Domino Reactions in Organic Synthesis - ACS Publications

0009-2665/96/0796-0115$25.00/0 © 1996 American Chemical Society ... definition. Thus, a domino reaction is a process involving two or more bond-formi...
75 downloads 0 Views 1MB Size
Chem. Rev. 1996, 96, 115−136

115

Domino Reactions in Organic Synthesis Lutz F. Tietze Institute of Organic Chemistry of the Georg-August-Universita¨t, Tammannstrasse 2, D-37077 Go¨ttingen, Germany Received August 31, 1995 (Revised Manuscript Received November 17, 1995)

Contents I. II. III. IV. V. VI. VII. VIII. IX. X.

XI. XII. XIII. XIV. XV.

Introduction Historical Background Classification of Domino Reactions Cationic Domino Reaction Anionic Domino Reaction Radical Domino Reaction Pericyclic Domino Reaction Transition Metal-Catalyzed Domino Reaction Enzymatic Domino Reaction Anionic−Pericyclic and Related Domino Reactions 1. Domino Knoevenagel Hetero-Diels−Alder Reaction a. Scope and Limitation b. Synthesis of Natural Products and Their Analogues by Domino Knoevenagel Hetero-Diels−Alder Reactions 2. Domino Imine Formation Hetero-Diels−Alder Reaction for the Synthesis of Azaheterocycles 3. Domino Knoevenagel Ene Reaction/Domino Knoevenagel Ene Carbonyl Ene Reaction 4. Domino Knoevenagel Allylsilane Cyclization/ Domino Norrish I Knoevenagel Allylsilane Cyclization 5. Domino Sakurai Carbonyl Ene Reaction 6. Domino Pictet−Spengler Ene Reaction Photochemically Induced Reactions Synthesis of Enantiopure 1,3,5-Triols by a Domino Process Synthesis of Enantiopure Tertiary and Secondary Homoallylic Alcohols by a Domino Process Acknowledgments References

115 116 117 118 119 119 120 121 122 122 122 122 126 129 129 130 130 131 131 132

Lutz F. Tietze, born in Berlin, Germany, in 1942 studied Chemistry in Kiel and Freiburg and obtained his Ph.D under the guidance of B. Franck at the University of Kiel in 1968. After a postdoctorate at the MIT in Cambridge, MA, with G. Bu¨chi and in Cambridge, England with A. R. Battersby he obtained his habilitation in Mu¨nster in 1975. From 1977 to 1978 he was Professor in Dortmund and since 1978 he has been the Professor and Director of the Institute of Organic Chemistry in Go¨ttingen. A honorable call to a Chair of Organic Chemistry at the University of Mu¨nster was declined. He served as Dean and Vice Dean of the Faculty of Chemistry in Go¨ttingen for eight years, and was appointed Visiting Professor at the Universities of Madison, WI, and Strasbourg, France. Also, he is a member on the Board of the Faculties of Chemistry in Germany. He has received several awards, is a member of the Academy of Sciences in Go¨ttingen, and was nominated in 1994 Dr. h.c. of the University of Szeged, Hungary. His research interests include the development of selective and efficient synthetic methods such as domino reactions, transformations under high pressure, the synthesis of natural products, and the development of new concepts for a selective anticancer therapy. He has published over 215 papers, owns 17 patents, and has written two books together with T. Eicher for the teaching of organic chemistry.

132 132 132

I. Introduction Synthetic organic chemistry has developed in a fascinating way over the past decades. Several highly selective procedures have been developed which allow the preparation of complex molecules with excellent regio-, chemo-, diastereo-, and enantioselectivity. One of the most remarkable examples is the synthesis of palytoxin with 64 stereogenic centers, from which over 1019 different stereoisomers could exist.1 Despite this great success and the importance of chemistry to our society its public image has deteriorated. This can be explained by the increasing importance of environmental issues to our society and the fear that chemistry could negatively influence the ecological balance. Today it is not only a question of what we can synthesize, but how we do 0009-2665/96/0796-0115$25.00/0

it. Major problems in chemical production are the handling of waste, the search for environmental tolerable procedures, the preservation of resources, and the increase in efficiency. The solution of these problems would not only be favorable for the environment, but also allow a reduction in production cost. The usual procedure for the synthesis of organic compounds is the stepwise formation of the individual bonds in the target molecule. However, it would be much more efficient if one could form several bonds in one sequence without isolating the intermediates, changing the reaction conditions, or adding reagents.2 It is obvious that this type of reaction would allow the minimization of waste and thus making the waste management unnecessary since compared to stepwise reactions the amount of solvents, reagents, adsorbents, and energy would be dramatically decreased. In addition the amount of labor would go down. Thus, these reactions would allow an ecologically and economically favorable production. We call this type of transformation a © 1996 American Chemical Society

116 Chemical Reviews, 1996, Vol. 96, No. 1

domino reaction. The name was chosen from the game where one puts up several domino pieces in one row and in agreement with the time-resolved succession of reactions, if one knocks over the first domino, all the others follow without changing the conditions. This picture of a domino reaction is also in agreement with its political meaning, although in a negative way. For this type of transformation also the expression cascade has been used; however, this word does not describe the real meaning and is also used in many ways in science for other phenomena. Thus, it is not very applicable as a terminus technicus.3 The usefulness of a domino reaction is correlated firstly to the number of bonds which are formed in one sequenceswe call this the bond-forming efficiency (or bond-forming economy), secondly, the increase in structural complexity (structure economy), and, thirdly, to its suitability for a general application.

Tietze

terone6 by an acid-catalyzed domino cyclization of the monocyclic trieneyne 6 to give the tetracyclic 7 which is then converted to progesterone 9 via 8 (Scheme 3). Scheme 3. Biomimetic Domino Synthesis of Progesterone

II. Historical Background In nature domino reactions are rather common although a direct comparison to the reactions in a flask is not possible because of the involvement of multienzymes which can allow the catalysis of different steps. However, a beautiful example in this respect is the biosynthesis of fatty acids starting from acetate.4 Quite important, the reaction usually stops after putting together the acetate 1 as starting unit with 7 or 8 equiv of malonyl-SCoA 2 to give either palmitic acid or stearic acid 3. Such a control is rather difficult to mimic in a reaction flask (Scheme 1). Scheme 1. Biosynthesis of Fatty Acids

Another beautiful example is the biosynthesis of steroids from squalene epoxide 4 which is transformed highly selectively into lanosterol 5 with the formation of four C-C bonds and six stereogenic centers (Scheme 2).5 This scheme has been used by Johnson for the elegant chemical synthesis of proges-

It can be assumed that also in the biosynthesis of alkaloids,7 e.g. tropinone 138 and daphnilactone A 19, several bond-forming reactions follow each other in one sequence. With reference to this thought, the first domino reaction of a natural product was performed by Scho¨pf and Robinson9 putting together a mixture of succindialdehyde (10), methylamine (11), and acetonedicarboxylic acid (12) to give the bicyclic tropinone (13) which is a structural component of several alkaloids such as cocaine and atropine (Scheme 4). The key step in this synthesis is a double Scheme 4. Biomimetic Domino Synthesis of Tropinone

Scheme 2. Biosynthesis of Steroids from Squalene Epoxide

Mannich reaction. However, even the normal Mannich reaction10 combining an aldehyde, generally formaldehyde, a ketone, and a secondary amine is a domino reaction and presumably the first domino reaction described in literature. In contrast, the wellknown Diels-Alder reaction may not be attributed as a domino reaction, although two bonds are usually formed in a sequence. Also, for the synthesis of daphnilactone A (19), a highly efficient and selective domino reaction has

Domino Reactions in Organic Synthesis

Chemical Reviews, 1996, Vol. 96, No. 1 117

Scheme 5. Biomimetic Domino Synthesis of Daphnilactone A

been designed according to the proposed biosynthesis.11a Four rings and six new stereogenic centers are formed in one sequence starting from 14 to give 17 via the proposed intermediates 15 and 16. The first step is the oxidation of 14 to give a dialdehyde which cyclizes to a 3,4-dihydropyridine on treatment with ammonia and acetic acid followed by a domino hetero-Diels-Alder aza ene reaction. Finally, catalytic hydrogenation, reduction, oxidation, and condensation completes the synthesis of 19 from 17 via 18 (Scheme 5). A novel example of this elegant approach is the synthesis of (+)-codaphniphylline (20).11b

III. Classification of Domino Reactions In the last years there has been an explosion in the development of new domino reactions. Clearly many of these reactions do not meet our strict definition. Thus, a domino reaction is a process involving two or more bond-forming transformations (usually C-C bonds) which take place under the same reaction conditions without adding additional reagents and catalysts, and in which the subsequent reactions result as a consequence of the functionality formed in the previous step. A substrate with several functionalities which undergo a transformation individually in the same pot is not a domino reaction. Clearly, the preliminary formation of a reactive intermediate such as a carbocation or a carbanion is not counted as a reaction step. On the other hand, the formation of a diene by a retro-Diels-Alder reaction with a subsequent cycloaddition would be considered as a domino reaction.

It seems desirable to introduce a clear classification of the different types of domino reactions which does not only allow a better understanding of the existing domino reactions, but also facilitates the invention of new domino reactions. According to the mechanism of the first step, one can distinguish between a cationic, anionic, radical, pericyclic, photochemical, and transition-metal induced transformation which can be combined with reactions of the described type in a second, a third, or even in a fourth step. Combination of reactions of the same mechanism is called homo-domino reactions, whereas a sequence of reactions with different mechanisms are called hetero-domino reactions (Table 1). It is understandable that homo-domino reactions such as cationiccationic (1a/2a), anionic-anionic (1b/2b), radicalradical (1c/2c), pericyclic-pericyclic (1d/2d), and transition metal-catalyzed reactions (1g/2g) are found in the literature more frequently, but there are also very powerful hetero-domino reactions such as the anionic-pericyclic sequence (1b/2d) or even the anionic-pericyclic-pericyclic sequence (1b/2d/3d) which have both been investigated by us for many years. Since this review is not supposed to be a general and comprehensive overviewssuch a piece of work has recently been published in Angewandte Chemie2sI shall give a few new examples of the different known types of domino reactions according to our classification with the inclusion of our own work stressing the anionic-pericyclic domino reactions and novel developments.

Table 1. Classification of Domino Reactions According to the Mechanism of the Different Steps 1st step 1a 1b 1c 1d 1e 1f 1g 1h

cationic anionic radical pericyclic photochemical carbinoid transition metal-catalyzed oxidation/reduction

2nd step 2a 2b 2c 2d 2e 2f 2g 2h

cationic anionic radical pericyclic photochemical carbinoid transition metal-catalyzed oxidation/reduction

3rd step 3a 3b 3c 3d 3e 3f 3g 3h

cationic anionic radical pericyclic photochemical carbinoid transition metal-catalyzed oxidation/reduction

118 Chemical Reviews, 1996, Vol. 96, No. 1

Tietze

Scheme 6. Synthesis of the Triterpene Sophoradiol by a Cationic Domino Reaction

IV. Cationic Domino Reaction A novel application of the acid-catalyzed cyclization of polyenes for the biomimetic synthesis of steroids is the preparation of the triterpene sophoradiol (23) by a cationic domino reaction.12 Treatment of the fluoro polyeneyne 21 with trifluoroacetic acid gives the pentacyclic compound 22 which was converted to sophoradiol (23) by oxidative cleavage of the allene moiety, elimination of the fluorine atom, and reduction (Scheme 6). The fluorine is important for the control of the regioselectivity as a cation-stabilizing auxiliary which can easily be removed after cyclization using SnCl4. Indeed, using SnCl4 instead of HF for the cyclization, defluorinated 22 is obtained with 50% yield. Another cationic domino reaction which follows the way of biosynthesis is the acid-catalyzed cyclization of the diepoxide 24 to give bistetrahydrofuran 25 as a 60:40 mixture of the C-12 epimers in over 30% yield (Scheme 7).13

An interesting ring-enlarging annulation can be achieved also by a cationic domino process using an alkyne 27 containing an acetal moiety and a cyclic silyl acyloin 28 in the presence of excess boron trifluoride to give the bicyclic diones 31 or 32 (Scheme 8).14 The first step is a Mukaiyama aldol reaction to Scheme 8. Ring-Enlarging Annulation by a Cationic Domino Reaction

Scheme 7. Biomimetic Polyether Synthesis by a Cationic Domino Reaction

provide an R-(silyloxy)cycloalkanone 29 which undergoes a pinacol ring enlargement to give 30 followed by BF3‚Et2O promoted cyclization of the alkynyl ketone either in a 5-exo-dig fashion by employing disubstituted alkynes to provide 31 (R1 * H) or in a 6-endo-dig fashion by employing terminal alkynes to provide 32 (R1 ) H) in 50-87% yield. Another nice example of a cationic domino reaction is the synthesis of cis-acridines 35 and other all-cisfused annulated N-heterocycles from 4-(silyloxy)quinolinium salts 33 and 2-(silyloxy)-1,3-butadienes 34 in 48-99% yield (Scheme 9).15 Scheme 9. Synthesis of Acridines by a Cationic Domino Annulation of 4-(Silyloxy)quinolinium Salts

Treatment with trimethoxymethane in methanol in the presence of PPTS forms a pyran ring to give a tetracycle which contains the whole left part of the polyether etheromycin (26).

