Article pubs.acs.org/crystal
A New Family of 4f-3d Heterometallic Metal−Organic Frameworks with 2,2′-Bipyridine-3,3′-dicarboxylic Acid: Syntheses, Structures and Magnetic Properties Jing-Min Zhou, Wei Shi,* Na Xu, and Peng Cheng Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Nankai University, Tianjin 300071, People’s Republic of China S Supporting Information *
ABSTRACT: Eight isostructural lanthanide(III)-cobalt(II) heterometallic metal−organic frameworks (MOFs), {[Ln2Co(BPDC)4(H2O)6]·xH2O}n (Ln = La (1-La, x = 9), Pr (2-Pr, x = 11), Nd (3-Nd, x = 8), Sm (4-Sm, x = 9), Eu (5-Eu, x = 6), Gd (6-Gd, x = 6.5), Tb (7-Tb, x = 7), Dy (8-Dy, x = 8); H2BPDC = 2,2′-bipyridine-3,3′-dicarboxylic acid), have been prepared and characterized. In these complexes, two crystallographically independent Ln3+ ions are connected via carboxyl groups into binuclear units, which are further linked into a lanthanide chain through bridging BPDC2−. Each Co2+ ion is chelated by the bipyridine groups of three BPDC2− and further links the lanthanide chain to form a three-dimensional framework. The framework with one-dimensional channels occupied by water molecules possesses a new topology with the short (Schläfli) vertex symbol {3·62}{32·66·73·83·9}{62·7}. The magnetic properties of the eight heterometallic MOFs have been studied, in which only 8-Dy displays slow relaxation of the magnetization at low temperature.
■
INTRODUCTION In the past decade, the syntheses of 4f-3d complexes have attracted great interest in the field of molecular magnetic materials,1,2 in which spin carriers are important factors to influence the final magnetic properties. How to assemble spin carriers by chemical method to obtain the designed structure is still a challenge for chemists up to now. Molecular magnetic materials based on transition metal ions, such as Co2+ and Mn3+, have been extensively studied because the high spin ground state can be obtained from strong exchange interaction between 3d electrons.2b,e,3−5 However, a high spin ground state and significant magnetoanisotropy cannot be simultaneously achieved easily in 3d complexes due to a small spin-flip contribution to D in the case of large S.6 On the other hand, lanthanide (Ln) ions with a large unquenched orbital angular momentum,7−9 can bring large and anisotropic magnetic moments to the system, while only weak magnetic interactions can be observed in multinuclear Ln-complexes resulting from the shielding effects of the outer 5d and 6s shells to the inner contracted 4f orbitals. In this context, the combination of such two kinds of spin carriers into a singular material may overcome the drawback of 3d or 4f spin carriers and achieve unexpected properties in heterometallic materials. In addition, 4f-3d heterometallic metal−organic frameworks (MOFs) have also attracted increasing attention from both physicists and chemists for their interesting topologies and potential applications in magnetism, molecular sensor, catalysis, and nonlinear optics.1,10−12 Although lots of 4f-3d hetero© 2013 American Chemical Society
