INDUSTRIAL AND ENGINEERING CHEMISTRY
Vol. 33, No. 2
FIGERE 5. COMPARISON However, this difference, if it is real, is only very slight. It is conceivable that factors such as pyrolysis or phase cause the effect observed in Figure 5 . Hence, the following generalization is tentatively advanced : I n high pressurehigh temperature chlorination of normal paraffin hydrocar280 bons, the relative rates of primary substitution increase with IKCH PRESSURE the length of the carbon chain. For example, in the chlorination of n-pentane and n-heptane a t 1000 pounds per square 260 inch pressure and 180" C., the relative chlorination rates were found to be 2.9 and 2.4, respectively. Since this m a temperature is below the critical one for both n-pentane and C j 240 n-heptane, the difference in relative chlorination rate appolated portion of the parently must be attributed t o an inherent difference in the 56 liquid-phase line; they two hydrocarbons. indicate that in these 220 Such differences in relative reaction rate can be accounted E e x p e r i m e n t s (which f for by differences in activation energy of the order of a few were above the critical hundred small calories. Such small differences are possible, temperature for both 200 -* but the present state of kinetics is not sufficiently refined to reactants but below the predict them. As the chain becomes longer, a steric repulcritical temperature of sion or screening of the secondary hydrogen atoms by other the solvent) chlorina180 parts of the chain may occur, which would inhence the end tion may have occurred methyl groups only slightly and would render the secondary a t the effective concenhydrogen atoms less available for collision with chlorine tration of the liquid I60 atoms; this would account for the observed differences in phase. the relative chlorination rates. Such an effect would probThese data lend supably be operative t o a greater extent in chains longer than five port to the hypothesis 140 carbon atoms, for in such cases the chains can double back W that differences in the in the form of a coil or some similar configuration. relative c h l o r i n a t i o n rates in liquid-phase Literature Cited and vapor-phase chlo- (1) Hass, MoBee, and Hatch, IND. Eaa. CHEM.,29,1335 (1937). rination a t a given temperature are due essentially t o concen(2) Hass, McBee, and Weber, Ibid., 28, 333 (1936). tration. PRESENTED as part of t h e paper on Recent Progress in Chlorination, 1937By a careful analysis of the reaction products formed when 1940 (see page 137 of this issue). This paper contains material abstracted chlorination is effected a t 1000 pounds per square inch and from a thesis submitted by J. A. Pianfetti t o the faoulty of Purdue Univera t elevated temperatures, i t was found that the relative sity in partial fulfillment of the requirements for the degree of doctor of chlorination rates vary with the length of the carbon chain. philosophy, 1941. 300-
.Propane n-Pentan on-Hepten
:
0
Y
OF RELATIVE CHLORINATION RATEOF HYDROGEN ATOMSIN PROPANE, 72-PENTANE, AND nH E P T A N EA T 1 0 0 0 POENDSPER SQUARE
!
I,
DESTRUCTIVE DISTILLATION OF MAPLE WOOD DONALD F. OTHMER AND W. FRED SCHURIG' Polytechnic Institute, Brooklyn, N. Y.
ARDWOOD, of which maple is a typical example, is an
H
agglomerate of highly complex carbohydrates and other molecular structures; and the action of heat upon it in the absence of oxygen results in a series of chemical reactions. This heat treatment and progressive thermal decomposition cause additional heat to be liberated upon the successive destruction of the various molecular structures. The exothermic reactions do not proceed for any great length of time, and the evolution of volatile products soon subsides unless the heating is continued. The temperature a t which each individual exothermic reaction starts is hard to define; but each particular reaction product is mainly formed during some definite temperature range. The aim of the commercial process is to obtain the greatest value of salable products a t minimum cost. To some extent these yields can be controlled by variation of the temperature of distillation and of the moisture content or seasoning time I
Present address, College of the City of New York, New York City.
'of the wood. While information on all of these variables is desired, the time of seasoning is particularly important. Usual practice requires the harvesting of wood a t least a year before its use. This entails high inventory costs, losses due to rotting, fire and theft in the woods, and sometimes additional handling costs. Predryers may eliminate these disadvantages t o some extent, but many plants are not so equipped. The temperature of destructive distillation influences materially the products formed and their quantity. Several stages in the distillation of the wood may be observed. First there is the evaporation of the uncombined moisture from the wood during which operation small amounts of volatile constituents steam distill. The first partial decomposition occurs between 200" and 250" C. (392' and 482" F ) . Next comes the exothermic stage or that part of the distillation in which the lignocelluloses decompose; finally, if the heating is continued, the high-boiling tarry materials are driven off from the charcoal to complete the decomposition, and a "dry" charcoal remains.
February, 1941
INDUSTRIAL AND ENGINEERING CHEMISTRY
Few reports are available on the effect of different variables on the carbonization of hardw-ood; and the last ones, with incomplete data, were made some twenty years ago. Numerous variables are involved in the unit process of destructive distillation as applied to hardwoods; and some of them have been studied in their relation to the carbonization of maple cordwood about 17 inches long. A series of runs was made to study the effect of time and temperature (taken at a half-dozen dwerent points throughout the heating assembly), the moisture content of the wood, the age of the wood after cutting, the season of the year when the wood was cut, etc. The retort used was a vertical cylinder with the wood standing on ends. The products obtained were determined: the charcoal as the residue; the acetic acid, methanol, tar, amount and composition of the wood gas at different times during the runs. Curves show the variation of the volatile products with time and temperature of firing. Larger amounts of acetic acid and methanol and lower amounts of charcoal were obtained in this retort and with the method of firing used than are usual in industrial practice; therefore it may be possible to increase the volatile products at the expense of the charcoal in a properly designed plant and properly conducted operation. Runs were so made (including one on cotton cellulose) that some conclusions as to the nature of the decomposition and the parts of the wood the various products came from could be drawn.
The rate of application of heat controls the transition from one stage to another and influences the final products. With the exception of the exothermic stage, all are easily controlled. If the heating is unchecked as the main reaction begins, the decomposition will proceed rapidly and sometimes with almost explosive violence; the sudden liberation of heat causes an exceedingly rapid rise in temperature. If, on the other hand, the external heating is diminished as the exothermic stage is approached, the main decomposition will proceed smoothly, the temperature increase will neither be so rapid nor so great, and the time of reaction will be lengthened considerably. Palmer (8)showed that controlled carbonizations give the largest yields of methanol and acetic acid. He defined “control” as the making of the largest possible part of the distillation take place at the minimum possible temperature, the rate of rise of temperature being a minimum during the critical exothermic stage. I n an uncontrolled distillation, the yields of charcoal, acetic acid, and methanol are lowered but greatly increased yields of wood gas are obtained. The presence of large amounts of water in wood to be distilled affects yields and also dilutes distillates to increase fuel consumption in the refining of methanol and acetic acid. The problem as to whether greenwood or seasoned wood affects the yield of products has not been settled although Palmer and Cloukey (3) experimented with maple, birch, and beech of different ages. Palmer also showed that no appreciable loss in acetic acid or methanol occurs when the wood is not completely carbonized and is then again distilled. Acetic acid, methanol, charcoal, and wood gas are the
189
products of commercial importance, the wood gas because of its use as a fuel under the retorts or boilers. The crude pyroligneous liquor contains in aqueous solution, besides the acetic acid and methanol, other acids and alcohols, ketones, aldehydes, as well as other organic compounds, and a suspension and solution of highly complex tars. Upon standing, the insoluble tars settle and are decanted. The soluble tars are separated by distilling off the volatile aqueous solution; and with them remain other tars formed during the distillation due to condensation of aldehydes, cresols, and other materials. A small quantity of wood oils usually steam distills over during this step. The thermal decomposition of wood has never been studied on the basis of the decomposition reactions because of their complexity and the complexity of the materials involved, both before and after. Cellulose, lignin, and hemicelluloses (primarily pentosans) give fise to hundreds of products in primary and secondary reactions. Carbonizations made on cotton (4) gave no methanol but acetic acid, tars, small quantities of acetone and gases (carbon monoxide, carbon dioxide, and very small amounts of methane and ethylene). Cellulose samples in less pure form from pine, birch, beech, and spruce were carbonized; and with the exception of the methanol obtained, they showed fairly close agreement with the results on the cotton batting. Somewhat similar studies (5) were made on lignin obtained from pine. An analysis of its gases (carbon dioxide 9.6 per cent, ethylene 7.00, carbon monoxide 50.9, methane 37.5) shows that there must be a considerable quantity of CH2 and CH2-CHe groupings which are easily split off by heat to give the large amount of methane; and the distillate contained 0.9 per cent methanol and 1.087 per cent acetic acid based on the lignin used. Lignin also produces more tar and charcoal than does cellulose and a t the same time produces methanol. The source of acetic acid is somewhat puzzling. It would seem that the sum of the acid obtained from cellulose, hemicellulose, and lignin should equal the acid obtained for the wood from which the above substances were isolated; but the summation of the three values falls lower than that obtained from the wood itself. Either the experimental values are wrong or the destructive distillation of wood as a whole is a different process from that of its individual constituents. As regards gases, lignin produces about five times as much carbon monoxide as carbon dioxide, whereas the celluloses produce about twice as much dioxide as monoxide. Softwoods with a methoxy content of 4-5 per cent, as against 5-6 per cent for the hardwoods, produce only one half to one third the amount of alcohol. All methoxy groups are not identical, and evidently only certain groups are split off. Many are converted to methane; some remain behind in the charcoal and still others are found combined in the tars, creosotes, oils, and pitches. Bunbury (1) states that there is a definite order in which the products form during the exothermic stage, although there is a certain overlapping so that two or more of the products may be forming simultaneously. The total yield of formic acid is obtained when the exothermic reaction is half completed, which indicates that formic acid is one of the first products formed. It is followed by acetic acid and then methanol. Next come the tars, and they come mostly from the lignin which has a slightly higher exothermic temperature than cellulose. The transition point between methanol and tar formation is where temperature control is essential. Unless the external heating is checked, lower yields of methanol
I N D U S T R I A L A N D E N G I N E E R I N G CHEMISTRY
190 A
B C
Retorl Fire Brbck Oven Gas Burner
D E
Clty Gas Meter Condenser F Liquor Receiver G Bubble Cop ti Liquor Trop I Liquor Valve J Wood Gas Meter K GOS Sample Tuba L Pyromeler I- 6 Thermocouples
Vol. 33, No. 2 moved. The specific gravities of these distillates were determined by a Westphal balance, and the percentages of alcohol in the condensate were thus obtained. Small quantities of acetone are present but the error thus introduced is very small and probably consistent. Gas analyses were made in the Elliott apparatus with the regular procedure-absorption of carbon dioxide, oxygen, and carbon monoxide, and explosion of hydrogen and methane. The unsaturates vere removed m-ithbromine,
Experimental Work and Results FIGURE 1.