Domino Reactions in Organic Synthesis

Several other cationic domino reactions are known.16-43

V. Anionic Domino Reaction The anionic homo-domino reaction is the most often encountered domino reaction in literature especially by combining two Michael additions. Thus, the skeleton of natural products such as seychellene and patchouli alcohol can easily be obtained by employing this type of reaction where the formed enolate can be quenched with formaldehyde or iodomethane.44 Thus, reaction of 36 with the strong base LHMDS followed by treatment with gaseous formaldehyde afforded the tricyclo[5.3.1.0]undecane 37 in 83% yield as a single isomer (Scheme 10). Scheme 10. Anionic Domino Reaction for the Synthesis of Tricycloundecanes

Chemical Reviews, 1996, Vol. 96, No. 1 119

example reaction of 42 with SmI2 leads to 43 in 83% yield (Scheme 12). As already mentioned, a multitude of other anionic domino reactions in different synthetic contexts have been published.47-116

VI. Radical Domino Reaction Similar to the anionic domino reaction, the combination of several radical reactions has also been widely used for the synthesis of polycyclic compounds. However, in most cases only one-component reactions have been employed using the advantage of an intramolecular reaction. Thus, besides the synthesis of progesterone (9) by a domino cationic cyclization there is also the possibility to use domino radical cyclizations for the preparation of such a compound. As an example, the iododiene 44, easily available from geraniol, forms the rings C and D in 85% yield and very good stereoselectivity upon treatment with Bu3SnH in benzene to give 45 via the intermediate radicals 46-48117 (Scheme 13). Several other exScheme 13. Domino Radical Cyclization for the Synthesis of the C,D-Ring Unit of Steroids

Also a true anionic domino reaction goes on by mixing the salt of N-methylaniline 38 and 2 equiv of an aliphatic aldehyde to give dihydroquinolines 40 via 39.45 40 can be oxidized to afford the corresponding quinolinium salts (Scheme 11). This is a very Scheme 11. Anionic Domino Reaction for the Synthesis of 2,3-Disubstituted Quinolinium Salts

simple procedure for the synthesis of these interesting compounds; unfortunately though, the yields do not exceed 50%. SmI2 in conjunction with catalytic Fe(III) species allows a Barbier-type cyclization between ketones and a variety of alkyl halides. This process can be used in an anionic domino process to synthesize a great variety of bicyclo[m.n.o] and tricyclo[m.n.o.o] ring systems via the initial formation of an organosamarium species.46 This approach includes the formation of the angular triquinane, the ophiobolane, the phorbol, and the cholestane ring system. As an

amples are also known of this type of reaction.118 Recently, a radical domino reaction was also employed for the synthesis of the taxane skeleton starting from 49 which first undergoes a radical macrocyclization to provide 50, which then cyclizes to 51 as a 3:1 mixture of two diastereomers (Scheme 14).119 Although the yield is not very high, this is a Scheme 14. Domino Radical Cyclization for the Synthesis of the Taxane Skeleton

Scheme 12. SmI2-Promoted Anionic Domino Reaction

straightforward approach to the taxane ring system.

120 Chemical Reviews, 1996, Vol. 96, No. 1

In particular, the homo radical domino reaction is a useful tool for the construction of complex molecules.120-154,238

Tietze Scheme 16. Synthesis of the Taxane Skeleton by a Combination of a Cycloreversion and Two Diels-Alder Reactions

VII. Pericyclic Domino Reaction Pericyclic reactions such as the Diels-Alder, ene, or electrocyclic reactions are by themselves extremely useful transformations. However, by combining two or more pericyclic reactions the effect can be multiplied. Thus, a key step in the synthesis of pagodane (56) was a domino Diels-Alder reaction starting from the tetraene 52 and maleic anhydride (53) to give 55 via the intermediate 54 (Scheme 15).155 Scheme 15. Domino Diels-Alder Reaction for the Synthesis of Pagodane Scheme 17. Combination of Two Pericyclic Reactions for the Synthesis of Pyrrolizidine Alkaloids

The combination of a retro-Diels-Alder and a Diels-Alder reaction can also be highly useful.156 A novel nice application of a combination of a cycloreversion [4 + 2] cycloaddition is the synthesis of the taxane skeleton 60 in which all three rings are prepared in a Diels-Alder reaction.157 Heating of 57 gives the tetraene 58 which undergoes first an intermolecular Diels-Alder reaction with 59 to provide 61 followed by an intramolecular reaction leading to 60 (Scheme 16). However, this is not a domino reaction in its strict definition since the solvent and the Lewis acid being used as a promotor have to be changed for the two cycloadditions; thus, neither Lewis acid, ZnCl2, or BF3‚OEt2 is capable of catalyzing both Diels-Alder reactions. The combination of a Diels-Alder reaction and a 1,3-dipolar cycloaddition is an excellent procedure for the synthesis of pyrrolizidines, a structural unit which is found in several biological active alkaloids such as hastanecine (65).158 Thus, the nitronate 64 resulting from a Diels-Alder reaction of the nitroalkene 62 and the enol ether 63, gave 66 as a single diastereomer on treatment with dimethyl maleate (Scheme 17). In a strict sense, however, this again is not a domino reaction since the solvents have to be changed and a reagent must be added after the first step.

A domino Claisen-ene strategy was used for the synthesis of (+)-9(11)-dehydroestrone methyl ether (70) starting from the cyclic enol ether 67 and an enantiopure allylic alcohol (Scheme 18).159 The reaction proceeds with a good stereocontrol giving a 90: 10 syn/anti selectivity in the first step and predominantly a 1,2-trans orientation in the following ene reaction. A combination of a 1,3-dipolar cycloaddition of a nitrone 72 obtained from 71 to the activated double bond of cyanoallene 73 followed by a hetero-Cope rearrangement and a retro-Michael reaction with elimination of water allows a highly flexible and stereoselective entry to 3-substituted 2-vinylindoles 77 (Scheme 19).160 As intermediates, compounds 7476 can be assumed. A sequence of an aza-Cope rearrangement with a Mannich reaction has proved to be a highly valuable synthetic procedure as shown in the synthesis of strychnine.161a A new example is the synthesis of the enantiopure antifungal antibiotic (-)-preussin (83,

Domino Reactions in Organic Synthesis

Chemical Reviews, 1996, Vol. 96, No. 1 121

Scheme 18. Domino Claisen-Ene Synthesis of (+)-9(11)-Dehydroestrone Methyl Ether

Scheme 19. Synthesis of 2-Vinylindoles by a Domino Dipolar Cycloaddition Hetero-Cope Rearrangement

Scheme 20. Domino Aza-Cope-Mannich Reaction for the Synthesis of the Antifungal Antibiotic (-)-Preussin

catalyzed transformation of a diazo-1,3-dicarbonyl compound 83 to give a carbonylylide 84 which undergoes a 1,3-dipolar cycloaddition to provide an oxidobridged cycloheptanone derivative 85 (Scheme 21).213 Using a different substrate, the synthesis of Scheme 21. Rhodium-Initiated Domino Cyclization

Scheme 20).161b In the first step the condensation of the secondary amine 78 obtained from (S)-phenylalanine with the aldehyde decanal gives the iminium salt 79 which reacts via 80 to provide 81. Further transformations led to (-)-preussin (82). Especially in the case of the pericyclic domino reactions many different combinations can be employed.162-210

VIII. Transition Metal-Catalyzed Domino Reaction Transition metal-catalyzed transformations are of increasing importance in synthetic organic chemistry. Therefore, the use of this type of transformation as part of a domino reaction will be of increasing interest. Several combinations are already known such as the domino ene reaction211 or the domino Heck reaction.212 A novel example is the rhodium-

the tigliane ring system 86 has been achieved. Palladium-catalyzed C-C bond formations are of great value in synthetic methodology since they are usually catalytic transformations. Even more appropriate is the use of this procedure in a domino reaction. A beautiful new example is the polycyclization of polyenes like 87 to give polyspiranes such as 88 (Scheme 22).214 The method can also be used for the synthesis of triquinanes and propellanes. The transition metal-catalyzed domino reactions will surely have a splendid future which is underlined by the increasing number of publications in this field.46,215-255

122 Chemical Reviews, 1996, Vol. 96, No. 1

Tietze

Scheme 22. Domino Palladium-Catalyzed Synthesis of Polyspiranes

IX. Enzymatic Domino Reaction A novel highly interesting approach in the application of domino reactions is the use of a multienzyme cocktail to catalyze different reactions. This is actually an imitation of a multienzyme complex as already mentioned for the synthesis of fatty acids. Thus, in a domino aldol reaction catalyzed by the aldolases 2-deoxyribose 5-phosphate aldolase (DERA) and fructose 1,6-diphosphate aldolase (RAMA), 5-deoxy ketose derivatives 92 can be obtained from simple starting materials such as acetaldehyde 90, 2-substituted acetaldehydes 89, and dihydroxyacetone phosphate (DHAP) 91 as a donor substrate (Scheme 23).256

an allylsilane addition as well as a 1-oxa-1,3-butadiene in a hetero-Diels-Alder reaction or as a Michael acceptor (Scheme 25). Scheme 25. Anionic-Pericyclic and Related Domino Reactions (Inter- and Intramolecular)

Scheme 23. Domino Aldol Reaction Using a Multienzyme Cocktail

Moreover, aza analogues may also be formed as intermediates to give e.g. azacycles.

1. Domino Knoevenagel Hetero-Diels−Alder Reaction Another multienzyme cocktail has been used for the synthesis of the precorrin 94 starting from δ-aminolevulinic acid 93 (Scheme 24). In this transScheme 24. Multienzyme Cocktail for the Domino Synthesis of Precorrin-5

formation eight different enzymes have been used including the ALA-dehydratase to form porphobilinogen as well as PBG deaminase and cosynthetase to give the tetracyclic uroporphyrinogen III.257

X. Anionic−Pericyclic and Related Domino Reactions In a typical anionic-pericyclic domino reaction, a highly reactive alkene moiety with a low-energy LUMO is formed in situ by a Knoevenagel condensation of an aldehyde with a 1,3-dicarbonyl compound. The alkene can react in the following step as a dienophile in a Diels-Alder reaction or as an enophile in an ene reaction or as an acceptor moiety in

a. Scope and Limitation The reaction can be performed as a “two-component reaction” putting together a 1,3-dicarbonyl compound and an aldehyde containing a dienophile moiety or as a “three-component reaction” using a mixture of a 1,3-dicarbonyl compound, an aldehyde, and an enol ether or an enamine.2,258 In the first reaction the cycloaddition would be intramolecular and in the second intermolecular. Any cyclic 1,3-dicarbonyl compounds (such as 1,3-cyclohexanediones, indandiones, Meldrum’s acid, or dimethylbarbituric acid) or heterocyclic compounds (such as pyrazolones or isooxazolones) as well as highly reactive acyclic 1,3dicarbonyl compounds (such as acetylacetone or acetylacetate) can be employed. For the Knoevenagel condensation259 ethylenediammonium diacetate (EDDA) is used as a mild catalyst at 20 °C in a wide range of solvents. The subsequently occurring hetero-Diels-Alder reaction usually also takes place at room temperature without additional catalyst. Only with less reactive 1,3dicarbonyl compounds like the heteroanalogues pyrazolones and isoxazolones and within the formation of highly strained molecules higher reaction temperature has to be used; both steps are then performed at this temperature. Clearly, the Knoevenagel condensation and the cycloaddition can also be promoted by a Lewis acid allowing the domino reaction to run at lower temperature, however, in some of these cases the Lewis