metallic complexes have been well documented in recent years,13 4f-3d heterometallic MOFs displaying slow magnetic relaxation were less developed. Practically, the syntheses of 4f3d heterometallic MOFs are quite challenging for chemists because the competitive coordination of lanthanide and transition metal ions to the same ligand often results in the formation of alternative homometallic products. A useful strategy toward the synthesis of heterometallic MOFs is to assemble mixed-metal ions with multidentate ligands containing mixed-donor atoms, like N and O atoms with the expectation that the 3d metal ions have a strong tendency to coordinate to nitrogen atoms while the 4f ions preferentially bind to oxygen atoms. With this idea in mind, bipyridinedicarboxylic acid containing both bipyridine and carboxyl group as functional units could be good candidates to obtain heterometallic complexes and deserved to be studied systematically.14−17 Although some complexes with 2,2′-bipyridine3,3′-dicarboxylic acid (H2BPDC) have been reported,14 none of them are about the studies of 4f-3d heterometallic MOFs. In this contribution, eight 4f-3d heterometallic MOFs: {[Ln2Co(BPDC)4(H2O)6]·xH2O}n (Ln = La (1-La, x = 9), Pr (2-Pr, x = 11), Nd (3-Nd, x = 8), Sm (4-Sm, x = 9), Eu (5-Eu, x = 6), Gd (6-Gd, x = 6.5), Tb (7-Tb, x = 7), Dy (8-Dy, x = 8)) were successfully synthesized and structurally characterized. These Received: November 14, 2012 Revised: January 23, 2013 Published: January 29, 2013 1218
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
Figure 1. (a) ORTEP drawing of the structural unit of 8-Dy (thermal ellipsoids are drawn at the 30% probability level; hydrogen atoms and lattice water molecules are omitted for clarity). (b) The coordination geometry of Dy1 and Dy2 as a distorted single-capped square antiprism. 1445(m), 1398(s), 1094(m), 776(m), 703(m). Gd2CoC48H49N8O28.5 (6): C, 37.26 (36.78); H, 3.63 (3.15); N, 7.12 (7.15). IR bands (KBr, ν/cm−1) for 6: 3257(br), 1601(vs), 1572(s), 1446(m), 1402(s), 1095(m), 774(m), 705(m). Tb2CoC48H50N8O29 (7): C, 36.71 (36.49); H, 3.46 (3.19); N, 7.00 (7.09). IR bands (KBr, ν/cm−1) for 7: 3260(br), 1600(vs), 1570(s), 1446(m), 1401(s), 1094(m), 773(m), 705(m). Dy2CoC48H52N8O30 (8): C, 36.11 (35.92); H, 3.39 (3.27); N, 7.02 (6.98). IR bands (KBr, ν/cm−1) for 8: 3270(br), 1601(vs), 1573(s), 1445(m), 1402(s), 1095(m), 773(m), 704(m). Synthesis of 2−5. A mixture of Ln(OH)3 (0.3 mmol, Ln = Pr (2), Nd (3), Sm (4), Eu (5)), CoCl2·6H2O (0.1 mmol, 0.0238 g), H2BPDC (0.6 mmol, 0.1466 g), 1,2,4-triazole (0.6 mmol, 0.0414g), and H2O/EtOH (8 mL/2 mL) was added in a 25 mL Teflon-lined stainless steel reactor at 130 °C for 72 h and then slowly cooled to room temperature. Salmon pink needle-like single crystals suitable for X-ray data collection were obtained by filtration, washed with H2O/ EtOH (4/1), and air-dried. Yield: 35%, 42%, 35%, 39% based on Co for 2−5, respectively. Elemental analysis Found (calcd) for Pr2CoC48H58N8O33 (2): C, 35.15 (35.68); H, 3.55 (3.62); N, 7.04 (6.94). IR bands (KBr, ν/cm−1) for 2: 3257(br), 1598(vs), 1558(s), 1445(m), 1400(s), 1095(m), 777(m), 704(m). Nd2CoC48H52N8O30 (3): C, 36.74 (36.76); H, 3.28 (3.34); N, 7.09 (7.14). IR bands (KBr, ν/cm−1) for 3: 3257(br), 1599(vs), 1557(s), 1445(m), 1400(s), 1094(m), 777(m), 704(m). Sm2CoC48H54N8O31 (4): C, 35.71 (36.06); H, 3.19 (3.40); N, 6.93 (7.00). IR bands (KBr, ν/cm−1) for 4: 3256(br), 1600(vs), 1560(s), 1446(m), 1401(s), 1095(m), 776(m), 704(m). Eu2CoC48H48N8O28 (5): C, 37.48 (37.25); H, 3.20 (3.13); N, 7.06 (7.24). IR bands (KBr, ν/cm−1) for 5: 3350(br), 1601(vs), 1559 (s), 1446(m), 1401(s), 1094(m), 777(m), 704(m).
isostructural complexes show a 3D open framework based on Ln2 binuclear units and CoN6 metal centers through BPDC ligands, containing 1D channels along the c direction occupied by guest water molecules and possessing a new topology with the short (Schläfli) vertex symbol {3·62}{32·66·73·83·9}{62·7}. Studies on the magnetic properties suggest that 8-Dy displays significant frequency dependence magnetic property, implying slow magnetic relaxation behavior.