I n f o r m a t i o n was desired not only on the m e t h o d of f i r i n g b u t also on the optimum seasoning time of the maple wood. Maple is probably the most representative tr7ood for this purpose, and samples taken from one locality (Potter County, Penna.) were utilized. This cordwood was from piles waiting to be used. Samples \\.ere taken in February and were analyzed for moisture. While i t was to be expected that samples gathered from open piles in the winter would be damp, i t is interesting to note the slight difference in moisture content of wood after different times of storage. This mas determined by heating samples for analysis for 15 days a t 70" C. (158' F.) and then 2 days at 95" C. (203' F a ) , and noting the loss of weight. Four 0.25-inch cross sections mere taken from each standard 52-inch billet when it was cut to length for the retort. They were taken about 1 inch and about 18 inches from each end. These cross sections were all dried, and the moisture contents after different seasoning period3 were obtained :
cARBOXlZATION EQUIPMEN r
and acetic acid and higher yields of unTT-anted tar vi11 be obtained.
Apparatus and Procedure The carbonization of maple wood was carried out in the equipment shown in Figure 1: The retort, a cylindrical ta,iik 19 inches high and 15 inches in internal diameter, was fabricated from '/(-inch iron plate and had a 1-inch angle melded as a flange around the top. Three holes were drilled in the cover, equally spaced from the center to the outside, for the insertion of g/s-inch pipes which acted as sheaths for the thermocouples. The thermocouples were packed in the pipes with a cementasbestos mixture and connected through a selective switch to a calibrated pyrometer. Direct connection between the 1l/?-inch iron-pipe-size vapor neck and the condenser was made with flanges to facilitate the removal of the retort. The weight of the ret,ort was carried by three S/.,-inch iron-pipe-size pipes embedded in the base of the circular firebrick oven. The copper condenser had the vapor inside the tubes, as is standard in wood distillation practice, in order t o facilitate cleaning. The outlet passed through the head of the receiver and terminated in a bubble cap in a trap. The overflow of distillate from the trap to the receiver proper was removed by the bottom valve. The condensate in the trap x-ashed the gas free of tarrv matcrials present. The wood gas line passed from the receiver to a standard twenty-light gas meter. A l/r-inch gas sampling tube extended from the receiver. Standard maple cordwood was used as supplied to the industry. It was cut into 17-inch lengths and split into sticks about 2 x 2 inches. They were vertically packed in the retort as close as possible. The cover was sealed with a stiff paste (two parts asbestos fiber, one part portland cement and water), the retort was hoisted into position, and the vapor neck was connected. City ga,s was used for firing and was adjusted to the correct rate of flow by valves and a gas meter. The rate of flow vas predetermined in order to give slow or fast carbonization. To control the speed of carbonization, temperatures were taken every 5 minutes for the first 45 minutes and then at 15minute intervals throughout the distillation. Gas samples were taken after the first 30 minutes and as often thereafter as they could be analyzed. Condensate samples were taken and measured as soon as the trap had filled and then in 16- and 30-minute intervals thereafter until completion of the run. In all cases the condensate was allowed to stand 24 hours to settle the tar before analyzing for acetic acid and methanol by the methods used in plant p k t i c e . The settled liquor was titrated directly for acid, R S acetic, with standard sodium hydroxide, using phenolphthalein as an outside indicator. These t,itrations were not absolute since they evaluated all acids present as acetic and introduced a slight error due to the presence of phenols and aldehydes. Methanol was determined by making 100 cc. of raw settled liquor, strongly alkaline with sodium hydroxide, and distilling off 25 cc. By the time 25 cc. had been distilled, the temperature was always high enough t o assure that all alcohol had been re-
Moisture Content,
%
XIonthR of Seasoning to February
23.4
15
25.2 26.3 25.9
7 3 1
The moisture content of living trees is lower in vinter, and usual practice is to cut as much as possible then. KOadvantage of storing wood other than the loss of moisture by drying has been suggested; and these figures thus show little advantage in using wood seasoned for 15 months as compared with that seasoned only 1 month. The effect of diminishing heat input during the time of the exothermic reaction was also studied to show the differences between controlled and uncoiitrolled carbonizations. Both the temperature of the retort and the rate at which the maximum temperature is allowed to build up are important and were studied in relation to resulting yields of methanol, acetic acid, charcoal, and wood gas. Some charges were incompletely carbonked in an attempt to determine optimum conditions. Figure 2 shows the progress of the distillations, the temperatures, and quantities of materials Produced. These plots are all on the cumulative basis, those for the gases being determined by integrating the values obtained from the gas for and unsaturatesare not shown because they are small in comparison with the others. The temperature of only one thermocouple (number 1 near the
February, 1941
191
INDUSTRIAL AND ENGINEERING CHEMISTRY
bottom of the retort) is shown, although temperatures were always recorded for the o t h e r t h e r m ocouples.
Observations 2
1
2
3
1
4
2
HOURS
FIGURE 2.