Domino Reactions in Organic Synthesis

Chemical Reviews, 1996, Vol. 96, No. 1 123

Scheme 26. Domino Knoevenagel Hetero-Diels-Alder Reaction with Aromatic Aldehydes

acid has to be added after the first step to avoid a carbonyl-ene reaction of the used aldehyde. Any type of aromatic aldehydes such as substituted benzaldehydes or condensed compounds such as naphthaldehyde and aliphatic aldehydes containing a double bond in the side chain can be used in the domino reaction. The transformations are highly stereoselective giving either the cis-annulated compounds using aromatic and R,β-unsaturated aliphatic aldehydes or the trans-annulated compounds employing aliphatic aldehydes. Thus, reaction of the aromatic aldehyde 95 with Meldrum’s acid (96) at 20 °C gave exclusively the cis-fused tetracycle 98 (Scheme 26).260 Although the intermediate benzylidene compound 97 cannot be isolated, it can be identified by on-line NMR spectroscopy. Heteroatoms as in 95 may be present in the chain, giving access to different heterocycles. In addition using an (E)-phenyl-substituted dienophile the configuration of the double bond in the aldehydes is retained. Thus, the question whether the cycloaddition follows a concerted or a stepwise mechanism has been solved in favor of the concerted mechanism by using a (E-13CH3)-labeled aldehyde 95. This is in agreement with ab initio calculations.261 In the reaction also other 1,3-dicarbonyl compounds such as pyrazolones and isoxazolones 100 can be used (Scheme 27).262 Here the selectivity depends on the

substituent R1 in 100. With R1 ) tert-butyl one obtains in the reaction with 99 (R ) Me) nearly exclusively the cis annulated compound 101 (R ) Me, R1 ) t-Bu), whereas with decreasing bulkiness of R1 the selectivity is reduced. Astoundingly, for the pyrazolones 100 (R ) Me) with R1 ) H and R1 ) Ph a similar selectivity is found. With the aldehyde 99 (R ) H) the reaction temperature has to be increased due to a decrease of the HOMO energy of the dienophile, since the overlap of the HOMO of the dienophile and the LUMO of the in situ formed 1-oxa1,3-butadiene moiety is most important in these cycloadditions with inverse electron demand. Nearly no limitation exists even in the synthesis of novel highly unusual heterocyclic compounds using different heterocyclic aldehydes. Reaction of 102 with 103 leads to 104 and that of 105 with 103 to 106, also with excellent selectivity and yield. As seen in these examples, changing the length of the tether allows also the preparation of five- and sevenmembered rings (Scheme 28).263 Scheme 28. Synthesis of Unusual Heterocycles by Domino Knoevenagel Hetero-Diels-Alder Reactions

Scheme 27. Domino Knoevenagel Hetero-Diels-Alder Reaction with Pyrazolones

By using chiral 1,3-dicarbonyl compounds the reaction can be carried out with an excellent asymmetric

124 Chemical Reviews, 1996, Vol. 96, No. 1

Tietze

Scheme 29. Diastereoselective Domino Knoevenagel Hetero-Diels-Alder Reaction with a Chiral 1,3-Dicarbonyl Compound

induction of de > 98%.264 Interestingly, because of the sofa conformation265 of the intermediate (Z)benzylidene-1,3-dicarbonyl compound in 108 obtained from 95 and 107, the cycloaddition takes place syn to the bulkier groups at the two stereogenic centers in 108 to give nearly exclusively 109 which on hydrolysis provides the corresponding lactone and the chiral auxiliary ephedrine in 76% yield (Scheme 29). However, the reaction can also be performed in an enantioselective manner using the novel chiral Lewis acid 110 obtained from diacetoneglucose with TiCl4 and Ti(O-i-Pr)4.266 In this reaction, which is actually the first enantioselective domino reaction, both the Knoevenagel condensation of 111 and 112 and the following hetero-Diels-Alder reaction are promoted by the chiral Lewis acid 110 to give 113 with an ee ) 88% (Scheme 30). Interestingly, this reaction

Scheme 31. Domino Knoevenagel Hetero-Diels-Alder Reaction of Aliphatic Aldehydes

Scheme 30. Enantioselective Domino Knoevenagel Hetero-Diels-Alder Reaction

shows an unusual dependence of the enantioselectivity on the temperature.267 The highest induction was obtained at 25 °C, whereas at lower and higher temperature the ee values decreased dramatically. The domino Knoevenagel hetero-Diels-Alder reaction can also be performed using aliphatic aldehydes. This reaction leads to the trans-annulated cycloadducts in high selectivity (Scheme 31).268 Thus, the reaction of 114 with 112 provides nearly exclusively the trans-annulated tricyclic adduct 116. As a side product a trans-1,2-disubstituted cyclohexane derivative is obtained in an ene reaction of the intermediate alkylidene-1,3-dicarbonyl compound

115. Using substituted aldehydes 117-120 with a stereogenic center in R-, β-, γ-, or δ-position to the carbonyl group to give the cycloadducts 121-124, a high asymmetric induction is found (Scheme 32).269 Again, any other 1,3-dicarbonyl compound can be used. Also, there are nearly no limits to the choice of aldehydes. Thus, reaction of the R-phenoxyacetaldehyde 126 containing a dienophile moiety reacts also with dimethylbarbituric acid (112) in the presence of catalytic amounts of EDDA in acetonitrile to give the trans-annulated cycloadduct 128 via 127 together with some ene product 129 (Scheme 33). In addition, as already shown in some other examples one can also vary the dienophile moiety. Thus, the use of aldehydes 130 carrying a cycloalkylidene group as a dienophile moiety leads to interesting spiro compounds 131 (Scheme 34).270 With excellent selectivity again one obtains the transcycloadducts 131 together with the corresponding trans-ene products 132. Also R,β-unsaturated aliphatic aldehydes can be used.271 As in the domino reaction with aromatic aldehydes the cis-annulated adducts are the main products. Whereas citral (133) and 1,3-cyclohexanedione react via the Knoevenagel product in an electrocyclic reaction to give a pyran, other 1,3dicarbonyl compounds such as dimethylbarbituric acid and pyrazolones give the cycloadducts. Reaction of 133 and 103 provided mainly the crystalline 134 together with a small amount of the double bond isomer and the trans-cycloadduct 135 (Scheme 35). However, in this case the usual one-pot procedure gave a lower yield, therefore, the Knoevenagel product was prepared at 20 °C and afterward heated in refluxing decalin.

Domino Reactions in Organic Synthesis Scheme 32. Diastereoselective Domino Knoevenagel Hetero-Diels-Alder Reaction with Chiral Aliphatic Aldehydes

Chemical Reviews, 1996, Vol. 96, No. 1 125 Scheme 34. Synthesis of Spiro Compounds

Scheme 35. Domino Knoevenagel Hetero-Diels-Alder Reaction with Aliphatic r,β-Unsaturated Aldehydes

Scheme 33. Reaction with Phenoxyacetaldehyde

Stereochemistry of the Two-Component Domino Knoevenagel Hetero-Diels-Alder Reaction with an Intramolecular Cycloaddition Step. In the domino Knoevenagel hetero-DielsAlder reaction of aromatic and aliphatic R,β-unsatur-

ated aldehydes, either exclusively or with high preference, the cis-cycloadducts are formed, whereas the aliphatic aldehydes provide the trans-products with high selectivity. An explanation for this phenomenon and the high selectivity is not simple since four different transition structures have to be taken into account due to the existence of two different 1-oxa 1,3-diene moieties either with an (E)- or a (Z)configuration using symmetrical 1,3-dicarbonyl compounds (Scheme 36). In accordance with several experiments and calculations on a high level269,272 it seems justified to assume that using aromatic and aliphatic R,βunsaturated aldehydes an endo-E-syn transition structure is passed to give the cis-cycloadducts, whereas with the normal aliphatic aldehydes the main trans-products are formed via an exo-E-antiand the minor cis-products via an exo-Z-syn transition structure. The high stereocontrol in all cases is clearly due to the two substituents at the terminal double bond of the acceptor moiety which controls the conformation of the chain. We call this effect a sp2-

126 Chemical Reviews, 1996, Vol. 96, No. 1 Scheme 36. Transition Structures of the Intramolecular Hetero-Diels-Alder Reaction of Alkylidene- or Benzylidene-1,3-Dicarbonyl Compounds

Tietze

unstable formylacetate.275 The yields are usually quite high, however, the selectivity decreases. Reaction of the dithianedione 140 with aliphatic and aromatic aldehydes, respectively 142 and 145 in the presence of an enol ether like 141 at room temperature using catalytic amounts of EDDA results in the formation of the cycloadducts 143 and 145, respectively, in excellent yield (Scheme 38).276 Again a wide range of different aldehydes and enol ethers have been used. Scheme 38. Three-Component Domino Knoevenagel Hetero-Diels-Alder Reaction

geminal effect273 which is due to the phenomenon of the 1,3-allylic strain.274 Using nonsymmetrical 1,3-dicarbonyl compounds such as isoxazolones or pyrazolones one must be aware that the main product of the Knoevenagel reaction is not the reacting species in the cycloaddition (Scheme 37). Thus, the Knoevenagel reaction Scheme 37. Mechanism of the Domino Knoevenagel Hetero-Diels-Alder Reaction with Pyrazolones

b. Synthesis of Natural Products and Their Analogues by Domino Knoevenagel Hetero-Diels−Alder Reactions

of 95 with the tert-butylpyrazolone 136 gives exclusively the (Z)-compound 137 which isomerizes at higher temperature to the (E)-compound 139 leading then to the cycloadduct 138 via an endo-E-syn transition structure. Proof for this mechanism is the observation that under irradiation, which allows a Z/E-isomerization of 137/139, the domino reaction already takes place at 40 °C instead of 110 °C.262 Three-Component Domino Knoevenagel Hetero-Diels-Alder Reactions. The domino Knoevenagel hetero-Diels-Alder reaction can also be performed by simply mixing a 1,3-dicarbonyl compound together with an aldehyde and a dienophile such as an enol ether or an enamine. In this mixture dihydropyrans with an acetal moiety are obtained which are excellent building blocks in organic synthesis. Again, several different 1,3-dicarbonyl compounds may be used such as Meldrum’s acid, dimethylbarbituric acid and their thio analogues as well as 1-trichloro-4-oxy-2-butanone as equivalent to the

The domino Knoevenagel hetero-Diels-Alder reaction is an excellent highly efficient tool for the synthesis of natural products and many compounds from nature have been prepared using this method. Since this is not an exhaustive overview I can give only a few examples. Tetrahydrocannabinol and Hexahydrocannabinol. The ingredient of marihuana tetrahydrocannabinol and its hydrogenation product are highly psychoactive compounds. The synthesis of hexahydrocannabinol (149) was performed by condensation of citronellal (119) with 5-pentyl-1,3-cyclohexandione in the presence of EDDA. First the alkylidene-1,3dicarbonyl compound is formed which immediately undergoes a cycloaddition in a highly stereoselective way to give the tricycle 148. Aromatization of 148 leads to enantiopure hexahydrocannabinol (149, Scheme 39).277 In a similar way also the tetrahydrocannabinol 152 was synthesized by applying 146 and the aldehyde 150, obtained from natural linalool in three steps, nearly exclusively, to give the cycloadduct 151 which after aromatization and elimination provides 152. In this reaction the directing geminal disubstituted stereogenic center is destroyed in the final product (Scheme 40).278 The transformation is of special interest since the influence of geminal disubstituted stereogenic centers on the stereocontrol of intramolecular reaction has not been addressed so far. However, several other geminal disubstituted compounds have been investigated by us, but the work has not been published so far.279

Domino Reactions in Organic Synthesis

Chemical Reviews, 1996, Vol. 96, No. 1 127

Scheme 39. Synthesis of Hexahydrocannabinol

Scheme 40. Synthesis of Tetrahydrocannabinol

Scheme 41. Synthesis of Deoxyloganin

Scheme 42. Synthesis of Secologanin Aglycon Ethyl Ether 160

Deoxyloganin and Secologanin. Deoxyloganin and secologanin are monoterpene glycosides and belong to the group of iridoids and secoiridoids, respectively. They are key intermediates in the biosynthesis of the monoterpenoid indole alkaloids, the ipecacuanha, cinchona, and pyrroloquinoline alkaloids. Thus, over 2000 natural compounds descend from these two monoterpenes. The key step in the synthesis of deoxyloganin 155 being the first and so far the only one is the condensation of Meldrum’s acid (96) and the aldehyde 153 which was obtained from citronellal (119). The main domino product 154 was further transformed into deoxyloganin 155 by solvolysis with methanol, reduction with DIBAH, acid-catalyzed elimination, and glycosidation (Scheme 41).280 Secologanin aglycon ethyl ether 160 was obtained via a three-component domino reaction of a monoprotected malone dialdehyde 156, 1,1,1-trichloro-4oxo-2-butanone (157), and the enol ether 158 containing a sulfoxide group to give 159. Thus, the whole carbon skeleton of this complex highly functionalized molecule was set up in one step. Solvolysis, elimination, and cleavage of the thioacetal led to the secologanin derivative 160 (Scheme 42).281

Monoterpenoid Indole Alkaloids of the Corynanthe and Valesiachotamine Group. The monoterpenoid indole alkaloids are formed in nature from strictosidine which is obtained by condensation of secologanin and tryptamine. Our synthesis followed the biosynthesis by preparation of the strictosidine analogues 163 and 165, respectively in a threecomponent domino reaction using the aldehyde 161, an enol ether 162 and dimethylbarbituric acid (112) or Meldrum’s acid (96). By using dimethylbarbituric