■
EXPERIMENTAL SECTION
Materials and Methods. All of the chemicals and solvents used in the synthesis were reagent grade. The H2BPDC was prepared according to the literature methods.18 Analyses for C, H, and N were carried out on a Perkin-Elmer analyzer. Powder X-ray diffraction measurements were recorded on a D/Max-2500 X-ray diffractometer using Cu Kα radiation. Magnetic susceptibilities were performed on a Quantum Design MPMS XL-7 SQUID magnetometer. Diamagnetic corrections were made with Pascal’s constants for all the constituent atoms and sample holders. X-ray Crystallography. Diffraction intensity data for single crystals of 1−8 were collected on an Oxford SuperNova single crystal diffractometer equipped with graphite-monochromatic Mo−Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by fullmatrix least-squares techniques using the SHELXS-97 and SHELXL-97 programs.19 Synthesis of 1, 6−8. A mixture of Ln(OH)3 (0.4 mmol, Ln = La (1), Gd (6), Tb (7), Dy (8)), CoCl2·6H2O (0.1 mmol, 0.0238 g), H2BPDC (0.6 mmol, 0.1466 g), 1,2,4-triazole (0.6 mmol, 0.0414 g), and H2O/EtOH (8 mL/2 mL) was added in a 25 mL Teflon-lined stainless steel reactor at 130 °C for 72 h and then slowly cooled to room temperature. Salmon pink rod-like single crystals suitable for Xray data collection were obtained by filtration, washed with H2O/ EtOH (4/1), and air-dried. Yield: 25%, 37%, 46%, 40% based on Co for 1, 6−8, respectively. Elemental analysis Found (calcd) for La2CoC48H54N8O31 (1): C, 36.99 (36.59); H, 3.84 (3.45); N, 7.08 (7.11). IR bands (KBr, ν/cm−1) for 1: 3265(br), 1597(vs), 1571(s),
■
RESULTS AND DISCUSSION
Crystal Structure. Single crystal X-ray diffraction analysis reveals that 1−8 are isomorphous, belonging to tetragonal system with space group of I41/a. Therefore, the structure of 8Dy is described here representatively. There are two crystallographically independent Dy3+ ions, one Co2+ ion and four 1219
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
Scheme 1. Coordination Modes of the BPDC2− in 1−8
In order to better understand the complicated framework, the network topology of these isostructural complexes was analyzed by the freely available computer program TOPOS.20a If each Ln2 binuclear SBU was considered as 6-connected node to link with six BPDC2− and each Co2+ was considered as 3connected node to link with three BPDC2−, then some BPDC2− served as 3-connected nodes to link Ln2 and Co SBUs while some as bridging linkers. In this way, this structure can be considered as a 3,6-connected net, which is an new topology named zjm-1, and the point symbol can be expressed as {3·62}{32·66·73·83·9}{62·7} (Figure 3).20 Powder X-ray Diffraction (PXRD). To confirm the phase purity of 1−8, the PXRD patterns have been carried out at room temperature (Figure S2). The diffraction peaks of the assynthesized samples are in good agreement with the simulated data, suggesting the high phase purity of the complexes. Thermal Gravimetric Analysis (TGA). TGA of the polycrystalline samples of 1−8 were performed in the temperature range of 25−800 °C, as shown in Figure S3. The TGA curves show that the weight losses of 1−8 are analogous, in which the guest molecules in the lattice leave initially, and then the coordinated waters leave with an increase of the temperature (Table S1). Upon further heating, these complexes decomposed gradually. Magnetic Properties. The temperature dependence of the magnetic susceptibility is recorded for microcrystalline samples of 1−8 at an applied magnetic field of 1000 Oe over the temperature range of 2−300 K, as shown in Figure 4. At room temperature, the χMT value of 3.18 cm3 K mol−1 for 1 is larger than that expected (1.88 cm3 K mol−1) for one spin-only Co2+ ion (S = 3/2) and two diamagnetic La3+ ions. As reported in many of Co2+ complexes,21 the χMT value at room temperature is usually higher than the expected spin-only one as a result of the orbital contribution of the high spin Co2+ to the magnetism. The χMT values at room temperature for 2−8 are 6.39 (2-Pr), 6.50 (3-Nd), 4.17 (4-Sm), 3.17 (5-Eu), 19.48 (6-Gd), 27.64
BPDC2− anions in the asymmetric unit (Figure 1a). Both Dy1 and Dy2 are coordinated by three oxygen atoms from water molecules and six oxygen atoms from four BPDC2−. The coordination geometry of Dy1 (Dy2) can be described as a distorted single-capped square antiprism, in which O19 for Dy1 (O6A for Dy2) act as the capping atom (Figure 1b). In 1−8, the average Ln−O bond lengths display a decreasing trend with the increase of atomic number from 1-La (2.570 Å) to 8-Dy (2.452 Å), demonstrating the existence of a lanthanide contraction effect. Co1 is chelated by three 2,2′-bipyridine groups from BPDC2− to form distorted octahedral coordination geometry. The Co−N bond lengths are in the range of 2.095− 2.174 Å. In the structure, the BPDC2− anions adopt three different coordination modes a−c, respectively (Scheme 1). Two carboxyl groups of one BPDC2− (Scheme 1a) and one carboxyl group of another BPDC2− (Scheme 1b) act as bridges linking Dy1 and Dy2 into a binuclear unit. The nearest Dy1···Dy2, Dy1···Co1, and Dy2···Co1 distances are 5.510, 6.799, and 6.710 Å, respectively. The binuclear units are connected via two BPDC2− with different coordination modes (Scheme 1b,c) into 1D chains (Figure 2a), which are further stitched to each other by CoN6 secondary building units (SBUs) constructing a 3D heteromatellic MOF (Figure 2a−c). The 3D framework exhibits 1D quadrangle channels along the c direction with dimensions of ∼8.4 × 8.4 Å2 excluding the van der Waals radius of channel wall atoms.
