d i d n o t i n v o l v e t h e ATP b i n d i n g site. As e x p e c t e d , none o f t h e s e p o t e n t i n h i b i t o r s showed a n t i v i r a l a c t i v i t y i n t i s s u e c u l t u r e , b u t compound 48 d i d show a m a r k e d antagonism of the a n t i v i r a l a c t i v i t y of a c y c l o v i r i n a plaque reduction assay, which p r o b a b l y resulted from i n h i b i t i o n of i n t r a c e l l u l a r v i r a l TK. Thymidine, a t t h e same c o n c e n t r a t i o n , e x h i b i t e d a s i m i l a r antagonism o f t h e a n t i v i r a l e f f e c t o f a c y c l o v i r . Compound 48 d i d p r o d u c e a p r o t e c t i v e e f f e c t i n mice i n f e c t e d w i t h HSV-2, b u t t h e e f f e c t was v a r i a b l e and p a r t i c u l a r l y s e n s i t i v e t o t h e s t r a i n o f mouse, s i z e o f v i r u s inoculum, formulation of test compound a n d r o u t e o f a d m i n i s t r a t i o n . This i n v i v o antiviral a c t i v i t y has not as y e t been c o n c l u s i v e l y a s c r i b e d t o i n h i b i t i o n o f v i r a l TK. Conclusions I t i s e v i d e n t from d a t a p r e s e n t e d i n t h i s r e v i e w t h a t a number o f r e s e a r c h groups have p r e p a r e d p o t e n t and s e l e c t i v e i n h i b i t o r s o f HSV TK. Thus f a r , i n h i b i t o r s have been d e s i g n e d a n d d e v e l o p e d from e i t h e r s u b s t r a t e o r product analogues but a l t e r n a t i v e approaches could i n v o l v e metal c h e l a t i o n , a l l o s t e r i c i n h i b i t i o n o r b i s u b s t r a t e mechanisms. Indeed, the b i s u b s t r a t e approach (58 59) has b e e n successful i n the design of i n h i b i t o r s of b a c t e r i a l (£_Q_) a n d mammalian d e o x y n u c l e o s i d e k i n a s e s (61-63) . I n h i b i t o r s o f HSV TK t h a t a r e a v a i l a b l e now may p r o v e t o be u s e f u l b i o c h e m i c a l t o o l s t o probe t h e s t r u c t u r e and f u n c t i o n o f t h e a c t i v e s i t e o f t h e v i r a l enzymes. Improved knowledge o f t h e enzyme a c t i v e s i t e t h r o u g h r
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T A K
Inhibitors of Herpes Simplex Virus
113
f u r t h e r b i o c h e m i s t r y and m o l e c u l a r b i o l o g y s h o u l d p r o v i d e a b e t t e r understanding of the molecular i n t e r a c t i o n s t h a t occur with both s u b s t r a t e s and i n h i b i t o r s . Meanwhile, t h e c u r r e n t g e n e r a t i o n o f i n h i b i t o r s may p r o v i d e a means o f s t u d y i n g t h e r o l e o f TK i n t h e development o f HSV i n f e c t i o n i n a n i m a l models, and may f i n d a p l a c e i n t h e management o f herpes i n f e c t i o n s i n man.
Literature Cited 1.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
23. 24.