PROGRESS OF DISTILLATIONB
Talues per cord (3000 pounds bonedry wood) 1 Gallons pyroligneous acid 2 Pounds acetic acid 3 Pounds methanol 4 Pounds wood gas 6 Pounds carbon dioxide 6 Pounds carbon monoxide 7 Pounds methane 8 Bottom temperature, ' C. (Number 1 thermocouple)
3
6
4
5
6
Table I summarizes many of the data taken and the important relations tobemade. Runl5B exemplifies rapid carbonization, since it passed its exothermic temperat u r e of a b o u t 275" C. (527" F.) in the first 30 minutes. The curves show that the rate of distillation is greatest a t about the 2-hour mark when the maximum yield of products occurs. From this point on, the acetic acid, methanol, carbon dioxide, and carbon monoxide fall off, but the methane and hydrogen (not shown) rapidly increase. Acid and alcohol values are low as compared to all other runs on wood. Slow or controlled carbonizations are best exemplified by runs 3A and 7B. I n these runs an attempt was made to reach theexothermic temperature quickly and then to keep it constant up to maximum yields. I n 7B the temperature was not allowed to go above 400" C. (752" F.) through-
TABLE I. %
ACOH
15 30 45 60
75 90 115 120 150 165 180 210 225 240 270 285 300 330 345 360 390 15
30 45 60
75 90 105 120 150 165 180 210 225 240 270 285 300 330 345 360 390 15 30 45 75 90 105 120 150 165 180 210 225 240 255 270 285 300 330 15 30 60
90 120 150 165 180 210 225 240 270 300 345 360 375 405 435 450 465 495 540 555 585 615 15 30 60
75 90 120 150 180 210 240 270 300 330 345 360 390
122 180 233 260 275 284 287 295 290 290 300 320 340 350 385 387 397 465 480 492 550 75 115 183 224 230 233 245 250 238 260 265 278 314 340 402 430 465 555 585 595 620 95 143 197 252 265
287 317 362 370 408 490 510 537 555 565 575
580 600 62
133 177 238 248 255 265 265 278 284 278 289 265 289 295 305 320 335 356 375 356 492 520 550 562 110 160
278 300 323 250 308 330 305 300 311 323 345 353
...
510
70 105 125 140 152 160 165 185 221 238 252 262 292 314 356 366 372 380 406 425 448 65
105 107 112 117 133 150 162 216 255
311 382 387 385 400 408 430 475 495 505
525 75 100 110 120 133 140 145 160 170 200 238 252 272 300 317 342 370 415 37 78 108 120 133 140 145 145 150 155 163 170 188 216 221 242 272 335 340 340 323 375 415 453 453 105 117 155 174 184 200 245 305 314 311 317
... 345 345
42s
1:i5 1:35 1.57 1.51 1.54 1.54 1.65 2.1 2.1 2.3 2.43 2.43 2.7 2.6 2.6 3.14 3.42 3.42 2.7
.. 1:is 1.78 1.59 1.51 1.57 1.57 1.83 2.71 2.71 3.51 3.47 3.47 3.24 3.14 3.14 3.53 3.65 3.65 3.65
.. .. .... .. .. .. .. .. ..
..
.. .. .... .. .. .. .. i:ie 1.16 1.14 1.07 1.07 1.07 1.25 1.40 1.40 1.45
1.77 2.50 3.34 3.34 4.64 4.44 3.97 3.97 3.96
c02
%
co
%
CHI
...
..
..
..
...
49:i
28:8
ii:g
.. 4j:5 .. 49:2 .. 48: 7 .. 40:3 ..
.. 29:4 ..
3.1
3.1 3.73 4.19 4.88 4.88 5.86 7.29 7.29 8'. 67 10.4 10.4 12.52 12.35 12.35 11.9 11.05 11.05 10.63
..
3i:2
....
..
29:7
..
36:O
..
32:O
.. 29:s .. ..
70
CiH4
... ...
.. ..
2.1
1.116
..
i:3
1i:o
2.4
.. .. .. .. l?:5 .. 20:4 ....
... ...
... ... ... ...
2.5
...
... ... ... 3.4 ... ... 2.9
% H2
.. 6:4
.... i:9 .. ..
.... .... iy6 ..
i:S
5.1
..
..
..
...
.. ..
.. ..
1213
2.2
i:s .. ..
5i:o
28:s
ii:7
... ... ... ...
..
29:3
...
2.4
...
.. ..
...
...
...
...
2.35 2.33 1.84 2.18
2.69
...
16.2
1:s 1.3 1.33 1.47 1.49 1.36 2.48 3.47 3.74 3.72 5.04 4.99 6.28 6.28 6.88
2.46 2.46 3.78 3.67 3.50 4.30 6.77 10.04 10.33 10.33 13.3
16.2
...
...
15.5
16.08 16.08 14.33
...
..
..
3.3
9:1
30:9
14:5
..
3.2
ii:o
2816
16:3
zi:2 25:7
..
..
3:9
..
0.6
3.0
l7:7
i:4
0.4
15:1
3.0
2i:o
i:i
0.6
..
3.4
..
...
...
.. .. ..
... ...
. I
..
..
.. ..
..
..
30:s
14:2
..
..
.... ..
52.5
24:2
5i:i
..
..
... ...
.. .. ..
..
..
14:o
... ...
..
24:3
2.1
3:0
i:9
... 1.7 ...
i:c, ..
... ... ...
....
.. i:4 .. .. .. .. .. ..
0.4
5:s ..
0.6
..
...
2.0
..
1.8
...
26 G
13.8
l?:3 41.8
2.1 2.8
..
.. ..
..
...
..
..
..
.. .... .. ..
.. ..
..
.. *. ..
.. ..
.. .. .. .. ..
..
.. .. ..
.. .. .. .. .. ..
... ...
...
0.5
..
..
..
.. .. i:8 1.8 .. . I
..
... ... ...
2.2 2.0
... 1.8 ...
...
2.8
...
...
192
12.6
.. ..
..
.. .. .. .. .. .. .. .. .. .. .. ..
..
....
..
...
2.3
..
.. .. .. .. .. ..
..
.. .. I
.
.. ..
4.14
... ... ... ... ... ... ...
.. .. .. .. .. ..
...
... ... I
.
.
...
...
... ...
14.1
...
...
...
23.2
... ...
37.8
... ... ... ...
87.4 68.4
...
... .
I
.
3.37
... ...
...
6.24
... ... 7.23 ... ... 21.7 ... ...
18.1
...
...
103:i
42.8
25.8
20.4
...
...
... ... ... ...
... ... ... ... ... ... ...
... ...
...
... ... .... .. 0.3 ... 0.3 .... .. ... 0.5 ...
*. .. ..
... ...
3.5 1.91 2.89 3.44 2.66 1.58 4.63 2.36 2.72 4.47 6.38 12.55 6.02 7.72 20.50 29.4 20.00 10.9 8.95
1.72 0.94 1.79 1.68 1.05 0.62 1.86 0.92 1.05 1.61 2.26 4.35 1.99 2.53 6.90 7.96 4.64 2.55 2.20
20.2 1.92
4.96 0.47
...
...
... ... ... ...
58.7
13.0
80.5
48.7
11.6
93.8
...
52.0
13.6
l7i:O
... ...
97.0
28.6
45.3
14.6
...
... ... 10.8 ... ... ...
.. .. .. ... ...
... ... 41.2 ... 51.8
... ...
.... .. ... ... 7.82 .. .. ..
46:7
13.0
68.7
1i:i
...
... ... ...
Zii'
...
... .. .. .. 75.6 ... 23.1
66.7 68.9
...
90.2
29.8
... ...
0.4
... ... ... 52.2 ... 51.0
0.3
149:5
0.7
72.9
... ... ...
...
...
... ...
...
...
14.2
...
17.8
...
...
... ...
26.1
.. .. ..
3.17 7.0
26.5
... ... ... ...
of Charge, 45 Lb.;
...
0.6
.... .*
92
83.3 ... i:a45 80.2 ... 0.4 ... 1.77 ... 103 1.133 ... R u n 3.4: Age, 3 Months; Weight
... ... 1.1 .. .. ..
*.
3 : i9o 4.47 ...
...
0.4
.. .. .. .. ..
.. ..
...
i:3
2i:o
48:7
..
...
2:s
5i:S
..
.. .. ..
...
2.1
ii:o
5i:2
..
.. .. ..
l2:7
...
2i:1
53:9
..
.. .. ..
0.8
j6:9
50:1
..
.. .. .. ..
..
48.6
0:3s4 0.513 0.904 1.165 2.835
0.6
...
... ...
214
... ...
.. 3:i
...
...
...
0.9
...
...
...
i:2,
...
... ...
.. .. .. 0.3 ... 0.1
...
... ... ...
...
...
I
Cotton: Weight of Charge, 10.0Lb.;
1.1:8
..
... ...
128
3310
.. ..
2 i :i 5
.
66.3 26.1 Weight of Charge, 51.0 Lb.;
...
.. .. ..
..
7:0
..
72.3
... lis:0 ... 117
..
2.7
24:i
25.4
...
..
47:7
86.9
0.3
14:o
30:o
l96:o
..
..
5i :9
...
ii: is
... .
...
...
... ...
8.68
44.3
64.5
...
...
6.12
...
9:4
... ... ... ...
...
... ... 2i:i ... ...
... ... .. .. ..
2.36
iii:5
3.4
36:1
..
