Diazo Coupling and

7 hours ago - The first sulfhydryl-directed iridium-catalyzed C–H/diazo coupling and tandem annulation of naphthalene-1-thiols has been developed...
0 downloads 0 Views 919KB Size
Letter Cite This: Org. Lett. XXXX, XXX, XXX−XXX

pubs.acs.org/OrgLett

Sulfhydryl-Directed Iridium-Catalyzed C−H/Diazo Coupling and Tandem Annulation of Naphthalene-1-thiols Kelu Yan,† Yong Kong,‡ Bin Li,† and Baiquan Wang*,†,§ †

Downloaded via NOTTINGHAM TRENT UNIV on August 23, 2019 at 02:47:47 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China ‡ SINOPEC Research Institute of Petroleum Engineering, Beijing 100101, People’s Republic of China § State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China S Supporting Information *

ABSTRACT: The first sulfhydryl-directed iridium-catalyzed C− H/diazo coupling and tandem annulation of naphthalene-1-thiols has been developed. The framework of naphtho[1,8-bc]thiopyrans was constructed in a one-step reaction with good yields. This transformation provides a practical synthetic route for the widely used naphtho[1,8-bc]thiopyran derivatives.

S

Scheme 1. Synthesis of Naphtho[1,8-bc]thiopyrans by Transition-Metal-Catalyzed C−H Functionalization

ulfur-containing heterocyclic compounds are one of the most important organic compounds which have been widely used in agricultural pharmacology,1 medicine,2 and organic functional materials.3 Therefore, the development of practical and efficient synthetic methods for this kind of compound is always necessary. Naphtho[1,8-bc]thiopyrans are important sulfur-containing fused aromatics for their various functional properties.4 However, the synthetic routes for naphtho[1,8-bc]thiopyrans in the literature are very limited and generally require a multistep process.5 Consequently, the development of efficient and step-economical synthetic methods for such compounds is of great significance. In recent years, transition-metal-catalyzed functional-groupdirected C−H bond functionalization has been developed as a powerful tool to construct C−C and C−heteroatom bonds.6 Among them, sulfur-directed C−H functionalization also has been developed to synthesize a series of sulfur-containing compounds. The directing groups of the currently reported sulfur-directed C−H functionalization reactions mainly include thioether,5h,i,7 sulfoxide,8 thioamide,9 thioketone,10 alkoxythiocarbonyl group,11 and phosphine sulfide.12 As the most simple sulfur-containing group, sulfhydryl exists extensively in natural products and synthetic compounds.13 However, sulfhydryldirected transition-metal-catalyzed C−H bond functionalization still has not been reported. Very recently, Miura and coworkers reported thioether-directed rhodium-catalyzed C−H functionalization of 1-(methylthio)naphthalenes with alkynes or aryl boronates to access alkenylated or arylated products, which could afford naphtho[1,8-bc]thiopyrans by further cyclization (Scheme 1a).5h,i Furthermore, diazo compounds are reported as good coupling partners for transition-metalcatalyzed C−H/C−C coupling.14 As part of our interest in the synthesis of heterocyclic compounds using diazo compounds,15 we herein report the first sulfhydryl-directed iridium-catalyzed C−H/diazo coupling and tandem annulation © XXXX American Chemical Society

of naphthalene-1-thiols to construct naphtho[1,8-bc]thiopyran framework (Scheme 1b). We began our work by the reaction of naphthalene-1-thiol (1a) with 2-diazo-5,5-dimethylcyclohexane-1,3-dione (2a). 9,9-Dimethyl-9,10-dihydrobenzo[kl]thioxanthen-11(8H)-one (3aa) was obtained in 73% yield with [Cp*IrCl2]2 as a catalyst in tetrahydrofuran (THF) (1.5 mL) at 130 °C for 12 h (Table 1, entry 1). The structure of 3aa was confirmed by its 1H and 13 C NMR spectra, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis (see the Supporting Information). The effects of solvents and temperatures were then examined, and 1,4-dioxane and 130 °C gave the best results (entries 1−7). Notably, slightly lower yields (72−74%) of 3aa were obtained under an air atmosphere or 0.3 mmol of 2a was used (entries 8 and 9). No product was detected without [Cp*IrCl2]2 or using other catalysts such as [Cp*RhCl2]2, [Cp*Co(CO)I2], and [(pReceived: July 24, 2019

A

DOI: 10.1021/acs.orglett.9b02581 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Table 1. Optimization of Reaction Conditionsa

entry 1 2 3 4 5 6 7 8 9 10 11 12 13

catalyst [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*IrCl2]2 [Cp*RhCl2]2 [Cp*Co(CO)I2]2 [(p-cymene)RuCl2]2