Figure 2. The 3D framework of 8-Dy: (a) View of the structure along the [0,0,1] direction. (b) View of the 1D channel along the [0,1,0] direction. (c) View of 1D channel assembled by Dy1···Dy2 chains linking the adjacent Co1 ions along the [1,0,0] direction. The ligands were simplified as lines for clarity. Dy, green; Co, violet; O, Red; N, blue; C, black. 1220
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
Figure 3. View of the 3,6-connected topological network. The nodes: Ln, green; Co, violet; ligands, blue.
Figure 4. Temperature dependence of χMT for 1−8 under 1000 Oe field.
Figure 5. Field-dependent magnetizations of 1−8 at 2 K.
1221
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
Figure 6. Plots of M versus H/T in the field range 0−70 kOe and at different temperatures for 8-Dy. Inset: field dependence of magnetization.
Figure 8. Plots of natural logarithm of χM″/χM′ versus 1/T for 8-Dy. The solid lines represent the fitting results over the range of 10−1000 Hz.
(7-Tb), and 32.62 (8-Dy) cm3 K mol−1, respectively, and the corresponding theoretical values are 6.38 (2-Pr), 6.46 (3-Nd), 3.36 (4-Sm), 3.18 (5-Eu), 18.94 (6-Gd), 26.82 (7-Tb), and 31.52 (8-Dy) cm3 K mol−1, respectively, expected for the sum of the experimental value of one Co2+ ion obtained from 1 and two Ln3+ ions (two Pr3+ (3H4, g = 4/5) for 2, two Nd3+ (4I9/2, g = 8/11) for 3, two Sm3+ (6H5/2, g = 2/7) for 4, two Eu3+ (7F0, g = 0) for 5, two Gd3+ (8S7/2, g = 2) for 6, two Tb3+ (7F6, g = 3/2) for 7, and two Dy3+ (6H15/2, g = 4/3) for 8). Except for 2, 3, and 5, the χMT values at room temperature are higher than the corresponding theoretical values. This phenomenon may be attributed to the large unquenched orbital angular momentum of Ln3+. For 1−7, the χMT values decrease gradually to reach 1.71, 2.04, 3.18, 1.62, 0.86, 17.29, and 21.99 cm3 K mol−1 at 2 K, respectively. The temperature-dependence of χMT observed in 1, as well as the negative θ value of −22.22 K obtained from a Curie−Weiss fitting (Figure S4), mainly comes from an effect of zero-field splitting and concomitant formation of Kramers doublets of the Co2+ ion because the La3+ ion is diamagnetic. As the temperature is lowered, the χMT value of 8 decreases slightly to 28.73 cm3 K mol−1 at 12 K and then increases
quickly to 32.14 cm3 K mol−1. The increase of χMT of 8 below 12 K reveals the presence of possible ferromagnetic interactions. The Curie−Weiss fittings (Figures S5−11) of the magnetic data for 2−8 above 2 K give negative θ values, due to depopulation of Stark levels. It is a challenge to conclude the interactions of Co−Ln and Ln−Ln in 2−8, since the Co2+ and Ln3+ ions both possess their intrinsic complicated magnetic characteristics including the spin−orbit coupling and magnetic anisotropy. The field dependence of magnetization (M) for 1−8 has been determined at 2 K in the range of 0−70 kOe (Figure 5), displaying a gradual increase of the magnetization at low fields, and following with a lack of saturation even at 70 kOe. For 8Dy at different temperatures (2, 3, 5 K, respectively), M increases to reach 14.0 Nβ at 70 kOe, but does not reach the expected saturation value of 23 Nβ (10 Nβ7d for each Dy3+ ion for J = 15/2 and g = 4/3, and 3 Nβ for one Co2+ ion for S = 3/2 and g = 2) (Figure 6). The lack of saturation of the M versus H data and the non-superimposition of the M versus H/T data on a single master curve may be explained by the presence of magnetic anisotropy and/or low-lying excited states in the 4f-3d system.8b,22
Figure 7. Temperature dependent in-phase (χM′) (a) and out-of-phase (χM″) (b) AC susceptibility components at different frequencies for 8-Dy with zero DC field and an oscillation of 3.5 G. 1222