...
0.8
... ...
10.0
32.6
83.5
15:o
..
.. ..
...
... ...
204
...
3i:l
4s:2
...
. I .
61.9
0.5
27:0
22.1
...
...
5.1
1.3
..
5.32 12.65 6.95 0.4 6.7 ,.. . . . 17.0 8.83 0.4 12.15 . . . 27.3 12.1 0.5 7.9 ... 1.66 . . . 12.28 3.24 6.58 2.04 0.6 2.44 7.9 6.43 1.38 R u n 1B: Age, 1 Month;
... .*.
2.7
3i:5
..
1.66 1.69 1.60 1.67 3.54 2.00 1.93 4.51 2.06 2.83 5.93 2.55
100
1517
..
5.07
ii:0
0.4
1i:s
..
.. .. ..
...
... 0.34
..
25:0
..
0.4
...
1.72
..
.. .. .. 1i:o ..
2.2
2.9
..
..
0.79 3.94 4.68
...
3:4
..
2i:6
..
... .
... ... ...
...
...
22:6
..
iy2
3.97
... 0.4
2i:2
..
... . ..
... ...
0.4
...
..
..
40:1
2.69
3.04 3.61 3.61 4.02 4.98 7.22 10.1 10.1 13.7 1G,35 17.0 17.0 16.2
31 . %
..
Differential Values per JIeOH, CO, CHa, AcOH, COI 0% Ib. Ib. lb.' ' lb. lb. R u n 1-4: Age, 1 Month; Weight of Charge, 52.5 Lb.;
74
35.2
.. 3i:o .. 28: 0 ..
0:688 .. 0.975 1.37.5 35:5 1.775 .. 2.69 35:9 ... .. 3.38 3.44 3i:~ ... 3.49 32:O ... 3.21 ... 3i:6 2.69 2.35
...
.. ..
.. .. i:g ..
i:0
3.3
46:6
.. 56:O .. 42:6 ..
K2
..
...
...
G/o
0:7
4.05 4.05 4.48 4.85 5.30 5.39 6.77 9.12 9.12 10.9 10.5 10.5 10.22 9.92 9.92 10.17 9.57 9.57 8.88
3:96 3.96
..
%
SUMMARY OF DATA
22.7
... ...
...
... ...
2.94 2.44
... i:is ... 5.63 ...
... ...
16.2
...
6.7 19.9
... ...
51.7 R u n 3B: Age, 3 Months; Weight of Charge, 45.5 Lb.:
... ... ... 0.6 ...
2.1
...
...
...
...
0.2
... ...
14.7
... ... ...
159
liS:2
... ... ... ... ... .. .. .. ... ...
... ... ... ... .... .. ... .... .. ... ... ... ... ... ... ...
TABLE I. SUMMARY OF DATA(Contimed) 3000-Lb.Dry Cord
AoOH, lb. gas, lb. lb. lb. lb. Moisture, 25.9%; Weight of Charooal, 14 Lb.
MeOH, Ib.
3.97
1.72
... ...
...
...
0.73
o:bis
2:37
i:ig
o:i&
... ...
...
2:is
... $:A2 ... ... 7.53 ... ...
7.38
...
... ...
... 0 :283 ... 0 :4i5 ... o:ii2
... 1:625 ... 1.25
... ... ... 3.73 ... ... 2.65 ... 6:iS ... 3:04 ... ...
8.98
...
.... .... .... ....
Cumulative Values per 3000-Lb. Dry Cord Wood Pyrolignegas, ous soid, COa, CO, C2H4, OU. ft. gal. lb. lb. lb.
... ... ...
....
....
...
10.0
2.36
0:+3
ii:4
88.9
... ...
.... .... .... ....
.... ....
... ...
0.018
2.52
0.151
6.10 .... ....
....
...
....
.... .... ....
.... 13i):3 .... iii' .... 3iO' .... 250'. .... 245.1
.... .... 172.4
.... ....
'
285.9
'
481.9
.... .... .... ....
3:io
57.5
o:ih ...
4.55
i0i:k
2.9
0:%9
... ... ...
3.83
l62:i
7.23
0:637
5.57
... ..,
3%"
5.75
2ii:i
...
... ...
... ... ... ... 6.05 ... li:95 ... 2.82
... ... ... 1.03 ... ..,
5.05
... ...
*..
... ...
12.0
2:bO 4.5 Weight of Charooal, 4.5 Lb.
... ... ... o:ii ... ... ... ... 4.24 0.81 ... ... ... 1:i65 5.3 ... ... ... ...
4.4
10.1
3.33
i:S9
2.24
6:O
... 6.87
2136
... ... ... ...
... ... ... ... ... 0:08l ... 0:666 ...
...
...
...
....
....
....
.... .... 390.5 l04:6
.... ....
... ...
177.42
6.81
I52:7l
8.51
... ... ... 7.53 ... 2188
... 3.76 ... 2.45 ...
....
.... ....
616.9
....
733.9
....
....
.... ....
5.3 8.26 13.30 19.05 25.26 31.28 46.53 59.13 73.18 101.08 112.43 124.95 137.17 142.35 148.91 163.42 166.52 168.36 170.07
.... .... ....
0.384 0.897 1.801 2.966 5.801
....
.... 8.991 13.461 .... 17.601
....
20 446
i73:3~ .... ....
318.91
154.09 145.41
22,216 3.38 1.92 lS4:iO 23.349 Moisture, 26.3%; Weight of Charooal, 11.5 Lb. 0.17
... ... ... ...
.... .... .... ....
0.28
14.42
...
2.32
.... 39.43 ....
1.77
...
39.86
0:658
...
2.68
....
66.36
1.49
... ...
0:097
4.21
99.82
5.22
... ...
0:3i4
ii:Oti
344.39
1.66 2.89
o:ii4 0,150
... ... 4.28
11.61
102.55 126.15
...
0.59
... ...
0.67
...
... 1.02 ...
...
...
... ...
...
... ... ...
...
...
....
.... ....
.... .... ....
.... .... ....
....
...
... ... 1.32 ... 1.55 ... 3.84 ... 1.58 ... ... 4.38 ...
... ...
... ... ... ... ... ... ...
4.7 ' Oxygen only.
... ... ...
O.la
0.14a
...
0.04a
...
0.07a
...
.... .... .... .... .... .... .... .... ....
0.05a
...
O.lla
...
0.040
.... ....
99:i
29:3
199:i
.... 67.1 .... ....
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
570
.... .... ....
....
53 58 54.05
...
i:is
3.55 6.22 9.10 12.65 15.43 21.59 30.32 34.45 38.04 45.87 51.54 53.71 54.95 61.72
36.1 126.2 307 ii:i 452 27.7 587 46.7 758 65.8 867 77.7 940 84.7 1,190 102.5 1,310 110.5 1,440 119.0 1,680 133 2,050 148 2,800 169 3,160 176.5 3,700 185.5 4,730 203.6 6,140 225 6,960 239 7,580 247 8,180 254 9,780 11,050 269 12,250 270 12,700
....
....
23:63 3i130
....
8.75 .... .... 9.43 ....
1.861
i3:37
0.879
....
.... .... 2.886 .... 4.136
...
...
.... .... ....
....
....
0.218
16.84
... ... ...
5.80
.... ....
164.5
38.54
212.9
....
56.64
.... ....
19:OS
745:i
316.6
794.3
342.4
.... ....
.... .... .... 172.5 ....
....
9i:O
.... ....
...
0.597
12.18
312.2
13:03
4
17.75
638.2
...
.... .... 2.564 ....
23.50
856.4
99.44
32:03
7.614
35.50
1246.9
119.84
34185
10.114
40.0
1351.5
.... .. ... ...
0.81
.... ....
.... ....
13.0
...
4.4
.... ....
....
....
....
.... ....
.... ....
....
....
....
....
...
1.62
....
2i6:3
....
159.45
....
38.2
13:94
2.78
22.85
443:3
256.45
66.8
24104
.... 606.8 ....
3
....
28:93
.,.. 8.35
25.73 .... 29.49
.... 526.6
342.95
709.8
394:75
.... .... .... .... 37.3 .... .... 63.4 .... .... 109.1
.... ....
iO:i
1ii:b
....
3.17
.... .... ....
10.17
.. .. .. .. 17.99 .... .... 30.99 .... 50.69 ....
.... ....
....
.... ....
...
95.6
33:93
113.4
40:80
.... .... ....