Scheme 2. Substrate Scopea

solvent

yieldb (%)

THF 1,4-dioxane DME toluene CH3OH 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane

73 81 65 16 0 75c 78d 72e 74f 0 0 0 0

a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), under argon atmosphere, 130 °C, 12 h. bIsolated yields. c120 °C. d140 °C. eUnder air. f2a (0.3 mmol).

cymene)RuCl2]2 (entries 10−13). Finally, the reaction conditions of entry 2 were chosen as the optimum conditions. Under the optimum conditions, a variety of diazo compounds was investigated to examine the substrate scope (Scheme 2). Products 3aa−3ad were obtained in 78−87% yields when naphthalene-1-thiol (1a) reacted with several sixmembered cyclic diazo compounds. Treating 1a with fivemembered cyclic diazo compound, 2-diazo-1,3-dione (2e) afforded the product 3ae in 75% yield. Furthermore, some open-chain diazo compounds were also explored, and the corresponding products 3af−3al were obtained in 37−61% yields. Compared to cyclic diazo compounds, the acyclic diazo compounds have lower reaction yields due to their lower conversion. This may be attributed to the low reactivity of the open chain diazo compounds. According to related reports,16 these products are usually difficult to prepare with high regioselectivity. Then, we investigated the scope of naphthalene-1-thiols with 2a as the reaction partner. Substituted 1naphthalenethiols bearing methyl, methoxyl, and phenyl at the C4-position reacted with 2a to afford 3ba−3da in good yields (75−83%). Meanwhile, 4-bromine-substituted naphthalene-1thiol afforded corresponding product (3ea) in moderate yields (46%), and the ortho-substituted naphthalene-1-thiol (1f) was also tested and gave product 3fa in 74% yield. Meanwhile, the reactions of anthracene-9-thiol (1g) and pyrene-1-thiol (1h) with 2a afforded 3ga and 3ha in 77% and 91% yields, respectively. In addition, when naphthalene-1,5-dithiol (1i) was employed as the substrate, it reacted with two molecules of 2a to form 3ia in 31% yield. However, the corresponding product as a result of reaction of 1i with one molecule of 2a was not obtained even by adjusting the amount of 2a and the reaction temperature. Next, the synthetic applicability of this protocol was investigated. The reaction in gram scale gave 3aa in 74% yield (1.04 g) at only 3 mol % of catalyst loading (Scheme 3a). Reaction of 3aa with methyl acrylate (4) afforded the olefination product 5 in 67% yield (Scheme 3b).

a

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol) [Cp*IrCl2]2 (5 mol %), 1,4-dioxane (1.5 mL), 130 °C, 12 h, under Ar, isolated yield.

Scheme 3. Gram-Scale Synthesis and Derivatization Reactions of 3aa

Moreover, several mechanistic experiments have been conducted. When naphthalene-1-thiol (1a) reacted with MeOD or D2O, naphthalene-1-thiol was recovered in 85− 87% yields (Scheme 4a). No H/D exchange was found, and it revealed that the C−H activation step was irreversible. A deuterium competition experiment between substrates 1a and 1a-d7 provided the product ratio of 2.7 (Scheme 4b). Two parallel independent reactions of 1a and 1a-d7 illustrated a kinetic isotope effect (KIE) of 1.8 (Scheme 4c). From these results, it seems that the C−H activation may be involved in the rate-determining step. In addition, the preparation of 3aa under standard conditions was detected by GC−MS, and no disulfide coupling was found (see the Supporting Information) (Scheme 4d). B

DOI: 10.1021/acs.orglett.9b02581 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters

previous reports for synthesizing naphtho[1,8-bc]thiopyrans, this method is simple in reaction conditions and efficient in steps. This transformation provides a practical synthetic route for the widely used naphtho[1,8-bc]thiopyran derivatives.

Scheme 4. Mechanism Study Experiments



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b02581. Full experimental procedures, characterization, and 1H, 13 C NMR spectra of products (PDF) Accession Codes

CCDC 1935103 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.



AUTHOR INFORMATION

Corresponding Author

On the basis of the above experiments and literature reports,5h,i,15 a plausible mechanism is proposed for the reaction (Scheme 5). [Cp*IrCl2]2 first depolymerizes to

*E-mail: [email protected]. ORCID

Bin Li: 0000-0003-3909-3796 Baiquan Wang: 0000-0003-4605-1607

Scheme 5. Proposed Mechanistic Pathway

Notes

The authors declare no competing financial interest.