128 Chemical Reviews, 1996, Vol. 96, No. 1

Tietze

Scheme 43. Synthesis of Indole Alkaloid Derivatives of the Corynanthe Type

Scheme 44. Synthesis of the Indole Alkaloid Dihydroantirhine

acid 112 the reaction leads via 163 to the corynanthetype alkaloid 164 (Scheme 43),282 whereas with Meldrum’s acid (96) the valesiachotamine alkaloid dihydroantirhine (167) could be synthesized (Scheme 44).283 In the first step the whole carbon skeleton of 167 is constructed in a single step to give the strictosidine analogue 165 which after hydrogenation and reduction leads to 167. In both reactions the stereocontrol of the stereogenic center in 161 can be reversed by using substrates either carrying a tosyl group or a hydrogen at the indole nitrogen. Heterosteroids and D-Homosteroids. Heterosteroids containing either nitrogen or oxygen in the rings A and B as well as D-homosteroids are of great interest for medicine. Both systems can be obtained again in a great variety by employing the domino Knoevenagel hetero-Diels-Alder approach. Reaction of the e.g. pyrazolone 103 with the enantiopure aldehyde 168 obtained from the Hajos-Wiechert ketone, gives the tetracyclic steroid analogue 169.284 A somewhat different reaction takes place if one uses the aldehyde 170, obtained from estrone methyl ether in a few steps, containing a monosubstituted dienophile moiety (Scheme 45). Presumably mainly due to a change of the coefficients at the double bond a bridged compound is obtained instead of an annulated system. Thus, reaction of 170 with 112 leads to the D-homosteroid derivative 171; with Meldrum’s acid the lactone 172 is obtained since loss of acetone and CO2 or CO takes place simultaneously.285 A similar reaction takes place using secologanin (160) (β-glycosyl instead of OEt) which contains a δ,unsaturated aldehyde moiety with Meldrum’s acid (96) to give homoiridoids.286

Scheme 45. Synthesis of Heterosteroids and D-Homosteroids

Domino Reactions in Organic Synthesis

2. Domino Imine Formation Hetero-Diels−Alder Reaction for the Synthesis of Azaheterocycles Besides the in situ formation of activated 1-oxa1,3-butadienes by a Knoevenagel condensation there is also the possibility for the simple in situ preparation of aza- and diazabutadienes by condensation of compounds containing an enamine and an aminoimine moiety, respectively. Thus, reaction of the aminothiadiazole 174 with the benzaldehydes 173 and 178, respectively in refluxing xylene gave the trans-annulated cycloadducts 176 and 177 in 77% yield as a 1:11 mixture. As intermediates the 1,3diaza-1,3-butadienes 175 and 179, respectively can be assumed which both lead to 176 and 177 in the same ratio. This clearly shows that in accordance with the ab initio calculations the cycloaddition is not concerted (Scheme 46).287 Scheme 46. Synthesis of Azaheterocycles via a 1,3-Diaza-1,3-butadiene

Chemical Reviews, 1996, Vol. 96, No. 1 129 Scheme 47. Synthesis of Azaheterocycles via a 2-Amino-1,3-butadiene

results. Thus, condensation of 183 with mesoxalate 184 in benzene with azeotropic removal of water followed by treatment with TMS triflate in t-BuOMe gave the piperidine derivatives 186 and 187 in 85% yield and a ratio of 7.2:1; with TBDMS triflate 98% yield and a ratio of 6.1:1 was achieved (Scheme 48). Scheme 48. Intramolecular Cyclization of Imines from Mesoxalates

By using diisopropyl instead of diethyl mesoxalate in toluene with TMS triflate, the corresponding piperidine derivatives 186 and 187 (i-Pr instead of Et) were obtained in a 1:11.7 ratio and 72% yield. Also allylsilanes and monosubstituted alkenes as terminating group may be employed to afford cyclic nonproteinogenic amino acids.290

3. Domino Knoevenagel Ene Reaction/Domino Knoevenagel Ene Carbonyl Ene Reaction A 2-aza-1,3-butadiene is formed as an intermediate by condensation of the aromatic aldehyde 180 with an aminoisoxazole 181 which leads to the transannulated 182 in 62% yield.288 The stereocontrol can be completely reversed by changing the substituents at the dienophile and the benzene moiety (Scheme 47). In a similar way, condensation of unsaturated amines with mesoxalate gives imines with two electron-withdrawing groups which cyclize under the influence of a Lewis acid to provide azaheterocycles in excellent yield.289 However, this is not a domino reaction in its strict definition since after condensation on a Dean-Stark trap a Lewis acid has to be added and sometimes a change of solvent gives better

A highly efficient and stereoselective way to synthesize trans-1,2-disubstituted cyclohexanes and cyclopentanes is the combination of a Knoevenagel condensation of an aldehyde containing an ene moiety with an acyclic 1,3-dicarbonyl compound or analogues like malonate, acetylacetate, cyanoacetate, and malonodinitrile. Again, as an intermediate a highly reactive olefinic double bond is formed which can undergo a thermal or better Lewis acid-induced ene reaction. By using aliphatic aldehydes containing a highly reactive ene moiety, it is appropriate to add the Lewis acid after the condensation otherwise a Prins reaction of the aldehyde can take place. As an example reaction of dimethyl malonate (188) and the aldehyde 189 leads exclusively to the trans-1,2disubstituted cyclohexane 191.291 By using citronellal, the enantiopure sesquiterpene veticadinol 192

130 Chemical Reviews, 1996, Vol. 96, No. 1

was synthesized for the first time in a highly efficient way (Scheme 49).292 By employing aldehydes with

Tietze Scheme 51. Domino Knoevenagel Allylsilane Cyclization

Scheme 49. Domino Knoevenagel Ene Reaction

stereogenic centers, excellent asymmetric inductions in cyclopentane273 and cyclohexane291 formation were observed. A combination of three C-C bond-forming transformations in one sequence is found in the reaction of acetoacetate (193) with citronellal (194) to give the decalin derivative 195 with four new stereogenic centers as a single diastereomer (Scheme 50). Scheme 50. Domino Knoevenagel Ene Carbonyl Ene Reaction

In some cases it may not even be necessary to synthesize the needed allylsilanes in a separate step since they can be obtained from the corresponding [(trimethylsilyl)methyl]cycloalkanones in situ by a photochemically induced Norrish I cleavage.295 Thus, irradiation of a mixture of 2-[(trimethylsilyl)methyl]cyclohexanone (201) and dimethyl malonate (188) in the presence of a Lewis acid gave the cyclopentane derivative 197 with high stereoselectivity (Scheme 52). Scheme 52. Domino Norrish I Knoevenagel Allylsilane Cyclization

4. Domino Knoevenagel Allylsilane Cyclization/ Domino Norrish I Knoevenagel Allylsilane Cyclization The formation of trans-1,2-disubstituted cyclopentanes and cyclohexanes can also be achieved using aldehydes with an allylsilane moiety. Reaction of 188 with 196 gives the trans-1,2-disubstituted cyclopentane 197 with excellent selectivity and yield.293 This is somehow unusual since normally the cissubstituted cyclopentanes are formed preferentially in an ene reaction. We explain the high selectivity again with the sp2 geminal effect.273 By using a chiral malonate, enantiopure compounds can also be obtained. Thus, reaction of 198 with 196 provides 199 nearly exclusively which can be reduced to get enantiopure 200 with three new stereogenic centers (Scheme 51).294

5. Domino Sakurai Carbonyl Ene Reaction The domino Sakurai carbonyl ene reaction allows the synthesis of bicyclic systems from acyclic precursors in one sequence. Again, TMS triflate was the best promotor. Treatment of 202 with TMS triflate at -78 °C provided 203 in 43% yield. The reaction

Domino Reactions in Organic Synthesis

proceeds in a highly stereoselective manner since 203 was the only stereoisomer found irrespective of the configuration of the two double bonds. However, small amounts of the other double bond isomers are present since after the cyclization of 202 two successive double bond isomerisations take place to give 203 (Scheme 53).296

Chemical Reviews, 1996, Vol. 96, No. 1 131 Scheme 55. Domino Pictet-Spengler Ene Reaction

Scheme 53. Domino Sakurai Carbonyl Ene Reaction

XI. Photochemically Induced Reactions The procedure has also been used by us for the synthesis of steroids containing a substituent at C-7. These compounds are of great pharmacological interest since they show the same biological acitivity as the normal steroids; however, they possess a much longer lasting effect. The BCD unit 205 was obtained as a single compound of 16 possible diastereomers by treatment of 204 with TMS triflate (Scheme 54).297 Again, the

Besides the domino Norrish I Knoevenagel allylsilane cyclization several other combined reactions have been developed by us employing as the first step a photochemical reaction. Thus, in a photochemical cycloaddition of the alkene 210 with the enamine ketone 211 an amino hemiacetal 212 is formed which gives an iminium salt on treatment with a Lewis acid such as TMS triflate followed by an intramolecular cyclization to provide 213 as a single diastereomer containing four stereogenic centers. In a similar way, 214 and 215 were transformed into 217 via 216 (Scheme 56).300 However, both reactions are again

Scheme 54. Domino Sakurai Carbonyl Ene Reaction for the Synthesis of Steroids

Scheme 56. Photochemically Induced Sequences

configuration of the double bonds has no influence on the stereoselectivity. However, using Me2AlCl as promotor, a different stereoisomer is formed. Using the corresponding trans-precursor the steroid derivatives 206 and 207 have been prepared.298

6. Domino Pictet−Spengler Ene Reaction A domino Pictet-Spengler ene reaction has been developed for the synthesis of indole alkaloids of the corynanthe type. The whole skeleton of these alkaloids was prepared in a double cyclization. Thus, reaction of 208 with trifluoroacetic acid followed by SnCl4 gave 209 as a single diastereomer which was converted for example into corynantheine in two steps (Scheme 55).299

not domino reactions in its strict definition since for the photochemical cycloaddition the alkene has to be

132 Chemical Reviews, 1996, Vol. 96, No. 1

used in excess which is removed by distillation before adding the Lewis acid.

Tietze Scheme 58. Synthesis of Enantiopure Tertiary Homoallylic Alcohols by a Domino Process

XII. Synthesis of Enantiopure 1,3,5-Triols by a Domino Process The anionic ring opening of enantiopure epoxides is a well-known procedure to obtain alcohols with carbon-carbon bond formation. So far, however, it has not been possible to perform this reaction in a domino fashion with the formation of two C-C bonds. Recently, we have shown that the deprotonated 2-(trimethylsilyl)dithiane (218) reacts with 2 equiv of an epoxide 219 in the presence of 12-crown-4 to give the trimethylsilyl monoether of a 1,5-diol 220. It can be assumed that a 1,4-Brook shift occurs in between. Cleavage of the dithiane moiety in 220 and reduction provides the enantiopure triol 221 (Scheme 57).301 Scheme 57. Synthesis of Enantiopure 1,3,5-Triols by a Domino Process

XIV. Acknowledgments It is a particular pleasure for me to warmly thank my co-workers for their commitment and their excellent performance as reflected in the numerous scientific publications. I would also like to express my gratitude to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, Bayer AG, BASF AG, Degussa AG, Hoechst AG, and Merck AG for their support of the work described here.