6:i7
....
.*.. .... 2.94 .... .5.38 ... .. .. .. ..
... ... 0.76 .. .. .. 1.43
.. .. ..
9.26
.... ....
1.45
14.89
2.94
.... ....
. . I
... ...
.... ....
....
0.081
.... 6:i47 .... ....
0.235
.... .... .... .... 0.646 .... 0.760 0.332
...
0.910
18 f 4
1.189
.... ....
66.9
.... 117.9 .... 267.4 ....
340.3
.... ....
499.3
....
627.5
.... .... .... ..... ... .... ...
.... ....
....
.... .... ....
.*.. .... ....
.... .... .... .... .... ....
...
0.21
...
...
1.53
... ...
.
I
.
330.1
.... 503.5
.... ....
822.4
....
976.5
.... ....
.... ....
....
9.82 12.71
:
.... .... .
....
37.79 57.69
20i 59
....
....
177.4
....
146:39 172.09
.... .... 109.39
....
....
4i6:i
....
....
.... .... .... .... ....
14.09
8.16
.... .... 638.6
....
....
.... 31.94 ....
31.09
...
....
....
.... 10.71 ....
126.29
....
.... ....
412.8 548.4
.... .... ....
.... 1
8.64
....
....
8.35
....
.... .... ....
24.6
....
.... 57.5 ..... ... .160.0 ...
.... ....
3.80
.... .... 15.32 ....
107.45
.. .. .. .. .. .. .. .. 764.2 .... ....
444.2
12&:3
2.90
....
....
270.2
1014.2
.... 9:61 ....
....
.... 42.5 .... .... .... 139.9 ....
49.15
.... ....
....
....
22.35
.... ....
14.7
193
... ... 8.72 ... l6:25 ...
.... ..
.... ....
3.37
5.10
.... .... 0.434 .... ....
.... .... ....
0.062
....
394 583 986 1,395 1,890 2,230 2,800 3,890 5,340 5,820 6,480 7,700 8,670 9,140 9,370 11,430
.... ....
...
....
2.37
1.06
....
5.41 8.30 11.74 14.40 15.98 20.61 22.97 25.69 30.16 36.54 49.09 55.11 62.83 83.33 112.73 132.73 142.82 151.77 iii:97 173.89
14.1
.... .... 53i:i ....
1,650 2,250 3,150 6.73 3,600 13.07 4,200 20.99 4,800 28.91 5,900 41.76 6,450 47.31 7,050 53.09 9,660 68.69 10,950 76.61 12,000 82.95 13,200 88.50 14,340 93.65 15,360 98.01 16,410 101.56 18,180 107.36
....
.... .... .... 8.48 33:i .... .... .... .... 17.16 66.3 .... .... .... .... 28.71 110.6 .... .... .... .... 54.11 197.5 .... .... .... 79.56 269:i .... 105.66 336:i .... ....
.... .... .... ....
40s:i
... ... ...
....
35.2
....
..... ... 3.50
6.03 0:2?9 28:48 206.49 Moisture. 26.3%: Weight of Charcoal, 12.5 Lb. .. 0.21
+ 02, gas, Wood Ib.
lb.
....
... ... ...
1.84
Na
27.0
0:0i2
... ... ...
Ib.
42.5
26.8 7.67 Moisture, 25.9%; Weight of Charcoal, 12.75 Lb. i:06
H2,
....
.... ....
.... .... .... ....
33.88
.... 0.28
1121.9 1326.6
. 14.4 ...
.... 53.8 .4.37 ... .93.7 ... .... .... .7.05 ~ . . 160 .... .... .... 260 11.26 .... .... .... .... . . . . 604 .... 23.32 .... .... 27.60 707 39.21 833 .... .... .... 67.69 1039. .2.60 ... ..,.
....
.... .... .... .... ....
.... .... .... ....
....
3.08 6.92
...
8.50
.... .... .... ....
...
12:ss li:68
....
....
.. .. .. .. ....
....
.. .. .. .. ....
.... .... .... .. .. .. ..
INDUSTRIAL AND ENGINEERING CHEMISTRY
194
Vol. 33, No. 2
OF DATA(Continued) TABLE I. SUMMARY ~ i ~ ?Temp., , C. % Min. Bottom Middle MeOH
5%
AcOH
%
coz
% co
%
C Ha
%
ClHl
9;
% H2
N?
7" 0 2
AcOH, Ib.
l)ifferential _ _ ~Vulues per COS,
JIeOH, Ib.
Ib.
72: "1,
R u n 7A: Age, 7 Months: W e i g h t of Charge. 50.0Lb.:
90 120 150 180 210 240 270 300 330 343 360
184 300 220 318 356 440 450 400 365 335 478 760 805 655
105 155 195 203 23.5 312 380 380 350 315 335 655 750 670
15 30 45
250 302 210
15
30 GO
2.23 2.23 1.67 1.07 2.04 3. 6 2 4.83 6.5 6.6 6.6 6.6
5.96 5.96 5.96
5.87 5.87 5.25 3.97 6.58 12.8 16.7 13.85 12.8 11.8 11.75 11.2 8.85 8.85
27.8 47.5 58.9 57.0 55.8 54.2 42.6 48.7 46.8
16.4 33.0 29.0 31.6 31.8 35.4 35.8 35.4 33.6
..
.. ..
6:O
16:2 16.4
22:4 25.5
..
4.4
..
..
i:0 4.1 6.8 9.1 4.8 li:6
..
0.6 2.0 1.9 1.6 1.6
1.6 2.4 2.1 2.2
6:2 2.3 0.2 0.3 0.1
...
.. 0 .. ..
0.2 0.2
25:4 52.5
...
...
..
2.8
1.4 4.4 Q:2
.. ..
29:s
2.27 0.85 7.73 18.5 19.9 7.38 8.88 3.03 30.0 10.7 47.7 18.5
0 0 0 0 0 0 0 0 0
i:3 3.8
...
218
..
..
1 .0
..
95.7
99.8 6.63 1.24
60.0
...
0 0
... ... ... ...
.. .. ..
13.2 2.96
...
1.25 0.75
0.31 1.53 2.11
...
13.9 1..
...
...
23.9 10.7 2.64
R u n 7B: Age, 7 Months; Weiglit of Charge, 43 Lb.;
90 120 135 150 180 195 210 225 240 255 285 315 345 360 420 460 530 550
295 247 292 302 284 297 323 332 335 335 317 356 380 387 400 400 402 402
115 160 160 160 180 188 200 213 252 265 287 317 327 332 292 350 327 337 347 347 350 350
15
50 100 95 103 145 177 195 220 295 380 482 375
65 100 108 125 153 190 220 287 385 445 482 390
GO
30 45 60 90 120 150 180 210 240 270 300
260
1:85 1 85 1.18 1.54 2.14
2.07 2.43 4.08 4176
...
4.82 4.82 4.2 4.85 6.45 6.85 76 11.4 ... 15 75
5:83 5.83 5.83 5.83 6.65
15:93
6.63 6.65
14.8 14.6 14.6 14.G 14.6
6.65 6.65 6.65
16 8 17.13 17.4 14 6
...
i:i6
2.43
i:i6 1.03 1.12 1.64 2.62 3.93 3.96 3.86 3.51
2.45 2.88 4.28 5.42 7.85 10.25 9.60 8.65 8.09
...
...
46:2
30:4
ii:o
2.0
4s:7 47.5 56.7
27:8 32.4 30.2
a:3 10.3 7.6
2.3 0.4
49:G
33:l
Q:O
2.1
..
3i'G
..
46:2
3i:7
13'4
52 54.7
35.0 29.8 32.7 26.0
.. i:3 22.4
..
..
57:1
..
55.0
88.1
.. .. ..
.. .. 37:O
..
..
.. 15:2
..
...
1.5
... ... 1.3 ... 1.9 ...
1.6 1.6
2.0
..
2.8
.. ..
...
... ...
...
..
...
..
...
5.2
1.6 .,.
..
6:9
3.5
4.9
6:O
7:7 2.6
1.8
3.3
3.3 ..
..
2:Ff .. ..
i:3
i:5
.. ..
0:8 7.8
....
.. ..
i:7 2.9
,.
..
.. ..
.. ,.
..
..
...
... 0 .. . ... .. .
0 0
. .. ... ... ... ...
...
1% 120 135 160 165 180 15
30 45 60 90 120 150 180 210 240 270 285 300 330 345 30 45 GO 90 120 150 180 210 240 270 300 330 360 390 420 450 465 495
...