■ ■

ACKNOWLEDGMENTS We thank the National Natural Science Foundation of China (No. 21672108) for financial support. REFERENCES

(1) (a) Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E. Chem. Rev. 2003, 103, 2149. (b) Casini, A.; Winum, J.-Y.; Montero, J.-L.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2003, 13, 837. (c) Mansy, S.; Cowan, J. Acc. Chem. Res. 2004, 37, 719. (d) Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133. (e) Walsh, C. Acc. Chem. Res. 2008, 41, 4. (f) Li, N.; Frederiksen, J.; Piccirilli, J. Acc. Chem. Res. 2011, 44, 1257. (g) Zhang, M.; Ravilious, G. E.; Hicks, L. M.; Jez, J. M.; McCulla, R. D. J. Am. Chem. Soc. 2012, 134, 16979. (h) Gao, Y.; Kellar, K. J.; Yasuda, R. P.; Tran, T.; Xiao, Y.; Dannals, R.; Horti, A. G. J. Med. Chem. 2013, 56, 7574. (2) (a) Farhanullah; Tripathi, B. K.; Srivastava, A. K.; Ram, V. J. Bioorg. Med. Chem. 2004, 12, 1543. (b) Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J. A. J. Med. Chem. 2004, 47, 4979. (c) Cole, D. C.; Lennox, W. J.; Lombardi, S.; Ellingboe, J. W.; Bernotas, R. C.; Tawa, G. J.; Mazandarani, H.; Smith, D. L.; Zhang, G.; Coupet, J.; Schechter, L. E. J. Med. Chem. 2005, 48, 353. (d) Banerjee, M.; Poddar, A.; Mitra, G.; Surolia, A.; Owa, T.; Bhattacharyya, B. J. Med. Chem. 2005, 48, 547. (e) Haruki, H.; Pedersen, M. G.; Gorska, K. I.; Pojer, F.; Johnsson, K. Science 2013, 340, 987. (3) (a) Murphy, A. R.; Fréchet, J. M. J. Chem. Rev. 2007, 107, 1066. (b) Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724. (c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900. (d) Christensen, P. R.; Nagle, J. K.; Bhatti, A.; Wolf, M. O. J. Am. Chem. Soc. 2013, 135, 8109. (4) (a) Nakasuji, K.; Kubota, H.; Kotani, T.; Murata, I.; Saito, G.; Enoki, T.; Imaeda, K.; Inokuchi, H.; Honda, M.; Katayama, C.;

form the active catalyst [Cp*IrCl2], which coordinates with 1a and eliminates of HCl to form intermediate A. Then a C−H bond activation occurs with elimination of HCl to form a fivemembered iridacycle B. Then the diazo compound 2a coordinates with B to form the iridium−carbene intermediate C with extrusion of a nitrogen. Migratory insertion of the carbene into the Ir−C bond completes the C−C coupling and affords the intermediate D. Acidolysis of D with HCl affords the intermediate E and regenerates active catalyst [Cp*IrCl2]. At last, tautomerization of E to the enol intermediate F in situ and elimination of water gives the product 3aa. In summary, we have developed an efficient sulfhydryldirected iridium-catalyzed C−H/diazo coupling and tandem annulation of naphthalene-1-thiols with diazo compounds. The framework of naphtho[1,8-bc]thiopyrans was constructed in one step reaction with good yields. Compared with the C