XV. References

XIII. Synthesis of Enantiopure Tertiary and Secondary Homoallylic Alcohols by a Domino Process The differentiation of the enantiofaces of ketones is one of the most difficult tasks in enantioselective synthesis. Thus, the selective nucleophilic alkylation or allylation to give an enantiopure tertiary alcohol has not been achieved so far. However, recently, we have shown that even ethyl methyl ketone can be allylated with an excellent enantiofacial selectivity of 96:4 at -110 °C; isopropyl methyl ketone gives a selectivity of >96:4 at -78 °C. The transformation can be run as a domino reaction mixing together the ketone 223, the trimethylsilyl ether of N-(trifluoroacetyl)norpseudoephedrine 224, an allylsilane 225, and a catalytic amount of TMS triflate. First, the corresponding ether 226 is obtained which is cleaved with sodium in liquid ammonia to provide the tertiary homoallylic alcohol 227 with an ee >96:4 (Scheme 58).302 Clearly the procedure can also be used for the synthesis of enantiopure secondary homoallylic alcohols starting from aldehydes giving an ee >99% in all examples investigated. However, in this transformation the allylsilane has to be added after an initial reaction time of 1 h.303

(1) 1. Kishi, Y. Pure Appl. Chem. 1993, 65, 771. Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205. (2) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131. See also: Tietze, L. F. Chem. Ind. 1995, 453. Waldmann, H. “Domino Reaction” in Organic Synthesis Highlight II; Waldmann, H., Ed.; VCH: Weinheim, 1995; pp 193-202. Hall, N. Science 1994, 266, 32. (3) The word “tandem” is also often used to express a combination of two or more reactions. However, I suggest not to use it anymore, even though I myself have employed this word extensively in the past. Tandem means two at the same time and does not describe a time-resolved transformation. (4) Lynen, F. Pure Appl. Chem. 1967, 14, 137. (5) Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. J. Am. Chem. Soc. 1966, 88, 4750. Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1991, 113, 4025. Corey, E. J.; Virgil, S. C.; Sarshar, S. J. Am. Chem. Soc. 1991, 113, 8171. Corey, E. J.; Virgil, S. C.; Liu, D. R.; Sarshar, S. J. Am. Chem. Soc. 1992, 114, 1524. (6) Johnson, W. S. Angew. Chem. 1976, 88, 33; Angew. Chem., Int. Ed. Engl. 1976, 15, 9. (7) Herbert, R. B. Nat. Prod. Rep. 1991, 8, 185. (8) Leete, E. Planta Med. 1990, 56, 339. (9) Robinson, R. J. Chem. Soc. 1917, 111, 762. J. Chem. Soc. 1917, 111, 876. Scho¨pf, C.; Lehmann, G.; Arnold, W. Angew. Chem. 1937, 50, 779. (10) Tramontini, M. Synthesis 1973, 703. (11) (a) Review: Heathcock, C. H. Angew. Chem. 1992, 104, 675; Angew. Chem., Int. Ed. Engl. 1992, 31, 665. (b) Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120. (12) Fish, P. V.; Johnson, W. S. J. Org. Chem. 1994, 59, 2324. (13) Koert, U. Synthesis 1995, 115. Paterson, I.; Tillyer, R. D.; Smaill, J. B. Tetrahedron Lett. 1993, 34, 7137. (14) Balog, A.; Curran, D. P. J. Org. Chem. 1995, 60, 337. (15) Beifuss, U.; Ledderhose, S. Synlett 1995, 938. (16) Koert, U. Angew. Chem. 1995, 107, 326; Angew. Chem., Int. Ed. Engl. 1995, 34, 298. (17) Koert, U.; Wagner, H.; Stein, M. Tetrahedron Lett. 1994, 35, 7629. (18) Cornia, M.; Casiraghi, G.; Binacchi, S.; Zanardi, F.; Rassu, G. J. Org. Chem. 1994, 59, 1226. (19) Cablewski, T.; Gurr, P. A.; Raner, K. D.; Strauss, C. R. J. Org. Chem. 1994, 59, 5814. (20) Johnson, W. S.; Plummer, M. S.; Pulla Reddy, S.; Bartlett, W. R. J. Am. Chem. Soc. 1993, 115, 515. (21) Mulzer, J.; Greifenberg, S.; Buschmann, J.; Luger, P. Angew. Chem. 1993, 105, 1214; Angew. Chem., Int. Ed. Engl. 1993, 32, 1173. (22) Franck, B. Angew. Chem. 1982, 94, 327; Angew. Chem., Int. Ed. Engl. 1982, 21, 343. Eschenmoser, A. Angew. Chem. 1988, 100, 5; Angew. Chem., Int. Ed. Engl. 1988, 27, 5. Alefounder, P. R.; Hart, G. J.; Miller, A. D.; Beifuss, U.; Abell, C.; Leeper, F. J.; Battersby, A. R. Bioorg. Chem. 1989, 17, 121. Leeper, F. J. Nat. Prod. Rep. 1989, 6, 171. Scott, A. I. Acc. Chem. Res. 1990, 23, 308. Battersby, A. R.; Leeper, F. J. Chem. Rev. 1990, 90, 1261.

Domino Reactions in Organic Synthesis (23) Cookson, G. H.; Rimington, C. Biochem. J. 1954, 57, 476. Mauzerall, D. J. Am. Chem. Soc. 1960, 82, 2601, 2605. (24) Franck, B.; Wegner, C. Angew. Chem. 1975, 87, 419; Angew. Chem., Int. Ed. Engl. 1975, 14, 424. (25) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890. (26) Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955, 77, 5068. (27) van Tamelen, E. E. Acc. Chem. Res. 1970, 3, 361; 1975, 8, 152. (28) Johnson, W. S. Angew. Chem. 1976, 88, 33; Angew. Chem., Int. Ed. Engl. 1976, 15, 9. (29) Sutherland, J. K. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3. Snowden, R. L.; Eichenberger, J.-C.; Linder, S. M.; Sonnay, P.; Vial, C.; Schulte-Elte, K. H. J. Org. Chem. 1992, 57, 955. Burke, S. D.; Deaton, D. N. Tetrahedron Lett. 1991, 32, 4651. Begley, J. M.; Fish, P. V.; Pattenden, G.; Hodgson, S. T. J. Chem. Soc., Perkin Trans. 1 1990, 2263. Burke, S. D.; Strickland, S. M. S.; Organ, H. M.; Silks, L. A. Tetrahedron Lett. 1989, 30, 6303. (30) Johnson, W. S.; Gravestock, M. B.; McCarry, B. E. J. Am. Chem. Soc. 1971, 93, 4332. Johnson, W. S.; Huffmann, W. F.; Boots, S. G. Recl. Trav. Chim. Pays-Pas 1979, 98, 125. (31) Bartlett, W. R.; Johnson, W. S.; Plummer, U. S.; Small, V. R., Jr. J. Org. Chem. 1990, 55, 2215. (32) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857. (33) Burke, S. D.; Takeuchi, K.; Murtiashaw, C. W.; Liang, D. W. M. Tetrahedron Lett. 1989, 30, 6299. (34) Acetals in Polyene cyclization: Bartlett, P. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, p 341. (35) Lee, T. V.; Roden, F. S.; Yeoh, H. T. Tetrahedron Lett. 1990, 31, 2063. (36) Baldwin, J. E.; Lusch, M. J. Tetrahedron 1982, 38, 2939. (37) Herndon, J. W.; Wu, C. Tetrahedron Lett. 1989, 30, 5745. (38) O’Hagan, D. Nat. Prod. Rep. 1989, 6, 205. Cane, D. E.; Celmer, W. D.; Westley, J. W. J. Am. Chem. Soc. 1983, 105, 3594. (39) Polyether antibiotics: Naturally Occurring Acid Ionophores; Westley, J. W., Ed.; Dekker: New York, 1983; Vol. 1 and 2. (40) Paterson, I.; Craw, P. A. Tetrahedron Lett. 1989, 30, 5799. (41) Fitjer, L.; Quabeck, U. Angew. Chem. 1987, 99, 1054; Angew. Chem., Int. Ed. Engl. 1987, 26, 1023. Wehle, D.; Fitjer, L. Angew. Chem. 1987, 99, 135; Angew. Chem., Int. Ed. Engl. 1987, 26, 130. (42) Hirst, G. C.; Howard, P. N.; Overman, L. E. J. Am. Chem. Soc. 1989, 111, 1514. Jacobsen, E. J.; Levin, J.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 4329. (43) Overman, L. E.; Ricca, D. J. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2. (44) Ihara, M.; Makita, K.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 6008. (45) Westerwelle, U.; Keuper, R.; Risch, N. J. Org. Chem. 1995, 60, 2263. (46) Molander, G. A.; Harris, C. R. J. Am. Chem. Soc. 1995, 117, 3705. (47) Beifuss, U.; Gehm, H.; Noltemeyer, M.; Schmidt, H.-G. Angew. Chem. 1995, 107, 705; Angew. Chem., Int. Ed. Engl. 1995, 34, 647. (48) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 2947. (49) Ihara, M.; Taniguchi, T.; Makita, K.; Takano, M.; Ohnishi, M.; Taniguchi, N.; Fukumoto, K.; Kabuto, C. J. Am. Chem. Soc. 1993, 115, 8107. (50) Kittivarapong, S.; Rajviroonkit, S.; Siwapinyoyos, T.; Thebtaranonth, C.; Thebtaranonth, Y. Synthesis 1995, 136. (51) Parsons, P. J.; Stefinovic, M. Synlett 1993, 931. (52) Barco, A.; Benetti, S.; De Risi, C.; Pollini, G. P.; Romagnoli, R.; Spalento, G.; Zanirato, V. Tetrahedron 1994, 50, 2583. (53) Ye, B.; Qiao, L.-X.; Zhang, Y.-B.; Wu, Y.-L. Tetrahedron 1994, 50, 9061. (54) Saito, K.; Yamamoto, M.; Yamada, K. Tetrahedron 1993, 49, 9721. (55) Periasamy, M.; Rama Reddy, M.; Radhakrishnan, U.; Devasagayaraj, A. J. Org. Chem. 1993, 58, 4997. (56) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830. (57) Molander, G. A.; Cameron, K. O. J. Org. Chem. 1993, 58, 5931. (58) Arai, H.; Kasai, M. J. Org. Chem. 1994, 59, 1087. (59) Bunce, R. A.; Dowdy, E. D.; Jones, P. B.; Holt, E. M. J. Org. Chem. 1993, 58, 7143. (60) Fujimoto, T.; Uchigama, Y.; Kodama, Y.; Ohta, K.; Yamamoto, I. J. Org. Chem. 1993, 58, 7322. (61) Wie, Z.-Y.; Knaus, E. E. Tetrahedron Lett. 1994, 35, 2305. (62) Desmae¨le, D.; Louvet, J.-M. Tetrahedron Lett. 1994, 35, 2549. (63) Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 8092. (64) Kiyooka, S.; Kaneko, Y.; Herada, Y.; Matsuo, T. Tetrahedron Lett. 1995, 36, 2821. (65) Molina, P.; Garcia-Zafra, S.; Fresnada, P. M. Synlett 1995, 43. (66) Molina, P.; Aller, E.; Lorenzo, M. A. Synthesis 1993, 1239. (67) Schobert, R.; Mu¨ller, S.; Bestmann, H.-J. Synlett 1995, 425. (68) Cufos, T.; Diaz, P.; Stella, L. Synlett 1995, 101. (69) Bornmann, W. G.; Kuehne, M. E. J. Org. Chem. 1992, 57, 1752. (70) Reetz, M. T. Angew. Chem. 1988, 100, 1026; Angew. Chem., Int. Ed. Engl. 1988, 27, 994. Fontanille, M.; Guyot, A. Recent

Chemical Reviews, 1996, Vol. 96, No. 1 133

(71)

(72) (73) (74)

(75) (76)

(77) (78)

(79) (80) (81) (82) (83) (84) (85)

(86) (87) (88)

(89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99)

(100)