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
Table 1. Crystal Data and Structural Refinement Parameters for 1−8 1-La
2-Pr
3-Nd
4-Sm
formula fw λ/Å crystal system space group a (Å) b (Å) c (Å) α (deg) vol/Å3 Z ρcalc mg/mm3 μ/mm−1 reflns collected/unique R(int) θ range/° F(000) GOF on F2 R1/wR2 [I > 2σ (I)] R1/wR2 (all data) largest diff. peak/hole/e Å−3
C48H50CoLa2N8O29 1539.69 0.71073 orthorhombic I41/a 46.04 46.04 11.33 90 24004(2) 16 1.689 1.765 24199/10579 0.0608 4.8/50.02 12048 1.088 R1 = 0.0593, wR2 = 0.1654 R1 = 0.0806, wR2 = 0.1829 2.16/−1.03 5-Eu
C48H52CoPr2N8O30 1561.71 0.71073 orthorhombic I41/a 45.94 45.94 11.24 90 23716.9(13) 16 1.731 1.991 23249/10458 0.0851 4.84/50.02 12240 1.029 R1 = 0.0778, wR2 = 0.1805 R1 = 0.1511, wR2 = 0.2281 1.25/−1.22 6-Gd
C48H50CoNd2N8O29 1550.36 0.71073 orthorhombic I41/a 45.80 45.80 11.23 90 23549.3(7) 16 1.733 2.112 23106/10373 0.0384 4.84/50.02 12144 1.030 R1 = 0.0564, wR2 = 0.1379 R1 = 0.0879, wR2 = 0.1572 1.64/−0.90 7-Tb
C48H50CoSm2N8O29 1562.60 0.71073 orthorhombic I41/a 45.97 45.97 11.18 90 23633.0(10) 16 1.741 2.335 23046/10409 0.0287 4.84/50.02 12208 1.044 R1 = 0.0442, wR2 = 0.1144 R1 = 0.0652, wR2 = 0.1290 1.22/−0.64 8-Dy
formula fw λ/Å crystal system space group a (Å) b (Å) c (Å) α (deg) vol/Å3 Z ρcalc mg/mm3 μ/mm−1 reflns collected/unique R(int) θ range/° F(000) GOF on F2 R1/wR2 [I > 2σ(I)] R1/wR2 (all data) largest diff. peak/hole/e Å−3
C48H50CoEu2N8O29 1565.81 0.71073 orthorhombic I41/a 45.88 45.88 11.11 90 23375.8(6) 16 1.764 2.497 23355/10298 0.0279 5.02/50.02 12240 1.022 R1 = 0.0574, wR2 = 0.1408 R1 = 0.0818, wR2 = 0.1595 2.03/−1.08
C48H46CoGd2N8O27 1540.35 0.71073 orthorhombic I41/a 45.20 45.20 10.78 90 22035.4(17) 16 1.845 2.775 21116/9706 0.0441 4.98/50.02 12016 1.091 R1 = 0.0689, wR2 = 0.1911 R1 = 0.0930, wR2 = 0.2102 2.77/−1.52
C48H47CoTb2N8O28 1561.72 0.71073 orthorhombic I41/a 45.82 45.82 11.00 90 23106.0(7) 16 1.782 2.801 23277/10181 0.0268 4.9/50.02 12176 1.096 R1 = 0.0547, wR2 = 0.1401 R1 = 0.0705, wR2 = 0.1491 2.32/−1.08
C48H48CoDy2N8O28 1568.87 0.71073 orthorhombic I41/a 45.87 45.87 11.00 90.00 23141(3) 16 1.787 2.935 23631/10197 0.0985 4.9/50.02 12208 0.994 R1 = 0.0762, wR2 = 0.1850 R1 = 0.1463, wR2 = 0.2202 1.79/−1.81
To further investigate the dynamics of magnetization, the temperature dependence of the alternating-current (AC) magnetic susceptibility for 8-Dy was collected at zero directcurrent (DC) field (Figure 7). Clearly, frequency-dependent out-of-phase signals at low temperature are observed below 6 K for 8-Dy, suggesting the slow relaxation of the magnetization. However, no maximum of χM″ is observed above 2 K. To determine the energy barrier and τ0, a method recently employed by Bartolomé et al.,23 assuming that there is only one characteristic relaxation process of the Debye type with one energy barrier and one time constant, can be used to evaluate the energy barrier and τ0 roughly based on the following relation (eq 1): ln(χM ″ /χM ′) = ln(ωτ0) + Ea /kBT
This method has been applied earlier in the determination of the Mn12 acetate,24 Dy2,25 and Dy326 complexes. As shown in Figure 8, by fitting the experimental χM″/χM′ data to eq 1, we extract an estimate of the activation energy of ∼3 K (2.4, 2.5, 3.1, 4.6 K for 1000 Hz, 500 Hz, 100 Hz, 10 Hz) and the characteristic time of ∼10−6 s (2.8 × 10−6, 3.3 × 10−6, 3.6 × 10−6, 5.7 × 10−7s for 1000 Hz, 500 Hz, 100 Hz, 10 Hz). A more precise result beyond this depends on the measurements under lower temperatures, which is out of the limit of our instrument.