DOI: 10.1021/acs.orglett.9b02581 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Tanaka, J. J. Am. Chem. Soc. 1986, 108, 3460. (b) Nakasuji, K.; Oda, A.; Toyoda, J.; Murata, I. J. Chem. Soc., Chem. Commun. 1990, 366. (c) Qian, X.; Mao, P.; Yao, W.; Guo, X. Tetrahedron Lett. 2002, 43, 2995. (d) Guldi, D. M.; Spänig, F.; Kreher, D.; Perepichka, I. F.; van der Pol, C.; Bryce, M. R.; Ohkubo, K.; Fukuzumi, S. Chem. - Eur. J. 2008, 14, 250. (e) Kollár, J.; Chmela, Š .; Hrdlovič, C. J. Photochem. Photobiol., A 2013, 270, 28. (f) Zhang, S.; Qiao, X.; Chen, Y.; Wang, Y.; Edkins, R. M.; Liu, Z.; Li, H.; Fang, Q. Org. Lett. 2014, 16, 342. (5) (a) Chiang, L.-Y.; Meinwald, J. J. Org. Chem. 1981, 46, 4060. (b) Morita, Y.; Miyazaki, E.; Maki, S.; Toyoda, J.; Yamochi, H.; Saito, G.; Nakasuji, K. Mol. Cryst. Liq. Cryst. 2002, 379, 77. (c) Norris, R. K.; McMahon, J. A. Arkivoc 2003, 6, 139. (d) Du, C.; Ye, S.; Liu, Y.; Guo, Y.; Wu, T.; Liu, H.; Zheng, J.; Cheng, C.; Zhu, M.; Yu, G. Chem. Commun. 2010, 46, 8573. (e) Zhang, L.; Huang, Z.; Dai, D.; Xiao, Y.; Lei, K.; Tan, S.; Cheng, J.; Xu, Y.; Liu, J.; Qian, X. Org. Lett. 2016, 18, 5664. (f) Janhsen, B.; Daniliuc, C. G.; Studer, A. Chem. Sci. 2017, 8, 3547. (g) Zhang, S.; Liu, Z.; Fang, Q. Org. Lett. 2017, 19, 1382. (h) Shigeno, M.; Nishii, Y.; Satoh, T.; Miura, M. Asian J. Org. Chem. 2018, 7, 1334. (i) Moon, S.; Nishii, Y.; Miura, M. Org. Lett. 2019, 21, 233. (6) For selected recent reviews on C−H functionalization, see: (a) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (b) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (c) De Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461. (d) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. (e) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. (f) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468. (g) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155. (h) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764. (i) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743. (j) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498. (k) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900. (l) Wang, F.; Yu, S.; Li, X. Chem. Soc. Rev. 2016, 45, 6462. (m) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754. (n) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787. (o) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864. (p) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247. (7) (a) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. (b) Mann, S. E.; Aliev, A. E.; Tizzard, G. J.; Sheppard, T. D. Organometallics 2011, 30, 1772. (c) Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Org. Lett. 2012, 14, 2164. (d) Zhang, X.-S.; Zhu, Q.-L.; Zhang, Y.-F.; Li, Y.-B.; Shi, Z.-J. Chem. - Eur. J. 2013, 19, 11898. (e) Xu, B.; Liu, W.; Kuang, C. Eur. J. Org. Chem. 2014, 2014, 2576. (f) Zhang, X.-S.; Zhang, Y.-F.; Chen, K.; Shi, Z.-J. Org. Chem. Front. 2014, 1, 1096. (g) Villuendas, P.; Urriolabeitia, E. P. Org. Lett. 2015, 17, 3178. (h) Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2015, 17, 704. (i) Shi, H.; Dixon, D. J. Chem. Sci. 2019, 10, 3733. (j) Jin, L.; Wang, J.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 12352. (8) (a) Samanta, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2011, 50, 5217. (b) Wesch, T.; Leroux, F. R.; Colobert, F. Adv. Synth. Catal. 2013, 355, 2139. (c) Nobushige, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1188. (d) Wang, B.; Shen, C.; Yao, J.; Yin, H.; Zhang, Y. Org. Lett. 2014, 16, 46. (e) Hazra, C. K.; Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Angew. Chem., Int. Ed. 2014, 53, 13871. (f) Wang, B.; Liu, Y.; Lin, C.; Xu, Y.; Liu, Z.; Zhang, Y. Org. Lett. 2014, 16, 4574. (g) Padala, K.; Jeganmohan, M. Chem. Commun. 2014, 50, 14573. (h) Jerhaoui, S.; Chahdoura, F.; Rose, C.; Djukic, J.P.; Wencel-Delord, J.; Colobert, F. Chem. - Eur. J. 2016, 22, 17397. (i) Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; WencelDelord, J.; Colobert, F. Chem. - Eur. J. 2016, 22, 1735. (j) Mu, D.; Gao, F.; Chen, G.; He, G. ACS Catal. 2017, 7, 1880. (k) Wang, R.; Ding, Y.; Li, G. Org. Biomol. Chem. 2017, 15, 4966. (l) Jerhaoui, S.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. Chem. - Eur. J. 2017, 23, 15594. (m) Dherbassy, Q.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. Angew. Chem., Int. Ed. 2018, 57, 4668. (n) Jiang, H.; Bellomo, A.; Zhang, M.; Carroll, P. J.; Manor, B. C.; Jia, T.; Walsh, P. J. Org. Lett. 2018, 20, 2522. (o) Zhu, Y.-C.; Li, Y.; Zhang, B.-C.; Zhang, F.-X.; Yang, Y.-N.; Wang, X.-S. Angew. Chem., Int. Ed. 2018, 57, 5129.