Kit, S.; Dubbs, D. R. Biochem. Biophys. Res. Comm. 1963, 11, 55. Klemperer, H. G.; Hayes, G. R.; Shedden, W. J. H.; Watson, D. H. Virology 1967, 31, 120. Cheng, Y.-C. Biochim. Biophys. Acta 1976, 31, 120. Cheng, Y.-C.; Ostrander, M. J. Biol. Chem. 1976, 251, 2605. Dubbs, D. R.; Kit, S. Virology 1964, 22, 493. Field, H. J.; Wildy, P. J. J. Hyg. 1978, 81, 267. Tenser, R. B.; Miller, R. L.; Rapp, F. Science 1979, 205, 915. Stanberry, L. R.; Kit, S.; Myers, M. G. J. Virol. 1985, 55, 322. Gordon, Y.; Gilden, D. H.; Shtram, Y.; Asher, Y.; Tabor, E.; Wellish, M.; Snipper, D.; Hadar, J.; Becker, Y. Arch. Virol. 1983, 76, 39. Field, H. J.; Darby, G. Antimicrob. Agents Chemother. 1980, 17, 209. Tenser, R. B.; Ressel, S.; Dunstan, M. E. Virology 1981, 112, 328. Jamieson, A. T.; Gentry, G. Α.; Subak-Sharpe, J. H. J. Gen. Virol. 1974, 24, 465. Thouless, M. E. J. Gen. Virol. 1972, 17, 307. Cheng, Y.-C.; Dutschman, G.; Fox, J. J.; Watanabe, Κ. Α.; Machida, H. Antimicrob. Agents Chemother. 1981, 20, (3), 420. Kit, S.; Leung, W. C.; Jorgensen, G. N.; Dubbs, D. R. Int. J. Cancer 1974, 14, 598. Thouless, M. E.; Skinner, G. R. B. J. Gen. Virol. 1971, 12, 195. Sim, I. S.; McCullagh, K. G. In Approaches to Antiviral Agents; Michael R. Harnden., Ed.; Macmillan: London, 1985; Chapter 2. Cheng, Y.-C.; In Antiviral Drugs and Interferon: The Molecular Basis of Their Activity; Becker, Y., Ed.; Martinus Nijhoff Publishing: Boston, 1984; Chapter 4. Rohde, W. FEBS Lett. 1977, 82, 118. Baker, B. R.; Neenan, J. P. J. Med. Chem. 1972, 15, 940. Neenan, J. P.; Rohde, W. J. Med. Chem. 1973, 16, 580. Harrap, K. R.; Stringer, M.; Browman, G. P.; Dady, P. J.; Cobley, T. In Advances in Tumour Prevention, Detection and Characterisation; Davis, W., Harrap, K. R., Eds.; Excerpta Medica: Amsterdam, 1978; Vol. 4, p.93. Stringer, M. Ph.D. Thesis, University of London, 1974. Barrie, S. E.; Davies, L. C.; Stock, J. Α.; Harrap, K. R. J. Med. Chem. 1984, 27, 1044.
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
114 25. 26. 27. 28. 29. 30.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.
NUCLE(mDE A N A L O G U E S
Hampton, A.; Kappler, F.; Chawla, R. R. J. Med. Chem. 1979, 22, 1524. Arnold, J. R. P.; Cheng, M. S.; Cullis, P. M.; Lowe, G. J. Biol. Chem. 1986, 261, 1985. Labenz, J.; Müller, W. E. G.; Falke, D. Arcn. Virol. 1984, 81, 205. Marsden, H. S.; Haar, L.; Preston, C. M. J. Virol. 1983, 46, 434. Fyfe, J. Α.; McKee, S. Α.; Keller, P. M. Mol. Pharmacol. 1983, 24, 316. Labenz, J.; Friedrich, D.; Falke, D. Arch. Virol. 1982, 71, 235. Just, I.; Dundaroff, S.; Falke, D.; Wolf, H. U. J. Gen. Virol. 1975, 29, 69. Wagner, M. J.; Sharp, J. Α.; Summers, W. C. Proc. Nat. Acad. Sci. USA 1981, 78, 1441. Swain, Μ. Α.; Galloway, D. A. J. Virol. 1983, 46, 1045. Kit, S.; Kit, M.; Qavi, H.; Trkula, D.; Otsuka, H. Biochem. Biophys. Acta 1983, 741 158. Colbere-Garapin, F.; Chousterman, S.; Horodniceanu, F.; Kourilsky, P.; Garapin, A-C. Proc. Nat. Acad. Sci. USA 1979, 76, 3755. Waldman, A. S.; Haeusslein, E.; Milman, G. J. Biol. Chem. 1983, 258, 11571. Inglis, M. M.; Darby, G. J. Gen. Virol. 