Advances in Mechanistic and Synthetic Aspects of Polymerization; Reidel: Dordrecht, 1987. Morton, M. Anionic Polymerization, Principles and Practice; Academic Press: New York, 1983. Reetz, M. T.; Knauf, T.; Minet, U.; Bingel, C. Angew. Chem. 1988, 100, 1422; Angew. Chem., Int. Ed. Engl. 1988, 27, 1373. Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V. J. Am. Chem. Soc. 1983, 105, 5706. Posner, G. H.; Schulman-Roskes, E. M. J. Org. Chem. 1989, 54, 3514. Posner, G. H.; Lu, S.-B. J. Am. Chem. Soc. 1985, 107, 1424. Posner, G. H.; Crouch, R. D. Tetrahedron 1990, 46, 7509. Posner, G. H.; Webb, K. S.; Asirvatham, E.; Jew, S.-S.; Degl’Innocenti, A. J. Am. Chem. Soc. 1988, 110, 4754. Posner, G. H.; Asirvatham, E.; Webb, K. S.; Jew, S.-S. Tetrahedron Lett. 1987, 28, 5071. Oare, D. A.; Heathcock, C. H. Top. Stereochem. 1989, 19, 227. Ahlbrecht, H.; Dietz, M.; Scho¨n, C.; Baumann, V. Synthesis 1991, 133. Zhao, R.-B.; Zhao, Y.-F.; Song, G.-Q.; Wu, Y.-L. Tetrahedron Lett. 1990, 31, 3559. Spitzner, D.; Klein, I. Liebigs Ann. Chem. 1990, 63. Schinzer, D.; Kalesse, M. Synlett 1989, 34. Asaoka, M.; Takei, H. Tetrahedron Lett. 1987, 28, 6343. Nagaoka, H.; Kobayashi, K.; Okamura, T.; Yamada, Y. Tetrahedron Lett. 1987, 28, 6641. Hagiwara, H.; Uda, H. J. Chem. Soc., Perkin Trans. 1 1986, 629. Roberts, M. R.; Schlessinger, R. H. J. Am. Chem. Soc. 1981, 103, 724. White, K. B.; Reusch, W. Tetrahedron 1978, 34, 2439. Spitzner, D. Tetrahedron Lett. 1978, 3349. Lee, R. A. Tetrahedron Lett. 1973, 3333. Hagiwara, H.; Okano, A.; Uda, A. J. Chem. Soc., Chem. Commun. 1985, 1047. Spitzner, D.; Engler, A.; Wagner, P.; de Meijere, A.; Bengston, G. Simon, A.; Peters, K.; Peters, E.-M. Tetrahedron 1987, 43, 3213. Hagiwara, H.; Uda, H.; Kodama, T. J. Chem. Soc., Perkin Trans. 1 1980, 963. Weber, W.; Spitzner, D.; Kraus, W. J. Chem. Soc., Chem. Commun. 1980, 1212. Ihara, M.; Toyotoa, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1986, 2151. Ihara, M.; Suzuki, M.; Fukumoto, K.; Kabuto, C. J. Am. Chem. Soc. 1990, 112, 1164. Thanupran, C.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1986, 27, 2295. Ihara, M.; Katogi, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1988, 2963. Saito, S.; Hirohara, Y.; Narahara, O.; Moriwake, T. J. Am. Chem. Soc. 1989, 111, 4533. Bunce, R. A.; Wamsley, E. J.; Pierce, J. D.; Shellhammer, A. J., Jr.; Drumright, R. E. J. Org. Chem. 1987, 52, 464. Barco, A.; Benetti, S.; Pollini, G. P.; Spalluto, G.; Zanirato, V. J. Chem. Soc., Chem. Commun. 1991, 390. Barco, A.; Benetti, S.; Casolari, A.; Pollini, G. P.; Spalluto, G. Tetrahedron Lett. 1990, 31, 4917. Barco, A.; Benetti, S.; Casolari, A.; Pollini, G. P.; Spalluto, G. Tetrahedron Lett. 1990, 31, 3039. Spino, C.; Deslongchamps, P. Tetrahedron Lett. 1990, 31, 3969. Lavalle´e, J. F.; Deslongchamps, P. Tetrahedron Lett. 1988, 29, 5117. Ruel, R.; Deslongchamps, P. Tetrahedron Lett. 1990, 31, 3961. Takahashi, T.; Okumoto, H.; Tsuji, J. Tetrahedron Lett. 1984, 25, 1925. Takahashi, T.; Naito, Y.; Tsuji, J. J. Am. Chem. Soc. 1981, 103, 5261. Haynes, R. K.; Stokes, J. P.; Hambley, T. W. J. Chem. Soc., Chem. Commun. 1991, 58. Ihara, M.; Takino, Y.; Tomotake, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1990, 2287. Ihara, M.; Kirihara, T.; Kawaguchi, A.; Tsuruta, M. Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1987, 1719. Mukaiyama, T.; Tamura, M.; Kobayashi, S. Chem. Lett. 1986, 1817. Kobayashi, S.; Mukaiyama, T. Chem. Lett. 1986, 1805. Tanis, S. P.; McMills, M. C.; Scahill, T. A.; Kloosterman, D. A. Tetrahedron Lett. 1990, 31, 1977. Ogiku, T.; Seki, M.; Takahashi, M.; Ohmizu, H.; Iwasaki, T. Tetrahedron Lett. 1990, 31, 5487. Fang, C.; Suganuma, K.; Suemune, H.; Sakai, K. J. Chem. Soc., Perkin Trans. 1 1991, 1549. Groth, U.; Halfbrodt, W. Unpublished results. Noyori, R.; Suzuki, M. Angew. Chem. 1984, 96, 854; Angew. Chem., Int. Ed. Engl. 1984, 23, 847. Suzuki, M.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1982, 23, 5563. Bohlmann, C.; Bohlmann, R.; Rivera, E. G.; Vogel, C.; Manandhar, M. D.; Winterfeldt, E. Liebigs Ann. Chem. 1985, 1752. Hudlicky, T.; Fleming, A.; Radesca, L. J. Am. Chem. Soc. 1989, 111, 6691. Arlt, D.; Jautelat, M.; Lantzsch, R. Angew. Chem. 1981, 93, 719; Angew. Chem., Int. Ed. Engl. 1981, 20, 703. Nowick, J. S.; Danheiser, R. L. Tetrahedron 1988, 44, 4113. Chen, C.; Huang, Y.-Z.; Shen, Y. Tetrahedron Lett. 1988, 29, 1033. Cooke, M. B., Jr.; Jaw, J. Y. J. Org. Chem. 1986, 51, 758. Babler, J. H.; Spina, K. P. Tetrahedron Lett. 1985, 26, 1923. Martel, J.; Huynh, C. Bull. Soc. Chim. Fr. 1967, 985. Jones, R. C. F.; Jones, R. F. Tetrahedron Lett. 1990, 31, 3367. Doi, T.; Shimizu, K.; Takahashi, T.; Tsuji, J.; Yamamoto, K. Tetrahedron Lett. 1990, 31, 3313. Groen, M. B.; Zeelen, F. J. Recl. Trav. Chim. Pays-Bas 1986, 105, 465, cit. lit. Yamaguchi, M.; Tsukamoto, M.; Hirao, I. Tetrahedron Lett. 1985, 26, 1723.

134 Chemical Reviews, 1996, Vol. 96, No. 1 (101) Meyers, A. I.; Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D. J. Am. Chem. Soc. 1988, 110, 4611. Robichaud, A. J.; Meyers, A. I. J. Org. Chem. 1991, 56, 2607. (102) Wender, P. A.; White, A. W. J. Am. Chem. Soc. 1988, 110, 2218. (103) Brocchini, S. J.; Eberle, M.; Lawton, R. G. J. Am. Chem. Soc. 1988, 110, 5211. (104) Reetz, M. T.; Schmitz, A.; Holdgru¨n, X. Tetrahedron Lett. 1989, 30, 5421. (105) Seebach, D.; Missbach, M.; Calderari, G.; Eberle, M. J. Am. Chem. Soc. 1990, 112, 7625. Lapierre, J. M.; Gravel, D. Tetrahedron Lett. 1991, 32, 2319. (106) Chamberlain, A. R.; Bloom, S. H.; Cervini, L. A.; Fotsch, C. H. J. Am. Chem. Soc. 1988, 110, 4788. Cooke, M. P., Jr.; Widener, R. K. J. Org. Chem. 1987, 52, 1381. (107) Bailey, W. F.; Rossi, K. J. Am. Chem. Soc. 1989, 111, 765. (108) Kleinmann, E. F. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 893. Heaney, H. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 953. Overman, L. E.; Rica, D. J. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1007. (109) Stevens, R. V.; Lee, A. W. M. J. Am. Chem. Soc. 1979, 101, 7032. (110) Grieco, P. A.; Fobare, W. F. J. Chem. Soc., Chem. Commun. 1987, 185. (111) Kunz, H.; Pfrengle, W. Angew. Chem. 1989, 101, 1041; Angew. Chem., Int. Ed. Engl. 1989, 28, 1067. Hwu, J. R.; Gilbert, B. A.; Lin, L. C.; Liaw, B. R. J. Chem. Soc., Chem. Commun. 1990, 161. (112) Corey, E. J.; Carpino, P. Tetrahedron Lett. 1990, 31, 3857. (113) Takano, S. Pure Appl. Chem. 1987, 59, 353. Takano, S.; Satoh, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 59. (114) Takano, S.; Ohkawa, T.; Tamori, S.; Satoh, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 189. (115) Ruggeri, R. B.; McClure, K. F.; Heathcock, C. H. J. Am. Chem. Soc. 1989, 111, 1530. Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C. J. Org. Chem. 1992, 57, 2544. Heathcock, C. H.; Stafford, J. A.; Clark, D. L. J. Org. Chem. 1992, 57, 2575. Heathcock, C. H.; Ruggeri, R. B.; McClure, K. F. J. Org. Chem. 1992, 57, 2585. (116) Blechert, S. Synthesis 1989, 71. (117) Takahashi, T.; Katouda, W.; Sakamoto, Y.; Tomida, S.; Yamada, H. Tetrahedron Lett. 1995, 36, 2273. (118) Chen, L.; Gill, G. B.; Pattenden, G. Tetrahedron Lett. 1994, 35, 2593. (119) Hitchcock, S. A.; Pattenden, G. Tetrahedron Lett. 1992, 33, 4843. (120) Aitken, R. A.; Bradbury, C. K.; Burns, G.; Morrison, J. J. Synlett 1995, 53. (121) Parsons, P. J.; Penkett, C. S.; Cramp, M. C.; West, R. I.; Warrington, J.; Saraiva, M. C. Synlett 1995, 507. (122) Ozlu, Y.; Cladingboel, D. E.; Parsons, P. J. Synlett 1993, 357. (123) Curran, D. P.; Jiang, W.-T.; Palovich, M.; Tsai, Y. M. Synlett 1993, 403. (124) Booker-Milburn, K. I.; Thompson, D. F. Synlett 1993, 592. (125) Albrecht, U.; Wartchow, R.; Hoffmann, H. M. R. Angew. Chem. 1992, 104, 903; Angew. Chem., Int. Ed. Engl. 1992, 31, 910. (126) Chen, Y.-J.; Chen, C.-M.; Lin, W.-Y. Tetrahedron Lett. 1993, 34, 2961. (127) Zoretic, P. A.; Shen, Z.; Wang, M. Tetrahedron Lett. 1995, 36, 2925. (128) Vanucci, C.; Brussou, X.; Verdel, V.; Zana, F.; Dhimane, H.; Lhommet, G. Tetrahedron Lett. 1995, 36, 2971. (129) Moriya, O.; Kakihana, M.; Urata, Y.; Sugizaki, T.; Kageyama, T.; Ueno, Y.; Endo, T J. Chem. Soc., Chem. Comm. 1985, 1401. (130) Horneman, A. M.; Lundt, I.; Søtofte, I. Synlett 1995, 918. (131) Curran, D. P.; van Elburg, P. A. Tetrahedron Lett. 1989, 30, 2501. (132) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896. (133) Curran, D. P.; Liu, H. J. Am. Chem. Soc. 1992, 114, 5863. (134) Koert, U. Nach. Chem. Tech. Lab. 1995, 43, 686. (135) Curran, D. P. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 4, p 779. (136) Kizil, M.; Murphy, J. A. J. Chem. Soc., Chem. Commun. 1995, 1409. (137) Togo, H.; Kikuchi, O. Heterocycles 1989, 28, 373. (138) Lopez, J. C.; Fraser-Reid, B. J. Am. Chem. Soc. 1989, 111, 3450. (139) Ferrier, R. J.; Petersen, P. M. Tetrahedron 1990, 46, 1. (140) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237. Giese, B. Angew. Chem. 1989, 101, 993; Angew. Chem., Int. Ed. Engl. 1989, 28, 969. Curran, D. P. Synthesis 1988, 417; 1988, 489. Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon-Bonds; Pergamon Press: Oxford, 1986. (141) Dombroski, M. A.; Snider, B. B. Tetrahedron 1992, 48, 1417. Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759. Snider, B. B.; Mohan, R.; Kates, S. A. J. Org. Chem. 1985, 50, 3659. (142) Corey, E. J.; Kang, M. J. Am. Chem. Soc. 1984, 106, 5384. Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1985, 26, 4291. Corey, E. J.; Ghosh, A. K. Tetrahedron Lett. 1987, 28, 175. (143) Curran, D. P.; Rakiewicz, D. M. J. Am. Chem. Soc. 1985, 107, 1448. (144) Curran, D. P.; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991.