■
CONCLUSIONS
In summary, a series of new 4f-3d MOFs with 2,2′-bipyridine3,3′-dicarboxylic acid have been successfully synthesized via solvothermal conditions. The isostructural MOFs possess a new topology expressed as {3·62}{32·66·73·83·9}{62·7}. Magnetic studies reveal that 8-Dy shows clear frequency dependent out-
(1) 1223
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
H.; Song, Y.; Liang, H.; Zeng, M. H. CrystEngComm 2009, 11, 865. (g) Jia, H. P.; Li, W.; Ju, Z. F.; Zhang. J. Dalton Trans. 2007, 3699. (5) (a) Ferbinteanu, M.; Miyasaka, H.; Wernsdorfer, W.; Nakata, K.; Sugiura, K. I.; Yamashita, M.; Coulon, C.; Clerac, R. J. Am. Chem. Soc. 2005, 127, 3090. (b) Karotsis, G.; Teat, S. J.; Wernsdorfer, W.; Piligkos, S.; Dalgarno, S. J.; Brechin, E. K. Angew. Chem., Int. Ed. 2009, 48, 8285. (c) Gregoli, L.; Danieli, C.; Barra, A. L.; Neugebauer, P.; Pellegrino, G.; Poneti, G.; Sessoli, R.; Cornia, A. Chem.Eur. J. 2009, 15, 6456. (d) Abrahams, B.; Fitzgerald, N.; Robson, R. Inorg. Chem. 2010, 49, 5953. (6) (a) Ruiz, E.; Cirera, J.; Cano, J.; Alvarez, S.; Loose, C.; Kortus, J. Chem. Commun. 2008, 44, 52. (b) Waldmann, O. Inorg. Chem. 2007, 46, 10035. (c) Sessoli, R. Inorg. Chim. Acta 2008, 361, 3356. (7) (a) Costes, J. P.; Dahan, F.; Dupuis, A. Inorg. Chem. 2000, 39, 165. (b) Caneschi, A.; Dei, A.; Gatteschi, D.; Sorace, L.; Vostrikova, K. Angew. Chem., Int. Ed. 2000, 39, 246. (c) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912. (d) Yang, P.-P.; Gao, X.-F.; Song, H.-B.; Zhang, S.; Mei, X.-L.; Li, L.-C.; Liao, D.-Z. Inorg. Chem. 2011, 50, 720. (8) (a) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694. (b) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Phys. Chem. B. 2004, 108, 11265. (c) Ishikawa, N.; Mizuno, Y.; Takamatsu, S.; Ishikawa, T.; Koshihara, S. Y. Inorg. Chem. 2008, 47, 10217. (d) AlDamen, M. A.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Ariño, G. A.; Gastaldo, M. C.; Luis, F.; Montero, O. Inorg. Chem. 2009, 48, 3467. (9) (a) Lin, P. H.; Burchell, T. J.; Ungur, L.; Chibotaru, L. F.; Wernsdorfer, W.; Murugesu, M. Angew. Chem., Int. Ed. 2009, 48, 9489. (b) Hewitt, I. J.; Tang, J. K.; Madhu, N. T.; Anson, C. E.; Lan, Y.; Luzon, J.; Etienne, M.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2010, 49, 6352. (c) Guo, Y. N.; Xu, G. F.; Gamez, P.; Zhao, L.; Lin, S. Y.; Deng, R. P.; Tang, J. K.; Zhang, H. J. J. Am. Chem. Soc. 2010, 132, 8538. (d) Gatteschi, D. Nat. Chem 2011, 3, 830. (10) (a) Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. J. Am. Chem. Soc. 2007, 129, 7136. (b) Allendorf, M. D.; Houk, R. J.; Andruszkiewicz, T.; Talin, A. A.; Pikarsky, J.; Choudhury, A.; Gall, K. A.; Hesketh, P. J. J. Am. Chem. Soc. 2008, 130, 14404. (c) Abrahams, B.; Hudson, T.; Robson, R. Angew. Chem., Int. Ed. 2010, 49, 1087. (d) Abrahams, B.; Fitzgerald, N.; Robson, R. Angew. Chem., Int. Ed. 2010, 49, 2896. (11) (a) Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S.-H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Angew. Chem., Int. Ed. 2008, 47, 4144. (b) Ma, L.-Q.; Abney, C.; Lin, W.-B. Chem. Soc. Rev. 2009, 38, 1248. (c) Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502. (d) Harding, J. L.; Reynolds, M. M. J. Am. Chem. Soc. 2012, 134, 3330. (12) (a) Xiong, R.-G.; Xue, X.; Zhao, H.; You, X.-Z.; Abrahams, B. F.; Xue, Z. Angew. Chem., Int. Ed. 2002, 41, 3800. (b) Zhao, B.; Chen, X.Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. J. Am. Chem. Soc. 2004, 126, 5394. (c) Zhao, B.; Gao, H.-L.; Chen, X.-Y.; Cheng, P.; Shi, W.