1987, 68, 39. Liu, Q. Y.; Summers, W. C. Virology 1988, 163, 638. Cheng, Y.-C. Ann. Ν. Y. Acad. Sci. 1977, 284, 594. Elion, G. B.; Furman, P. Α.; Fyfe, J. Α.; de Miranda, P.; Beauchamps, L.; Schaeffer, H. J. Proc. Nat. Acad. Sci. USA 1977, 74, 5716. Schaeffer, H. J.; Beauchamps, L.; de Miranda, P.; Elion, G. B.; Bauer, D. J.; Collins, P. Nature, London 1978, 272, 583. Fyfe, J. Α.; Keller, P. M.; Furman, P. Α.; Miller, R. L.; Elion, G. B. J. Biol. Chem. 1978, 253, 8721. Beauchamp, L. M.; Dolmatch, B. L.; Schaeffer, H. J.; Collins, P.; Bauer, D. J.; Keller, P. M.; Fyfe, J. A. J. Med. Chem. 1985, 28, 982. Keller, P. M.; Fyfe, J. Α.; Beauchamp, L.; Lubbers, C. M.; Furman, P. Α.; Schaeffer, H. J.; Elion, G. B. Biochem. Pharmacol. 1981, 30, 3071. Focher, F.; Hildebrand, C.; Freese, S.; Ciarrocchi, G.; Noonan, T.; Sangalli, S.; Brown, Ν.; Spadari, S.; Wright, G. J. Med. Chem. 1988, 31, 1496. Focher, F.; Sangalli, S.; Ciarrocchi, G.; Delia Valle, G.; Talarico, D.; Rebuzzini, Α.; Wright, G.; Brown, Ν.; Spadari, S. Biochem. Pharmacol. 1988, 37, 1877. Wigdahl, B. L.; Parkhurst, J. R. Antimicrob. Agents Chemother. 1978, 14, 470. Fischer, P. H.; Murphy, D. G.; Kawahara, R. Mol. Pharmacol. 1983, 24, 90. Markham, A. F.; Newton, C. R.; Porter, R. Α.; Sim, I. S. Antiviral Res. 1982, 2, 319. Sim, I. S.; Picton, C.; Cosstick, R.; Jones, A. S.; Walker, R. T.; Chamiec, A. J. Nucleosides and Nucleotides 1988, 7, 129. Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
M
51. 52.
53.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: August 22, 1989 | doi: 10.1021/bk-1989-0401.ch007
54. 55. 56. 57. 58. 59. 60. 61. 62. 63.
A
R
T
I
N
E T
A
L
Inhibitors ofHerpes Simplex Virus
115
Nutter, L. M.; G r i l l , S. P.; Dutschman, G. E.; Sharma, R. A.; Bobek, M.; Cheng, Y.-C. Antimicrob. Agents Chemother. 1987, 31, 368. Martin, J. Α.; Duncan, I. B.; Hall, M. J.; Lambert, R. W.; Thomas, G. J.; Wong-Kai-In, P. Second International Conference on Antiviral Research. Williamsburg, Virginia, U. S. Α., 10-14 April 1988; Antiviral Res. 1988, 9, 84. Martin, J. A. Second Symposium on Medicinal Chemistry in Eastern England. Hatfield, Hertfordshire, England, 21 April 1988. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 257378. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 256400. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 255894. Cheng, Y.-C. In Antimetabolites in Biochemistry, Biology and Medicine; Skoda, J., Langen, P., Eds.; Pergamon Press: London, 1979, p.263. Wolfenden, R. Accts. Chem. Res. 1972, 5, 10. Lienhard, G. E. Annu. Rep. Med. Chem. 1972, 7, 249. Ikeda, S.; Chakravarty, R.; Ives, D. H. J. Biol. Chem. 1986 261, 15836. Bone, R.; Cheng,Y.-C.;Wolfenden, R. J. Biol. Chem. 1986, 261, 5731. Davies, L. C.; Stock, J. Α.; Barrie, S. E.; Orr, M.; Harrap, K. R. J. Med. Chem. 1988, 31, 1305. Hampton, Α.; Hai, T. T.; Kappler, F.; Chawla, R. R. J. Med. Chem. 1982, 25, 801.
RECEIVED January 4, 1989
Martin; Nucleotide Analogues as Antiviral Agents ACS Symposium Series; American Chemical Society: Washington, DC, 1989.