Tietze (145) Curran, D. P.; Kuo, S.-C. J. Am. Chem. Soc. 1986, 108, 1106; Tetrahedron 1987, 43, 5653. (146) Boger, D. L.; Mathvink, R. J. J. Org. Chem. 1992, 57, 1429. Boger, D. L.; Mathvink, R. J. J. Am. Chem. Soc. 1990, 112, 4003. (147) Stork, G.; Stier, P. M.; Chen, H.-L. J. Am. Chem. Soc. 1986, 108, 6384. Keck, G. E.; Burnett, D. A. J. Org. Chem. 1987, 52, 2958. Larock, R. C.; Lee, N. H. J. Org. Chem. 1991, 56, 6253. (148) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. (149) Becking, L.; Scha¨fer, H. J. Tetrahedron Lett. 1988, 29, 2801 (150) Kariv-Miller, E.; Maeda, H.; Lombardo, F. J. Org. Chem. 1989, 54, 4022. (151) Little, R. D.; Masjedizadeh, M. R.; Moeller, K. D.; DanneckerDoerig, I. Synlett 1992, 107. McLoughlin, J. I.; Brahma, R.; Campopiano, O.; Little, R. D. Tetrahedron Lett. 1990, 31, 1377. (152) Nishida, A.; Takahashi, H.; Takeda, H.; Takada, N.; Yonemitsu, O. J. Am. Chem. Soc. 1990, 112, 902. (153) Nagai, M.; Lazor, J.; Wilcox, C. S. J. Org. Chem. 1990, 55, 3440. (154) Pak, H.; Canalda, I. I.; Fraser-Reid, B. J. Org. Chem. 1990, 55, 3009. (155) Kla¨rner, F.-G.; Artschwager-Perl, U.; Fessner, W.-D.; Grund, C.; Pinkos, R.; Melder, J.-P.; Prinzbach, H. Tetrahedron Lett. 1989, 30, 3137. Fessner, W.-D.; Grund, C.; Prinzbach, H. Tetrahedron Lett. 1989, 30, 3133. Fessner, W.-D.; Sedelmeier, G.; Spurr, P. R.; Rihs, G.; Prinzbach, H. J. Am. Chem. Soc. 1987, 109, 4626. (156) Chowdhury, P. K.; Prelle, A.; Schomburg, D.; Thielmann, M.; Winterfeldt, E. Liebigs Ann. Chem. 1987, 1095. (157) Winkler, J. D.; Kim, H. S.; Kim, S. Tetrahedron Lett. 1995, 36, 687. (158) Denmark, S. E.; Thorarensen, A. J. Org. Chem. 1994, 59, 5672. (159) Mikami, K.; Takahashi, K.; Nakai, T.; Uchimaru, T. J. Am. Chem. Soc. 1994, 116, 10948. (160) Wirth, T.; Blechert, S. Synlett 1994, 717. Gu¨rtler, C. F.; Blechert, S.; Steckhan, E. Angew. Chem. 1995, 107, 2025; Angew. Chem., Int. Ed. Engl. 1995, 34, 1900. (161) (a) Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293. (b) Deng, W.; Overman, L. E. J. Am. Chem. Soc. 1994, 116, 11241. (162) Katritzky, A. R.; Li, J. J. Org. Chem. 1995, 60, 638. (163) Denmark, S. E.; Stolle, A.; Dixon, J. A.; Guagnano, V. J. Am. Chem. Soc. 1995, 117, 2100. (164) Kno¨lker, H.-J.; Graf, R. Synlett 1994, 131. (165) Minuti, L.; Selvaggi, R.; Taticchi, A.; Sandor, P. Tetrahedron 1993, 49, 1071. (166) Mitchell, T. N.; Giesselmann, F. Synlett 1995, 333. (167) Marko´, I. E.; Seres, P.; Evans, G. R.; Swarbrick, T. M. Tetrahedron Lett. 1993, 34, 7305. (168) Kappe, C. O.; Kollenz, G.; Fabian, W. M. F.; Wentrup, C., Fa¨rber, G. J. Org. Chem. 1993, 58, 3361. (169) Parakka, J. P.; Sadanandan, E. V.; Cava, M. P. J. Org. Chem. 1994, 59, 4308. (170) Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W., Jr.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 3966. (171) Agami, C.; Couty, F.; Lin, J.; Mikaeloff, A. Synlett 1993, 349. (172) Agami, C.; Couty, F.; Lin, J.; Mikaeloff, A.; Poursoulis, M. Tetrahedron 1993, 49, 7239. (173) Kuhn, C.; Le Gouadec, G.; Skaltsounis, A. L.; Florent, J.-C. Tetrahedron Lett. 1995, 36, 3137. (174) Boger, D. L.; Weinreb, S. M. Hetero-Diels-Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987. Kametani, T.; Hibino, S. Adv. Heterocycl. Chem. 1987, 42, 245. Helmchen, G.; Karge, R.; Weetman, J. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag: Berlin, 1986; Vol. 4, p 261. (175) Danishefsky, S. J.; DeNinno, M. P. Angew. Chem. 1987, 99, 15; Angew. Chem., Int. Ed. Engl. 1987, 26, 15. Schmidt, R. R. Acc. Chem. Res. 1986, 19, 250. Ciganek, E. Org. React. 1984, 32, 1. Oppolzer, W. Angew. Chem. 1984, 96, 840; Angew. Chem., Int. Ed. Engl. 1984, 23, 876. Taber, D. F. Intramolecular Diels-Alder and Alder Ene Reactions; Springer: Berlin, 1984. Fallis, A. G., Ed.; Can. J. Chem. 1984, 62, 183. Brieger, G.; Bennett, J. N. Chem Rev. 1980, 80, 63. Sauer, J.; Sustmann, R. Angew. Chem. 1980, 92, 773; Angew. Chem., Int. Ed. Engl. 1980, 19, 779. Desimoni, G.; Tacconi, G. Chem. Rev. 1975, 75, 651. (176) Hopf, H.; Bo¨hm, I.; Kleinschroth, J. Org. Synth. 1981, 60, 41. Hopf, H.; Lenich, F. T. Chem. Ber. 1974, 107, 1891. (177) Ichihara, A. Synthesis 1987, 207. Boger, D. L. Chem. Rev. 1986, 86, 781. (178) Jacobi, P. A.; Kaczmarek, C. S. R.; Udodong, U. E. Tetrahedron Lett. 1984, 25, 4859. (179) Burke, S. D.; Armistead, D. M.; Shankaran, K. Tetrahedron Lett. 1986, 27, 6295. Burke, S. D.; Piscopio, A. D.; Buchanan, J. L. Tetrahedron Lett. 1988, 29, 2757. (180) Keck, G. E.; Nickell, D. G. J. Am. Chem. Soc. 1980, 102, 3632. (181) Trost, B. M.; McDougal, P. G.; Haller, K. J. J. Am. Chem. Soc. 1984, 106, 383. (182) Keck, G. E.; Webb, R. R., II. J. Org. Chem. 1982, 47, 1302. Keck, G. E.; Webb, R. R., II. J. Am. Chem. Soc. 1981, 103, 3173. (183) Denmark, S. E.; Schnute, M. E. J. Org. Chem. 1991, 56, 6738. Denmark, S. E.; Moon, Y.-C.; Senanayake, C. B. W. J. Am. Chem. Soc. 1990, 112, 311. Kozikowski, A. P.; Hiraga, K.; Springer, J. P.; Wang, B. C.; Xu, Z.-B. J. Am. Chem. Soc. 1984, 106, 1845.

Domino Reactions in Organic Synthesis (184) Denmark, S. E.; Senanayake, C. B. W.; Ho, G.-D. Tetrahedron 1990, 46, 4857. (185) Mikami, K.; Shimizu, M. Chem. Rev., in press. Snider, B. B. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p 1. Snider, B. B. Acc. Chem. Res. 1980, 13, 426. Oppolzer, W.; Snieckus, V. Angew. Chem. 1978, 90, 506; Angew. Chem., Int. Ed. Engl. 1978, 17, 476. Hoffmann, H. M. R. Angew. Chem. 1969, 81, 597; Angew. Chem., Int. Ed. Engl. 1969, 8, 556. (186) Snider, B. B.; Goldman, B. E. Tetrahedron 1986, 42, 2951. Snider, B. B.; Deutsch, E. A. J. Org. Chem. 1983, 48, 1822. (187) Bong, C.-H. Dissertation, Universita¨t Ko¨ln, Ko¨ln 1952. Huebner, C. F.; Donoghue, E.; Dorfman, L.; Stuber, F. A.; Danieli, N.; Wenkert, E. Tetrahedron Lett. 1966, 1185. Giguere, R. J.; Namen, A. M.; Lopez, B. O.; Arepally, A.; Ramos, D. E.; Majetich, G.; Defauw, J. Tetrahedron Lett. 1987, 28, 6553. (188) Giguere, R. J.; Harran, P. G.; Lopez, B. O. Synth. Commun. 1990, 20, 1453. (189) Ziegler, F. E. Chem. Rev. 1988, 88, 1423. Baker, R.; Selwood, D. L. Tetrahedron Lett. 1982, 23, 3839. Fujita, Y.; Onishi, T.; Nishida, T. Synthesis 1978, 532. Cookson, R. C.; Rogers, N. R. J. Chem. Soc., Perkin Trans 1 1973, 2741. Thomas, A. F.; Ohloff, G. Helv. Chim. Acta 1970, 53, 1145. (190) Thomas, A. F. J. Am. Chem. Soc. 1969, 91, 3281. (191) Ziegler, F. E.; Lim, H. J. Org. Chem. 1984, 49, 3278. Ziegler, F. E.; Piwinski, J. J. J. Am. Chem. Soc. 1982, 104, 7181. (192) Raucher, S.; Chi, K.-W.; Hwang, K.-J.; Burks, J. E., Jr. J. Org. Chem. 1986, 51, 5503. Raucher, S.; Burks, J. E., Jr.; Hwang, K.-J.; Svedberg, D. P. J. Am. Chem. Soc. 1981, 103, 1853. (193) Mikami, K.; Taya, S.; Nakai, T.; Fujita, Y. J. Org. Chem. 1981, 46, 5447. Mikami, K.; Kishi, N.; Nakai, T.; Fujita, Y. Tetrahedron 1986, 42, 2911. (194) Jacobi, P. A.; Selnick, H. G. J. Am. Chem. Soc. 1984, 106, 3041. (195) Kraus, G. A.; Woo, S. H. J. Org. Chem. 1987, 52, 4841. Kraus, G. A.; Fulton, B. S. J. Org. Chem. 1985, 50, 1782. (196) Mulzer, J.; Bock, H.; Eck, W.; Buschmann, J.; Luger, P. Angew. Chem. 1991, 103, 450; Angew. Chem., Int. Ed. Engl. 1991, 30, 414. (197) Okamura, W. H.; Curtin, M. L. Synlett 1990, 1. (198) Gibbs, R. A.; Okamura, W. H. J. Am. Chem. Soc. 1988, 110, 4062. (199) Steinmeyer, A.; Schwede, W.; Bohlmann, F. Liebigs Ann. Chem. 1988, 925. (200) Mandai, T.; Matsumoto, S.; Kohama, M.; Kawada, M.; Tsuji, J.; Saito, S.; Moriwake, T. J. Org. Chem. 1990, 55, 5671. Ziegler, F. E.; Mencel, J. J. Tetrahedron Lett. 1984, 25, 123. (201) Mikami, K.; Takahashi, K.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 4035. (202) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons: New York, 1984; Vol. 1 and 2. Huisgen, R.; Ma¨der, H. J. Am. Chem. Soc. 1971, 93, 1777. (203) DeShong, P.; Kell, D. A. Tetrahedron Lett. 1986, 27, 3979. DeShong, P.; Kell, D. A.; Sidler, D. R. J. Org. Chem. 1985, 50, 2309. (204) Oppolzer, W. Synthesis 1978, 793. Charlton, J. L.; Alauddin, M. M. Tetrahedron 1987, 43 2873. (205) Funk, R. L.; Vollhardt, K. P. C. Chem. Soc. Rev. 1980, 9, 41. Kametani, T.; Nemoto, H. Tetrahedron 1981, 37, 3. (206) Shishido, K.; Hiroya, K.; Komatsu, H.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1987, 2491. Shishido, K.; Shitara, E.; Komatsu, H.; Hiroya, K.; Fukumoto, K.; Kametani, T. J. Org. Chem. 1986, 51, 3007. (207) Oppolzer, W.; Roberts, D. A. Helv. Chim. Acta 1980, 63, 1703. Nicolaou, K. C.; Barnette, W. E.; Ma, P. J. Org. Chem. 1980, 45, 1463. (208) Schmitthenner, H. F.; Weinreb, S. M. J. Org. Chem. 1980, 45, 3372. (209) Donegan, G.; Grigg, R.; Heaney, F. Tetrahedron Lett. 1989, 30, 609. (210) Paquette, L. A.; Guevel, R.; Sauer, D. R. Tetrahedron Lett. 1992, 33, 923. Paquette, L. A.; Shi, Y.-J. J. Org. Chem. 1989, 54, 5205. (211) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1941. (212) Oppolzer, W.; De Vita, R. J. J. Org. Chem. 1991, 56, 6256. Zhang, Y.; Wu, G.; Agnel, G.; Negishi, E. J. Am. Chem. Soc. 1990, 112, 8590. (213) Meyer, F. E.; Brandenburg, J.; Parsons, P. J.; de Meijere, A. J. Org. Chem. 1991, 56, 6487. (214) Dauben, W. G.; Dinges, J.; Smith, T. C. J. Org. Chem. 1993, 58, 7635. (215) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1993, 115, 9421. (216) Fu¨rstner, A.; Ptock, A.; Weintritt, H.; Goddard, R.; Kru¨ger, C. Angew. Chem. 1995, 107, 725; Angew. Chem., Int. Ed. Engl. 1995, 34, 678. (217) Molander, G. A.; Nichols, P. J. J. Am. Chem. Soc. 1995, 117, 4415. (218) Molander, G. A.; McKie, J. A. J. Am. Chem. Soc. 1993, 115, 5821. (219) Sugihara, T.; Cope´ret, C.; Owczarczyk, Z.; Harring, L. S.; Negishi, E. J. Am. Chem. Soc. 1994, 116, 7923. (220) Negishi, E.; Jensen, M. D.; Kondakov, D. Y.; Wang, S. J. Am. Chem. Soc. 1994, 116, 8404. (221) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268.