(9) (a) Yu, H.; Liu, X.; Ding, L.; Yang, Q.; Rong, B.; Gao, A.; Zhao, B.; Yang, H. Tetrahedron Lett. 2013, 54, 3060. (b) Rong, B.; Ding, L.; Yu, H.; Yang, Q.; Liu, X.; Xu, D.; Li, G.; Zhao, B. Tetrahedron Lett. 2013, 54, 6501. (c) Yamauchi, T.; Shibahara, F.; Murai, T. Org. Lett. 2015, 17, 5392. (d) Spangler, J. E.; Kobayashi, Y.; Verma, P.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 11876. (e) Yokoyama, Y.; Unoh, Y.; Bohmann, R. A.; Satoh, T.; Hirano, K.; Bolm, C.; Miura, M. Chem. Lett. 2015, 44, 1104. (f) Song, G.; Zheng, Z.; Wang, Y.; Yu, X. Org. Lett. 2016, 18, 6002. (g) Tang, K.-X.; Wang, C.-M.; Gao, T.H.; Pan, C.; Sun, L.-P. Org. Chem. Front. 2017, 4, 2167. (h) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140. (i) Tan, P. W.; Mak, A. M.; Sullivan, M. B.; Dixon, D. J.; Seayad, J. Angew. Chem., Int. Ed. 2017, 56, 16550. (10) (a) Alper, H. J. Organomet. Chem. 1974, 80, C29. (b) Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1296. (c) Yetra, S. R.; Shen, Z.; Wang, H.; Ackermann, L. Beilstein J. Org. Chem. 2018, 14, 1546. (d) Modi, A.; Sau, P.; Chakraborty, N.; Patel, B. K. Adv. Synth. Catal. 2019, 361, 1368. (11) (a) Tran, A. T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 10530. (b) Li, W.; Zhao, Y.; Mai, S.; Song, Q. Org. Lett. 2018, 20, 1162. (12) Yokoyama, Y.; Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2014, 79, 7649. (13) (a) Hoffman, M. Z.; Hayon, E. J. J. Phys. Chem. 1973, 77, 990. (b) Roland, A.; Schneider, R.; Razungles, A.; Cavelier, F. Chem. Rev. 2011, 111, 7355. (c) Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. Chem. Mater. 2014, 26, 724. (d) Nakagawa, Y.; Inomata, A.; Ogata, A.; Nakae, D. J. Appl. Toxicol. 2015, 35, 1465. (e) Chen, X.; Dai, X.; Yu, Y.; Wei, X.; Zhang, X.; Li, C. New J. Chem. 2019, 43, 917. (f) Zheng, Y.; Zheng, W.; Zhu, D.; Chang, H. New J. Chem. 2019, 43, 5239. (14) For selected recent reviews on C−H/diazo coupling, see: (a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Chem. Commun. 2015, 51, 7986. (b) Caballero, A.; Díaz-Requejo, M. M.; Fructos, M. R.; Olmos, A.; Urbano, J.; Pérez, P. J. Dalton Trans. 2015, 44, 20295. (c) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810. (d) Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Adv. Synth. Catal. 2019, 361, 919. (15) (a) Liang, Y.; Yu, K.; Li, B.; Xu, S.; Song, H.; Wang, B. Chem. Commun. 2014, 50, 6130. (b) Shi, L.; Yu, K.; Wang, B. Chem. Commun. 2015, 51, 17277. (c) Yu, K.; Liang, Y.; Li, B.; Wang, B. Adv. Synth. Catal. 2016, 358, 661. (d) Zhou, T.; Li, B.; Wang, B. Chem. Commun. 2016, 52, 14117. (e) Yan, K.; Li, B.; Wang, B. Adv. Synth. Catal. 2018, 360, 2113. (f) Yan, K.; Li, B.; Wang, B. Adv. Synth. Catal. 2018, 360, 2272. (g) Yan, K.; Lin, Y.; Kong, Y.; Li, B.; Wang, B. Adv. Synth. Catal. 2019, 361, 1570. (16) (a) Mochida, S.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Chem. - Asian J. 2010, 5, 847. (b) Thirunavukkarasu, V. S.; Donati, M.; Ackermann, L. Org. Lett. 2012, 14, 3416. (c) Wang, H.; Xu, H.; Li, B.; Wang, B. Org. Lett. 2018, 20, 5640.

D

DOI: 10.1021/acs.orglett.9b02581 Org. Lett. XXXX, XXX, XXX−XXX