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. Chem. -Eur. J. 2006, 12, 149. (13) (a) Huang, Y. G.; Wang, X. T.; Jiang, F. L.; Gao, S.; Wu, M. Y.; Gao, Q.; Wei, W.; Hong, M. C. Chem.Eur. J. 2008, 14, 10340. (b) Novitchi, G.; Pilet, G.; Ungur, L.; Moshchalkov, V. V.; Wernsdorfer, W.; Chibotaru, L. F.; Luneau, D.; Powell, A. K. Chem. Sci. 2012, 3, 1169. (14) (a) Moreno, Y.; Cárdenas, G.; Tissot, A.; Peña, O.; Pivan, J.-Y.; Baggio, R. Inorg. Chem. 2008, 47, 2334. (b) Berni, E.; Gosse, I.; Badocco, D.; Pastore, P.; Sojic, N.; Pinet, S. Chem.Eur. J. 2009, 15, 5145. (c) Chen, X.-L.; Yao, Y.-J.; Hu, H.-M.; Chen, S.-H.; Fu, F.; Han, Z.-X.; Qin, T.; Yang, M.-L.; Xue, G.-L. Inorg. Chim. Acta 2009, 362, 2686. (d) Xu, X.-X.; Liu, X.-X.; Sun, T.; Zhang, X.; Wang, E.-B. J. Coord. Chem. 2009, 62, 2755. (e) Thuéry, P.; Masci, B. CrystEngComm 2012, 14, 131. (15) (a) Tynan, E.; Jensen, P.; Kruger, P. E.; Lees, A. C. Chem. Commun. 2004, 776. (b) Bellusci, A.; Barberio, G.; Crispini, A.; Ghedini, M.; La Deda, M.; Pucci, D. Inorg. Chem. 2005, 44, 1818. (c) Feng, R.; Chen, L.; Chen, Q.-H.; Shan, X.-C.; Gai, Y.-L.; Jiang, F.-
of-phase AC susceptibility, suggesting the presence of slow relaxation of the magnetization in this new family of 4f-3d MOFs. This work illustrates the approach of using an N, O mixed donor ligand to obtain heterometallic MOFs with an unprecedented topological structure, as well as interesting magnetic properties.
■
ASSOCIATED CONTENT
S Supporting Information *
FTIR spectra (Figure S1) and PXRD patterns (Figure S2) and TGA (Figure S3 and Table S1) and magnetic data (Table S2 and Figures S4−S11) and selected bond lengths and angles (Table S3) and X-ray crystallographic files (CIF) for 1−8. This material is available free of charge via the Internet at http:// pubs.acs.org.
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Fax: (+86)22-23502458. Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS We gratefully acknowledge the “973” program (2012CB821702), NSFC (21171100 and 90922032), and MOE (20120031130001).
■
REFERENCES
(1) (a) Kahn, O. Molecular Maleculor; Wiley−VCH: Weinheim, 1993; Chapter 11. (b) Winpenny, R. E. P. Chem. Soc. Rev. 1998, 27, 447. (c) Benelli, C.; Gatteschi, D. Chem. Rev. 2002, 102, 2369. (d) Gatteschi, D.; Sessoli, R.; VillainJ., Molecular Nanomagnets; Oxford University Press: New York, 2006. (e) Kostakis, G. E.; Hewitt, I. J.; Ako, A. M.; Mereacre, V.; Powell, A. K. Phil. Trans. R. Soc. A 2010, 368, 1509. (2) (a) Zhao, B.; Cheng, P.; Dai, Y.; Cheng, C.; Liao, D.-Z.; Yan, S.P.; Jiang, Z.-H.; Wang, G.-L. Angew. Chem., Int. Ed. 2003, 8, 42. (b) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420. (c) Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 15648. (d) Mori, F.; Nyui, T.; Ishida, T.; Nogami, T.; Choi, K. Y.; Nojiri, H. J. Am. Chem. Soc. 2006, 128, 1440. (e) Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clérac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 4926. (f) Bogani1, L.; Wernsdorfer, W. Nat. Mater. 2008, 7, 179. (g) Novitchi, G.; Wernsdorfer, W.; Chibotaru, L. F.; Costes, J. P.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2009, 48, 1614. (3) (a) Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656. (b) Maheswaran, S.; Chastanet, G.; Teat, S. J.; Mallah, T.; Sessoli, R.; Wernsdorfer, W.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2005, 44, 5044. (c) Stamatatos, T. C.; Foguet, A. D.; Lee, S.