Chemical Reviews, 1996, Vol. 96, No. 1 135 (222) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1993, 115, 12491. (223) Eilbrodt, P.; Gersmeier, A.; Lennartz, D.; Huber, T. Synthesis 1995, 330. (224) Meyer, F. E.; Ang, K. H.; Steinig, A. G.; de Meijere, A. Synlett 1994, 191. (225) Gaucher, A.; Dorizon, P.; Ollivier, J.; Salau¨n, J. Tetrahedron Lett. 1995, 36, 2979. (226) Luker, T.; Whitby, R. J. Tetrahedron Lett. 1995, 36, 4109. (227) Padwa, A.; Hertzog, D. L.; Nadler, W. R.; Osterhout, M. H.; Price, A. T. J. Org. Chem. 1994, 59, 1418. (228) Uozumi, Y.; Tanahashi, A.; Hayashi, T. J. Org. Chem. 1993, 58, 6826. (229) Hong, C. Y.; Overman, L. E.; Tetrahedron Lett. 1994, 35, 3453. (230) Ojima, I.; Tzamarioudaki, M.; Tsai, C.-Y. J. Am. Chem. Soc. 1994, 116, 3643. (231) Grigg, R.; Redpath, J.; Sridharan, V.; Wilson, D. Tetrahedron Lett. 1994, 35, 7661. (232) Koyama, H.; Ball, R. G.; Berger, G. D. Tetrahedron Lett. 1994, 35, 9185. (233) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 855. (234) Kim, S.-H.; Bowden, N.; Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801. (235) Pirrung, M. C.; Werner, J. A. J. Am. Chem. Soc. 1986, 108, 6060. (236) Hertzog, D. L.; Austin, D. J.; Nadler, W. R.; Padwa, A. Tetrahedron Lett. 1992, 33, 4731. (237) Meyer, F. E.; Henniges, H.; de Meijere, A. Tetrahedron Lett. 1992, 33, 8039. (238) Fevig, T. L.; Elliott, R. L; Curran, D. P. J. Am. Chem. Soc. 1988, 110, 5064. (239) Frederickson, M.; Grigg, R.; Markandu, J.; Redpath, J. J. Chem. Soc., Chem. Commun. 1994, 2225. (240) Harrington, P. J. Transition Metals in Total Synthesis; John Wiley & Sons: New York, 1990. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987. (241) Pearson, A. J. Metallo-organic Chemistry; John Wiley & Sons: Chichester, 1985. Davies, S. G. Organotransition Metal Chemistry. Applications to Organic Synthesis; Pergamon Press: Oxford, 1982. (242) Lehmkuhl, H. Bull. Soc. Chim. Fr. Part II 1981, 87. Oppolzer, W. Angew. Chem. 1989, 101, 39; Angew. Chem., Int. Ed. Engl. 1989, 28, 38. (243) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1941. Oppolzer, W. Pure Appl. Chem. 1988, 60, 39. (244) Oppolzer, W.; Gaudin, J.-M. Helv. Chim. Acta 1987, 70, 1477. (245) Grigg, R.; Sridharan, V.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1989, 30, 1139. Burns, B.; Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1989, 30, 1135. Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, 29, 5565. Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron Lett. 1988, 29, 4329. Burns, B.; Grigg, R.; Sridharan, V.; Worakun, T. Tetrahedron Lett. 1988, 29, 4325. Larock, R. C.; Berrios-Pena, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615. Larock, R. C.; Fried, C. A. J. Am. Chem. Soc. 1990, 112, 5882. Larock, R. C.; Berrios-Pena, N.; Narayanan, K. J. Org. Chem. 1990, 55, 3447. Larock, R. C.; Yum, E. K. Synlett 1990, 529. Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393. (246) Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846. Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328. Zhang, Y.; Negishi, E. J. Am. Chem. Soc. 1989, 111, 3454. Wu, G.; Lamaty, F.; Negishi, E. J. Org. Chem. 1989, 54, 2507. (247) Grigg, R.; Dorrity, M. J.; Malone, J. F. Tetrahedron Lett. 1990, 31, 1343. (248) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1992, 114, 791. Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1991, 113, 701. Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (249) Trost, B. M.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1924. Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1923. (250) Trost, B. M.; Grese, T. A. J. Org. Chem. 1992, 57, 686. (251) Meyer, F. E.; Brandenburg, J.; Parsons, P. J.; de Meijere, A. J. Chem. Soc., Chem. Commun. 1992, 39. Meyer, F. E.; de Meijere, A. Synlett 1991, 777. (252) Schore, N. E. Chem. Rev. 1988, 88, 1081. (253) van der Waals, A.; Keese, R. Unpublished results. See also: Thommen, M.; Gerber, P.; Keese, R. Chimia 1991, 45, 21; Keese, R.; Guidetti-Grept, R.; Herzog, B. Tetrahedron Lett. 1992, 33, 1207. (254) Lecker, S. H.; Nguyen, N. H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 856. (255) Germanas, J.; Aubert, C.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1991, 113, 4006. Johnson, E. P.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1991, 113, 381. Vollhardt, K. P. C. Lect. Heterocycl. Chem. 1987, 9, 59. Vollhardt, K. P. C. Pure Appl. Chem. 1985, 57, 1819.

136 Chemical Reviews, 1996, Vol. 96, No. 1

(256) (257) (258) (259) (260) (261) (262) (263) (264) (265) (266) (267) (268)

(269) (270) (271) (272) (273) (274) (275) (276) (277) (278) (279) (280)

Vollhardt, K. P. C. Angew. Chem. 1984, 96, 525; Angew. Chem., Int. Ed. Engl. 1984, 23, 539. Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 2947. See also: Eyrisch, O.; Sinerius, G.; Fessner, W.-D. Carbohydr. Res. 1993, 238, 287. Scott, A. I. Synlett 1994, 871. Tietze, L. F. J. Heterocycl. Chem. 1990, 27, 47. Tietze, L. F. In Selectivity - A Goal for Synthetic Efficiency; Bartmann, W., Trost, B. M., Eds.; Verlag Chemie: Weinheim, 1984; p 299. Tietze, L. F.; Beifuss, U. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 341. Tietze, L. F.; Stegelmeier, H.; Harms, K.; Brumby, T. Angew. Chem. 1982, 94, 868; Angew. Chem., Int. Ed. Engl. 1982, 21, 863. Tietze, L. F.; Bratz, M.; Machinek, R.; v. Kiedrowski, G. J. Org. Chem. 1987, 52, 1638. Tietze, L. F.; Brumby, T.; Pretor, M.; Remberg, G. J. Org. Chem. 1988, 53, 810. Tietze, L. F.; Brumby, T.; Pfeiffer, T. Liebigs Ann. Chem. 1988, 9. Tietze, L. F.; Brand, S.; Pfeiffer, T.; Antel, J.; Harms, K.; Sheldrick, G. M. J. Am. Chem. Soc. 1987, 109, 921. Antel, J.; Sheldrick, G. M; Pfeiffer, T.; Tietze, L. F. Acta Crystallogr. 1990, C46, 158. Tietze, L. F.; Saling, P. Synlett 1992, 281. Tietze, L. F.; Saling, P. Chirality 1993, 5, 329. Tietze, L. F.; Brand, S.; Brumby, T.; Fennen, J. Angew. Chem. 1990, 102, 675; Angew. Chem., Int. Ed. Engl. 1990, 29, 665. Tietze, L. F.; Brumby, T.; Brand, S.; Bratz, M. Chem. Ber. 1988, 121, 499. Tietze, L. F.; v. Kiedrowski, G.; Harms, K.; Clegg, W.; Sheldrick, G.; Angew. Chem. 1980, 92, 130; Angew. Chem., Int. Ed. Engl. 1980, 19, 134. Tietze, L. F.; Geissler, H.; Fennen, J.; Brumby, T.; Brand, S.; Schulz, G. J. Org. Chem. 1994, 59, 182. Tietze, L. F.; Brumby, T.; Brand, S.; Bratz, M. Chem. Ber. 1988, 121, 499. Tietze, L. F.; Brumby, T. Unpublished results Tietze, L. F.; Fennen, J.; Anders, E. Angew. Chem. 1989, 101, 1420; Angew. Chem., Int. Ed. Engl. 1989, 28, 1371. Tietze, L. F., Beifuss, U.; Ruther, M.; Ru¨hlmann, A.; Antel, J.; Sheldrick, G. M. Angew. Chem. 1988, 100, 1200; Angew. Chem., Int. Ed. Engl. 1988, 27, 1186. Hoffmann, R. W. Chem. Rev. 1989, 89, 1841. Tietze, L. F.; Meier, H.; Nutt, H. Chem. Ber. 1989, 122, 643. Tietze, L. F.; Scha¨fer, P. Unpublished results. Tietze, L. F.; von Kiedrowski, G.; Berger, B. Angew. Chem. 1982, 94, 222; Angew. Chem., Int. Ed. Engl. 1982, 21, 221. Tietze, L. F.; von Kiedrowski, G. Unpublished results. Tietze, L. F.; Harms, K.; Fennen, J.; Geissler, H. Unpublished results. Tietze, L. F. Denzer, H.; Holdgru¨n, X.; Neumann, M. Angew. Chem. 1987, 99, 1309; Angew. Chem., Int. Ed. Engl. 1987, 26, 1295.

Tietze (281) Tietze, L. F.; Meier, H.; Nutt, H. Liebigs Ann. Chem. 1990, 253. Tietze, L. F.; Glu¨senkamp, K.-H.; Holla, W. Angew. Chem. 1982, 94, 793; Angew. Chem., Int. Ed. Engl. 1982, 21, 863. (282) Tietze, L. F.; Bachmann, J.; Wichmann, J.; Burkhardt, O. Synthesis 1994, 1185. Tietze, L. F.; Bachmann, J.; Schul, W. Angew. Chem. 1988, 100, 983; Angew. Chem., Int. Ed. Engl. 1988, 27, 971. (283) Tietze, L. F.; Bachmann, J. Unpublished results (284) Tietze, L. F.; Beifuss, U.; Lo¨ko¨s, M.; Rischer, M.; Go¨hrt, A.; Sheldrick, G. M. Angew. Chem. 1990, 102, 545; Angew. Chem., Int. Ed. Engl. 1990, 29, 527. (285) Tietze, L. F.; Wo¨lfling, J.; Schneider, G. Chem. Ber. 1991, 124, 591. (286) Tietze, L. F.; Ba¨rtels, C. Liebigs Ann. Chem. 1990, 155. (287) Tietze, L. F.; Fennen, J.; Geissler, H.; Schulz, G.; Anders, E. Liebigs Ann. Chem. 1995, 1681. (288) Tietze, L. F.; Utecht, J. Chem. Ber. 1992, 125, 2259. (289) Tietze, L. F.; Bratz, M. Chem. Ber. 1989, 122, 997. (290) Tietze, L. F.; Bratz, M. Synthesis 1989, 439. Tietze, L. F.; Bratz, M.; Pretor, M. Chem. Ber. 1989, 122, 1955. (291) Tietze, L. F.; Beifuss, U.; Ruther, M. J. Org. Chem. 1989, 54, 3120. Tietze, L. F.; Beifuss, U. Liebigs Ann. Chem. 1988, 321. Tietze, L. F.; Beifuss, U. Angew. Chem. 1985, 97, 1067; Angew. Chem., Int. Ed. Engl. 1985, 27, 1042. Tietze, L. F.; Beifuss, U. Org. Synth. 1992, 71, 167. (292) Tietze, L. F.; Beifuss, U.; Antel, J.; Sheldrick, G. M. Angew. Chem. 1988, 100, 739; Angew. Chem., Int. Ed. Engl. 1988, 27, 703. (293) Tietze, L. F.; Ruther, M. Chem. Ber. 1990, 123, 1387. (294) Tietze, L. F.; Schu¨nke, C. Angew. Chem. 1995, 107, 1901; Angew. Chem., Int. Ed. Engl. 1995, 34, 1731. (295) Tietze, L. F.; Wu¨nsch, J. R. Synthesis 1990, 985. (296) Tietze, L. F.; Wu¨nsch, J. R. Unpublished results. (297) Tietze, L. F.; Rischer, M. Angew. Chem. 1992, 104, 1269; Angew. Chem., Int. Ed. Engl. 1992, 31, 1221. (298) Tietze, L. F.; Subba Rao, P. S. V.; Ammenn, J. Unpublished results. (299) Tietze, L. F.; Wichmann, J. Angew. Chem. 1992, 104, 1091; Angew. Chem., Int. Ed. Engl. 1992, 31, 1079. (300) Tietze, L. F.; Wu¨nsch, J. R. Angew. Chem. 1991, 103, 1665; Angew. Chem., Int. Ed. Engl. 1991, 30, 1697. Tietze, L. F.; Wu¨nsch, J. R.; Noltemeyer, M. Tetrahedron 1992, 48, 2081. (301) Tietze, L. F.; Geissler, H.; Gewert, J. A.; Jacobi, U. Synlett 1994, 511. (302) Tietze, L. F.; Schiemann, K.; Wegner, C. J. Am. Chem. Soc. 1995, 117, 5851. (303) Tietze, L. F.; Do¨lle, A.; Schiemann, K. Angew. Chem. 1992, 104, 1366; Angew. Chem., Int. Ed. Engl. 1992, 31, 1372.

CR950027E