330 370 392 410 455 475 520 GO5 650 680
...
75 140 208 240 290 310 345 385 435 475 485 485 480 492 507 221 265 278 295 308 330 356 372 375 372 370 382 402 402 390 385 394 255
...
145 168 215 255 312 365 440 488 560 575
...
75 110
130 152 195 250 298 365 395 420 432 430 439 432 432 117 155 165 183 197 210 224 238 252 265 278 290 308 317 314 323 330 260
l:i 1.2
1.4 1.47 1.86 1.55
2.60 3.21 4.07 3.08
..
...
4. G3
4.63 4.90 5.46 6.2G 7.06 8.21 8.84 8.97 7.43
0.8
i:i3 2.77 2.86 4.03 7.06 15.5 11.4s 4.47 1.36
2i:S
22:s
24:4
..
7:s
..
3.6
12:s
27:9
43:G
3i:2
i:5
3.0
36:G
2i:4
5.6
3i:s
29.3
27:2
30:3
..
..
..
... ... 0.6 ...
2.5
ii:n
0.2
4.2
ii:2
12:G
0.4
...
...
17: 9
11.2
.. ..
..
9:1
i'i
14:7
10:0
0:
S:S
4.1
14:9
13:2
0.5
2i:g 20.9
..
..
16:s ..
16.8
.... ..
1:23
4.25
41.7
26:4
1:23 1.22 1.46 2.72 2.52 3.94
4.2.5
4s:0 45.2 43.0 39.8 36.3 33.4 32.5
3210 31.8 32.0 34.0 33.4 30.6 31.0
i:6 7.2 8.8 12.4 16.5 14.7
29:o
..
25:9
19:7
25:3
23:3
...
3.23
5.76 6.78 9.12 11.2.7 11.37 11.37 10.30
4:i 6 3.49
10:62 0.45
3.54
..
...
..
..
23:8
.. ..
... ...
...
2.4 1.0
...
...
1.6
... 2.2 2.4 2.5 2.6 3.2 3.0 3.3
... 2.45 .. .. .. 2.6
..
0.6
.,
:
1i:i
..
..
29 6 32.0
.. .. ..
2:4
16:2 9.8 8.3
.. 5.0 6.5 4.3 10.2 12.8
5:s
....
35.0
8.3
46: 7
46.5 48.0 48.8 48.6 48.7 49.9 61.2 50.8 49.5 43.8
1G:2 22.1 24.0 26.2 26.7 26.7 26.5 26.8 29.1 31.0 26.1
19:8 16.1 14.6 13.4 12.6 13.7 12.1 11.2 14.3
2.0 2.4 2.1 2.0 2.3 2.2 1.9 2.0 2.1 2.3 2.3
4i:4
28:4
22:s
2.5
0:8
.. .. ..
..
9.95 11.75 12.6 13.1 13.3 13.7 12.9.5 12,96
.. .. ..
.. ....
.. .. .. ..
... .*.
5.7
1i:2
5.76 5.52 5.21 5.30 5.76 6.55 8.0
6.3
..
5.76
7.4
10.4
5:s
1i: 1
2124 2.07 2.01 2.07 2.13 2.56 2.89 3.14 3.86 4.77 5.18 5.16 5.16 5.37 5.23 5.23
...
15.1
.. ..
2.24
...
.
37.7 23.0
3.0 15.25 8.98
0.53 2.65 1.45
32.G
12.5
1.86
... ...
... ...
...
3:38 7.72 11.00 13.3 21.2 40.5 27.7 10.0 3.11
6:3
,..
...
0.7 0.9 0.8
...
Run
15 30 45 60 75
0.477 0.477 1.85 0.54 0.41 0.13
.
5.01
29.3 14.5
1.015
5.3 5.0
17.4 14.7
.
...
...
I
24.6
... ... 135 ... 93 ... 81.5 ...
12.5 7.87 1.56
ii:i
3.4
...
...
34.3 22.0 4.57 3.03 2.1 1.05 4.02 1.30 0.98 0.33
... ...
57.8
... 7.55
...
1i:5
i:7
.
8.05
...
1.67
3i:s
I
26.3
3.54
2i:2
..
0
I .
1.4
2.1 3.4 1.8
...
..
...
...
2.85 6.09 2.2 3.44 2.55 1.48 2.03 10.1
29:s
i:0 8.7 7.6
..
0 0
...
7.42 15.85 7.84 10.7 7.68 4.92 6.3 28.3
l6:3
20:o 20.7 24.9
..
.0.
...
,..
53.2
... 36.3 ...
35.7
11:65
5.36
...
... ... .. . ...
...
...
... ... ...
17.5
...
... ... ...
9.15 ...
... ...
... .
.
I
R u n E A : Age, 5 Months; Weight of Charge, 44.75 Lb.
4i:G 43.6 45.2
..
'0
i):7 3.6 3.5 3.7 7.5
5.8 4.9 4.5 0
..
.. I
.
..
.. ..
s: 1 6.2 4.9 5.3 2.3 2.2 3.0 2.3 2.9
..
4:3
..
... ... 14.6
... ...
...
10.4
2.66
0.51
16.95 24.1
3.90 4.85 7.67
0.77 1.11 1.56
... ... . ..
... . . I
...
.. .. ..
175
83.8
10.4
140 9.9
96
12.3 1.21
...
6.45
...
5s: Age, 15 1Ionths; K e i s h t of Charge, 44 Lb.
...
... ...
1.76 1.24 3.36 4.6 4.01 3.72 5.6 6.71 5.33 1.81
...
6
...
...
0.5 3.0
...
28.2
13.2
6:&7
66.8
33.1 ... 55.5
2.14
...
98.7 ... 143
...
...
93.5 .
103:5
20.7
...
...
.
I
86.7 19.9
...
... ...
7.68
...
15.9
...
24.28.00
...
R u n 15C: Age, 5 M o n t h s ; n'eight of Charge, 48 Lb.
...
... ...
0.9
5.72
0.5 0.4 0.5 0 0 0
8.58 19.3 19.45 27.0 29.8 22.5 18.4 7.93
...
...00 ...
...
0
...
3.97 4.42
..*
... ... 2.49
...
1.6G
i0:OS
... 23.4
4.06
4.08 4.18 8.07 6.67 7.78 5.73 2.49
33.6 40.9 54.0 63.7 55.2 55.5
14.6.5 18 8 27.3 35.8 32,15 33.0
... 9.7
... 25:9 ... ... .39.5 . . 22.6
...
49.3
1.64 1.63
I
...
.
.
... ... ... ... 0.42
1.49 3.78 6.46 8.32 9.57
... ... ...
10.0
11.5
R u n 15D: Age 15 iMonths; Weight of Charge, 44.5Lb.;
2.7
...
0.5 0.4 0 0 0 0 0
0 0
0
...00 ... ... ...
8.35
3.23
9.9
...
2.58 2.57 2.50 2.35 2.82 2.88 3.49 4.38 7.10 6.01
4.44 3.64 3.68 1.06 1.06
1.49
...
4.59 5.50
1.06
'
... ... ...
...
...
...
.. .. ..
68.2
27.1
...
13.2
52.7
23.0
10:i5
...
...
INDUSTRIAL A N D ENGINEERING CHEMISTRY
February, 1941
TABLE I.
SfJMMARY OF D A T A
3000-Lb.Dry Cord, Lb. CSHI, Hz, Nz 02, lb. Ib. lb.
+
Wood gas, Ib.
(CO%ClUded) AcOH, Ib.
RIoisture. 25.2%: Weight of Charcoal. 11.0 Lb. 0.03 3.1 7.88 0.40 o:i4o i3:io 41.4 28.48 0.46 0.070 0.92 29.5 38.98 0.16 12.7 46.23 0.008 0.32 0.54 0.006 0.71 43.5 59.58 0.007 1.59 0.88 70.8 -95.88
... ...
... ...
.... ....
5.00
0:096
6.22
338.9
...
... ... 2.11
...
.... .... 223.2
2.68 0.16 0.03
*..
2.26 0.67
3i:7 12.9 0.16
45.8 7.7
...
... ...
....
2.78
92.17
0.17 0.95 0.38
0.04 0.19 0.07
0.56 2.66 0.83
11.85 59.40 34.68
0.48
0.07
1.21
48.77
0.28
... ... 0.45 ...
... ...