-C.; Stoumpos, C. C.; Raptopoulou, C. P; Terzis, A.; Wernsdorfer, W.; Hill, S. O.; Perlepes, S. P.; Christou, G. J. Am. Chem. Soc. 2007, 129, 9484. (d) Zeng, M. H.; Yao, M. X.; Liang, H.; Zhang, W. X.; Chen, X. M. Angew Chem. Int. Ed. 2007, 46, 1832. (e) Moubaraki, M. S.; Hudson, T.; Robson, R. Eur. J. Inorg. Chem. 2008, 49, 5953. (4) (a) Chen, Q.; Zeng, M. H.; Zhou, Y. L.; Zou, H. H.; Kurmoo, M. Chem. Mater. 2010, 22, 2114. (b) Zou, L. F.; Zhao, L.; Guo, Y. N.; Yu, G. M.; Guo, Y.; Tang, J. K.; Li, Y. H. Chem. Commun. 2011, 47, 8659. (c) Karasawa, S.; Koga, N. Inorg. Chem. 2011, 50, 5186. (d) Pattacini, R.; Teo, P.; Zhang, J.; Lan, Y.; Powell, A. K.; Nehrkorn, J.; Waldmann, O.; Andy, T. S.; Braunstein, P. Dalton Trans. 2011, 40, 10526. (e) Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. Polyhedron 2011, 30, 2987. (f) Zhang, S. 1224
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225
Crystal Growth & Design
Article
L.; Hong, M.-C. Cryst. Growth Des. 2011, 11, 1705. (d) Liu, H.-Y.; Yuan, Y.-J.; Yu, Z.-T.; Zou, Z.-G. CrystEngComm 2011, 13, 2391. (16) (a) Szeto, K. C.; Kongshaug, K. O.; Jakobsen, S.; Tilset, M.; Lillerud, K. P. Dalton Trans. 2008, 15, 2054. (b) Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 14382. (c) Wang, C.; Lin, W.-B. J. Am. Chem. Soc. 2011, 133, 4232. (d) Jacobs, T.; Hardie, M. J. Chem.-Eur. J 2012, 18, 267. (e) Fang, M.; Shi, P.-F.; Zhao, B.; Jiang, D.-X.; Cheng, P.; Shi, W. Dalton Trans. 2012, 41, 6820. (17) (a) Li, F.; Zhang, B.-B.; Li, X.-N; Jiang, Y.; Chen, L.; Li, Y.-Q.; Sun, L.-C. Angew. Chem., Int. Ed. 2011, 50, 12276. (b) Li, F.; Jiang, Y.; Zhang, B.-B.; Huang, F.; Gao, Y.; Sun, L.-C. Angew. Chem., Int. Ed. 2012, 51, 2417. (c) Dai, J.-W.; Tong, M.-L. CrystEngComm 2012, 14, 2124. (18) Kanungo, B. K.; Baral, M.; Bhattacharya, S.; Sahoo, Y. Synth. Commun. 2003, 33 (18), 3159. (19) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112. (20) (a) Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr Comput. Commission Newsl., 2006, 7, 4. Available at http://iucrcomputing.ccp14.ac.uk/iucr-top/comm/ ccom/newsletters/2006nov/. (b) Blatov, V. A. 2006, http://www. topos.ssu.samara.ru/starting.html. (c) O’Keeffe, M. Reticular Chemistry Structure Resource (http://rcsr.anu.edu.au/). (21) (a) Klöwer, F.; Lan, Y.; Nehrkorn, J.; Waldmann, O.; Anson, C. E.; Powell, A. K. Chem.Eur. J. 2009, 15, 7413. (b) Mondal, K. C.; Kostakis, G. E.; Lan, Y.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2009, 48, 9205. (c) Zhao, X.-Q.; Lan, Y. H.; Zhao, B.; Cheng, P.; Ansona, C. E.; Powell, A. K. Dalton Trans. 2010, 39, 4911. (d) Chandrasekhar, V.; Pandian, B. M.; Azhakar, R.; Vittal, J. J.; Clérac, R. Inorg. Chem. 2007, 46, 5140. (22) (a) Lin, P. H.; Burchell, T. J.; Clerac, R.; Murugesu, M. Angew. Chem., Int. Ed. 2008, 47, 8848. (b) Kanegawa, S.; Maeyama, M.; Nakano, M.; Koga, N. J. Am. Chem. Soc. 2008, 130, 3079. (c) Zheng, Y.-Z.; Lan, Y.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2008, 47, 10813. (d) Bernot, K.; Luzon, J.; Bogani, L.; Etienne, M.; Sangregorio, C.; Shanmugam, M.; Caneschi, A.; Sessoli, R.; Gatteschi, D. J. Am. Chem. Soc. 2009, 131, 5573. (23) Bartolome, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C. Phys. Rev. B 2009, 80, 014430. (24) Luis, F.; Bartolome, J.; Fernandez, J. F.; Tejada, J.; Hernandez, J. M.; Zhang, X. X.; Ziolo, R. Phys. Rev. B 1997, 55, 11448. (25) Guo, Y.-N.; Chen, X.-H.; Xue, S.; Tang, J. Inorg. Chem. 2011, 50, 9705. (26) Lin, S.-Y.; Zhao, L.; Guo, Y.-N.; Zhang, P.; Guo, Y.; Tang, J.-K. Inorg. Chem. 2012, 51, 10522.
1225
dx.doi.org/10.1021/cg301668g | Cryst. Growth Des. 2013, 13, 1218−1225