188.48
... ...
*
... ...
0.4
...
i:is ...
1.79
... 0.56 0.39
... ... ...
...
...
... ...
... ... ...
18
. .*.. .... ... ...
... ...
6.0
... ... ...
...
0.34
... ... *.. ... ...
....
.... ....
...
....
7.42 23.27 31.11 41.81 49.49 54.41 60.71 89.01
3s:79
....
149.61 171.61 176.18 179.21 181.31 182.36 186.38 187.88 188.66 189
5i:i9 58.96 60.52 61.53 62.00 62.47 64.32 64.86 65.27 65.4
62.03 37.49
....
41.51 47.74
,. ..
.... .. . . ........
....
....
....
....
....
5.4
19.36
0.40 0.65 0.88
o:iis
4:73 2.16 2.05
24.6 26.0 36.64
11.9 0.96
... ...
...
....
.... ....
2.22
43:i5
323
2.31 0.244
92:+3 7.63
355.2 26.4
...
...
...
...
0:0?3
8.83
0:6i8
if$:&
7:77
1.69
2i:74
12:i
...
10.4 1.61
...
...
... 3.21 ...
5.10 1.98
...
7.5
....
49.95
....
123.02
... 37.1
.... .... 305.4
40:k 13.71
270.8 66.45
...
193.08
....
....
1.67
6.92 14.64 25.64 38.94 60.14 100.64 128.34 138.3 141.4
2.90 5.67 8.53 12.56 19.62 35.12 46.57 51.04 52.4
....
6.77 11.54 23.29 40.39 53.89 70.79 88.44 106.9 117.7 122.0
....
Moisture, 23.4%; Weight of Charcoal, 12.6Lb.
...
0.17
...
0.64 1.05 1.45 2.03 3.09 3.11 3.38
... ... ...
2.93 2.36
... ... ...
...
1.09
... ...
1.2
... ...
... ... 7.88
.... .... .... ....
...
... ...
0.041 0.070 0.083 0.150 0.202 0.177 0.199 0.114
2.46
01057
...
... ... 2.03
o:oiz
...
44:i9 46.42
82.68
...
0:&7
....
.... ....
29.6 31.4 32.6 70.3 44.0 45.4 54.9 67.7 104.9
... ...
ii4:i
... ...
3.48
... 4.15
162.6 167.0
2.58 2.02 1.63 1.59 1.41 0.87 1.16 1.50 2.17 3.68
...
1.66
.... ....
98.2
... ...
...
....
6.02
....
Moisture, 23.4%: W'eight of Charooal. 18.5 Lb. 0.11 ... 8.35
0.48 0.55 0.60 0.58 0.65 0.80 0.80 0.91 1.16 1.88 1.56
...
1.76 3.0 6.36 10.96 14.97 18.69 24.29 31.00 36.33 38.14
8.23 12.41 20.48 27.15 34.93 40.66 43.15
57.68 70.97 95.16 119.7 107.9 108.9
5.52
.... 5.72 ....
...
14.3 33.6 53.05 80.05 109.8 132.3 150.7 158.7
8.18 7.70 10.25 8.63 6.62
... ... ...
...
3.54
Noisture, 23.4%; Weight of Charcoal, 9.0Lb.
1.23
...
2.85 8.94 11.14 14.58 17.13 18.61 20.64 30.74
iib:3i
o:ik 0.271 0.385
2.95 10.82 14.16 16.10 20.24 30.49
. . ..
0.27
... ... 7.77 ...
72,
233,38 237.10 237.52 238.04 243.86 244.95 245.38
Moisture, 23.4%; Weight of Charcoal, 18 Lb.
... ...
Cumulative Values per 3000-Lb.Dry Cord PyroligneMeOH, Wood gae, ous acid, COa, CH4, CzH4 , lb. cu. ft. gal. lb. Ib. lb.
505.88
Moisture, 25.2%0; Weight of Charcoal, 12 Lb.
1.59
....
.... ....
91.7
195
....
11.08 17.98 24.65 31.05 37.41 44.63 52.0 61.41 71.76 89.26 103.8 115.1 124.3 133.4 136 138.5
3.25
...
4.31 6.89 9.46 11.96 14.31 17.13 20.01 23.5 27.88 34.98 41.0 45.43 49.0 52.6 53.7 54.7
72 513 842 978 1,435 2,200 4,770 5,930 6,020 6.020 6;080 9,150 10,250 10.500 392 1,100 1,185 1,240 1,930 2,320 2,450 2,865 4,670 5,110 5,710 6,650 7,400 8,050 8,550 8,790 9,150 9,310 9,940 10,150 10,370 10,400 87 241 372 547 876 1,340 1.910 2,970 5,430 8,050 10,150 10,520 160 570 1,245 2,040 3150 4:575 6,350 8.770 11,430 13,200 14.480 15,350 65 212 417 671 1,308 2,125 3,270 4,740 6,130 7,610 8,660 9,020 9,280 10,150 10,300 248 581 766 1,110 1,478 1,861 2,300 2,820 3,340 3,980 4,760 5,940 6,880 7,630 8,290 9.010 9,220 9.410
15.9 58.7 82.3 104 128 162.5 240 266 270 270
....
276
2?8*'
....
18.4 57.8 80.2 106.7 121 129.5 140 169
. . .. ....
189.5 215.5 231 234 236 237 238 241 242 -243 243
....
2.3 20.77 40.67 49.53 79.53 127,23
13.4 14.3 14.6 15.3 16.9
3.1 44.6 74.0 86.7 130.2 201.0
.... ....
19,85
i:47
...
0.32
23.1
639.9
445.0 451.6 452,9
167.9 178.6 181.2
43 75 54.45 57,09
8.16 8.31 8.98
2.43 4.69 6.36
57.8 70.7 70.8
763.1 808.9 816.6
57.8
.... ....
24.6
... ...
0.4
....
27.6 42.85 51.8
.... 5.01 ....
1.59
65.35 103.05 126.05
.... ....
1.76 2.71 3.09
0.44 0.63 0.7
.... 92.17 ....
158.65
64.3
11.5
3.57
0.77
293.65
ii7:i .... 153.8 .... 189.5 ....
.... 29.0
3.85
...
....
.... ..... ...
.... ....
....
386.65
.... 468.15 .... 497.45 511.96
....
BO:& 80.8 115 151 183 207 225.5 236
.. ..
240 245
....
15.1
....
23.1 37.9 53.4 68.0 81.2 94.5 106.2 119.5 133.5 151 165 176 184 192 194.5 196 5 I
....
....
201.15 206.51
.... .... .... ....
25.0 41.9 66.0
16.2
144:0
.*..
30.0 62.3 93.1 122.5 154.8 202.2 236.8 250.7 255.3
....
....
Wood gas, lb.
0.14 0.21 0.22 0.22 0.23
10.4
17.6 30.0 58.8 96.4 122.3 151 176.9 202 217.8 224.9 226.6
....
4- 0 2 ,
lb.
0.03 0.43 0.89 1.05 1.59 2.47
17.3
.. ..
.... 1.25
Na
2.00 2.31 3.84 5.95
345.23
0.8 8.7 16.1 19.1 29.8 48.3
Hz,lb.
....
....
.... 2.6 ....
6.5 11.4 19.0
....
....
....
.... .
.
.
I
:
5.54 8.19 9.64
....
.... 0.51 .... 1.28 2.39 3.95
....
....
199 205
26.6 27.8
....
193.7
.... 336.7 .... 440 461 .... ....
.... .... 46.3 .... 102 .... 195 .... 282
13.2
....
....
0.34 .... 2.48
....
10.16
....
.... 26.06 .... 50.2 58.8 ....
....
....
302
... 7.42
..
381 391
.... .... 96.0
5:53
.... ...
14.35
28.2
...
7.98 8.37
.... .... ....
102.8
....
...
.... .... 38.15
241
....
... ...
.... ....
...
... ...
.... .... .... ....
. . I .
....
.... I
1.22
. . ...
..
.
I
.
8.04
....
14.04
....
497.4
....
....
....
....
....
....
.... .... ....
5.50 5.75
....
5.4
43.9 70.0 106.6
60.3
429.6
.... .... .... 153
160.7
811.2
45.9
....
173 .... 366
83
671
12.8
...
2.28
2k:b3
.... .... 5.49
35.9 37.5
....
10.6 12.57
.... .... ....
is4: 8
....
0.59
....
.... ....
....
7.5 .... 24.1
....
19.3
12.3 14.4 16.5
0.07
...
....
435.5 534.8
1.23
...
....
246.8
.... ....
3.19
...
104.0 163.4 198.1
576,4 624.1
.
9.97
... 5.06
....
....
.
0.32 0.59 0.98
..*
.
.... ....
14.38
.
0.67 1.32 2.20
...
3.34 6.00 6.83
....
.... .... .. ..
I
19,22
0.125
21.8 22.8
2.78
....
t
0.27
... ...
.... .... .... ....
.... ....
123.8 137.5
....
49.9
.... ....
4
....
942 1008
....
.. ,.
10.0
.... 33.5
4.0 .... 13.7
67.0 107.9 161.9 225.6 280.8 336.3
28.4 47.21 74.5 110.3 142.4 175.4
0.42 1.91 5.69 12.15 20.47 30.04
1.86 3.31 5.34 8.43 11.54 14.92
0.08
0.23 0.58 0.99 1.52 2.40
7.9 16.0 23.7 34.0 42.6 49.26
48.0 105.7 176.6 271.8 391.5 499.4 608.3
385.6
.... .... 425.2
204.3
....
40.04
....
l?:i5
...
3.49
55.3
706.6
227..
di:54
20:21
4:ii
.... .... 60.8
9.9
1.5 .... 6.1
.... .... .... 2.81
.... .... ....
.... .... ....
...
....
....
....
....
....
34.0 52.2 72.0 93.0 117.3 146.1 176.3 233.0 258.6 326 375.8
11.6 17.7 24.7 33.2 43.2 53.6 65.9 81.7 107.8 127.2
5.58 8.02 10.54 13.35 16.29 19.72 23.48 29.72
444
154.3 177.3
.... ....
. . . I
496.7
....
.... ....
0.17
... 0.81
0.11
...
.... ....
....
....
....
.
.
I
.
.... .... 789.2 t
0.59 1.14 1.75 2.32 2.98 3.77 4.57 5.48 6.64 8.52 10.07
0.01 0.05 0.12 0.21 0.35 0.56 0.73 0.93 1.05
2.6 4.6 6.2 7.8 9.2 10.1 11.3 12.7 14.9
46.0 75.7 107.0 139.7 210.0 254.0 299.4 854.3 422 527 603
42.9
12 36
...
1.10
18.6
718
53.4
li:56
1.15
22.1
812
.... ....
.... ....
.... .... .... ....
.. .. .... .... ....
....
.... ....
INDUSTRIAL AND ENGINEERING CHEMISTRY
196
out the run, diereas in 3A the temperature was raised after the 8-hour mark had been reached. Considerable “free water” mas given off in the beginning, but gradually the acid and alcohol content of the liquor increased. The rapid increase of gas rate in 3A when the temperature was increased indicates a secondary reaction. Average carbonizations, or those of 5.5 t o 6.5 hours’ duration, when properly controlled, gave results comparable to the slow carbonizations (note l A , l B , 3B, l5A, 132, 150). They varied somewhat as t o method of firing and for that reason showed deviation in gas production, but acid and alcohol are in good agreement. Both 15A and l5D \\-ere incompletely carbonized, and thus reduced acid, alcohol, and Ti-ood gas values, and a “wet” charcoal resulted. Run 7A (uncontrolled carbonization) was brought up t o its exothermic temperature quickly, and the firing gas cut back t o a point sufficient t o prevent cooling of the retort; but the temperature rose because of the heat of decomposition. At the third hour the temperature was a t a maximum and likeTrise the rate of production of acid, alcohol, and gas. As is to be expected when the reaction nears completion, the temperature drops and the yields fall off. At the 4.5-hour mark the firing gas was increased, and a secondary decomposition resulted which yielded mainly wood gas. Table I1 presents a material balance on the cord basis, which checks for all runs within approximately 7 per cent. This was better than was expected because of the large opportunity for holdup, errors due t o the integration of gas values, and possible inaccuracies of 77-eighing devices and analyses. Such errors are magnified manyfold, of course, when calculated on the cord basis. BALANCE ON THE BASISOF 3000 POTTDS TABLE 11. MATERIAL OF DRYWOOD(ISPOUSDS) R u n No. 1A B 3A B 7A B 15.4 B C
D
Pyroligneous Acid 2050 2090 2250 2280 2320 2026 2125 2020 2040 1640
Gas 1259 1351 1039 843 816 709
811 1008 789 812
Charcoal 1080 1010 1040 1120 880 1120 1676 802 1022 1630
Total 4389 4451 1329 4329 4016 3854 4311 3830 3851 4082
Wood 4080 1050 4080
4080 4010 4010 3920 3920 3920 3920
The density of the wood gases varied from 1.2 t o 0.7 a t the end of all the runs, while the calorific value increased from a minimum of 200 to 600 B. t. u. per cubic foot. From 15 to 20 per cent of the original and the total potential heating value of the wood was evolved in the a-ood gas, as shown in Table 111. The single run on chemically purified cotton of high alphacellulose content was made t o determine, if possible, the constituents coming from the cellulose of the wood. KOmethanol, very low acetic acid, and high gas volunies wodd seem to indicate that the useful volatile constituents come largely from the other main constituent, lignin.
Conclusions EFFECT OF TEMPERATURE. I n all cases the maximum methanol peak exists at the same time as the maximum acid peak. This is contrary t o previous reports (1). I n all cases rate of evolution of acetic acid and methanol is controlled by temperature; increase in temperature gives increase in rate, and vice versa. A high finishing temperature increases niethaiiol and acid yield about 10 per cent, and gives a drier charcoal, a lower charcoal yield, and increased methane and hydrogen yields.
Vol. 33, No. 2
OB WOODGAS TABLE 111. GROSSHEATOF COMBUSTION
Run 1A B 3A B
74
Cu. Ft./Cord 16,450 17,700 12,700 11,430 10,800
AV. A. t. u./Cu. Ft.
Total B. t. u./Cord
236 327
317
3,959,000 5,789,000 4,025,600
257
2,701,000
...
......
Fast carbonizations a t high temperatures give very high rates of evolution of products, low yields of acid and methanol, and high yields of wood gas. A secondary exothermic stage of carbonizations takes place a t about 400” C., a t which point lignocelluloses break down further to give large quantities of methane, hydrogen, and tars, and smaller quantities of carbon monoxide and dioxide, The yields of methanol and acid a t this stage are relatively small. Slow increase in temperature of carbonization up to 400” C. gives a higher yield of methanol and acid, regardless of the time of seasoning before use. The method of carbonization has little or no effect on yields of unsaturates. EFFECTOF AGE. Yields of acid and methanol are about the same, for 1-, 3-, and &month woods. Yields on 7month woods for both slow and fast carbonizations are considerably higher. KO explanation can be given except that the 7-month wood was cut during the summer, when wood was growing most rapidly, while 1-, 3-, and 15-month wood was cut during more or less dormant periods of the yearly cycle of the trees. Younger woods under the same conditions of control gave larger quantities of carbon dioxide, carbon monoxide, methane, hydrogen, and unsaturates than did older woods. Considering cordwood delivered at the mood distiller’s plant a t 5 dollars per cord, steam a t 60 cents per ton, and interest a t 6 per cent, a saving of over 30 cents per cord is effected when 1-month-old wood is utilized. This is shown for wood cut in February, but it would not be expected to be true for wood cut in the summer months and containing a large amount of moisture. GENERAL. The higher than commercial yields of acid and methanol may be due to the design of carbonization equipment as compared to horizontal ovens, and/or the difference in time required due t o smaller charges. A possible conclusion is that a continuous system, designed for small holdup, would be advantageous in securing greater yields due to more rapid carbonization and better control a t optimum methods and rate of firing.
Acknowledgment The authors wish t o express their appreciation to Robert C. Kollman for his help in analyzing the wood gases obtained during this work, and especially t o R . R,. Lyman of the Gray Chemical Company for making available the wood of differrnt known ages.
Literature Cited (1) Bunbury, “Destructive Distillation of Wood”, Kew York, D. Van Nostrand Co., 1923. (2) Palmer, J. IND.ENG.CHEN.,7, 663 (1915). (3) Palmer and Cloukey, Ibid., 10, 262 (1918). (4) Ranisey and Chosley, J . SOC.Chem. Ind., 11, 872 (1892). ( 5 ) 2.angew. Chem., 32, 1, 41 (1919).