Subscriber access provided by Grand Valley State | University
Review
Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism Youjun Feng ACS Infect. Dis., Just Accepted Manuscript • DOI: 10.1021/acsinfecdis.7b00201 • Publication Date (Web): 03 Feb 2018 Downloaded from http://pubs.acs.org on February 4, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
ACS Infectious Diseases is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism
Youjun Feng1,2*
1
Department of Medical Microbiology & Parasitology, Zhejiang University School of
Medicine, Hangzhou 310058, China 2
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
*To whom correspondence should be addressed:
[email protected] Tel: 86-571-88208524; Fax: 86-571-88208524
1
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Polymyxins, a group of cationic antimicrobial polypeptides, act as a last-resort defense against lethal infections by carbapenem-resistant Gram-negative pathogens. Recent emergence and fast spread of mobilized colistin resistance determinant mcr-1 argues the renewed interest of colistin in clinical therapies, threatening global public health and agriculture production. This mini-review aims to present an updated overview on mcr-1, covering its global dissemination, the diversity of its hosts/plasmid reservoirs, the complexity in the genetic environment adjacent to mcr-1, the appearance of new mcr-like genes and the molecular mechanisms for MCR-1/2 colistin resistance.
Key words: Colistin resistance, MCR-1, mcr-like genes, Global dissemination, Plasmid reservoir
2
ACS Paragon Plus Environment
Page 2 of 33
Page 3 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Clinical Use of Carbapenem and Colistin The clinical choice between antibiotics is often a trade-off between the effectiveness of the drug and the potential to develop antibiotic resistance. The overuse/abuse of anti-microbials, in both agricultural and clinical setting, is leading to the rapid development of novel multi-drug resistances (MDR) in pathogens. These MDR organisms cause lethal infections leading to more than 700,000 deaths each year1, 2. Among them, Acinetobacter baumannii (A. baumannii) is a notorious agent of healthcare-associated infections, which has evolved different mechanisms to gain an intrinsic antibiotic resistance, rendering most of β-lactam antibiotics ineffective. It seems true that carbapenems are one of the few clinical options available in the treatment of infections by the MDR-Enterobacteriaceae. However, the emergence and global distribution of carbapenemase-producing Enterobacteriaceae (CPE), referred to as “nightmare bacteria”, has challenged the use of carbapenems in clinical therapy 3. The CPE includes Klebsiella pneumoniae (K. pneumoniae) 4, 5, E. coli 6, Enterobacter cloacae 7, 8, etc. Indeed, lethal infections by such CPE bugs kill up to half of patients through bloodstream infections. Therefore, it seems likely that carbapenem resistance in CPE is an increasingly-devastating clinical problem, whose genetic determinants involve K. pneumoniae carbapenemase (KPC) 4, 5, New Delhi Metallo-β-lactamase (NDM) 3, 9, 10 and Verona Integron-Mediated Metallo-β-lactamase (VIM) 10, 11.
3
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Polymyxins are a group of cyclic peptide antimicrobials (with five subtypes: polymyxin A, B, C, D & E) that are naturally produced by Paenibacillus polymyxa 12. Historically, the action mode of polymyxins, like polymyxin B (Fig. 1A) and colistin (polymyxin E, Fig. 1B), is believed to be the disruption of bacterial membrane integrity and permeability upon binding of these cationic antibiotics to the initial target, the negatively-charged lipid A moieties of lipopolysaccharides (LPS-lipid A) of the bacterial outer membrane 13. Although it possesses neuro-toxicity and renal toxicity to some extent, colistin is still regarded as an alternative “last-resort” approach to combat CRE infections 14. Unfortunately, this renewed interest in colistin as a clinical therapeutic has been dampened by the discovery 1 and rapid spread 1, 15, 16
of mobilized colistin resistance (MCR-1) transferred by various plasmids amongst
diversified species of Enterobacteriaceae.
Transmission of mcr-1 within Multiple Ecosystems Since its first detection in Southern China in late 2015 1, mcr-1 has been detected in almost 40 countries/regions across 5 of 7 continents worldwide 15, 17. The geographic distribution of mcr-1 (the genetic determinant of colistin resistance) involves developed countries like the United States of America 18-20, Japan 21, Italy 22, 23
and developing countries such as China 1, 16, Vietnam 24, 25, Laos 26 amongst others.
In total, over 11 species of Enterobacteriaceae have been found to carry mcr-1, including E. coli 27, K. pneumoniae 28, Salmonella enterica 29, Shigella sonnei 30, Enterobacter aerogenes 31, Enterobacter cloacae 31, Cronobacter sakazakii 32, 4
ACS Paragon Plus Environment
Page 4 of 33
Page 5 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Kluyvera ascorbata 33, Citrobacter freundii 34, Citrobacter braakii 35 and Raoultella ornithinolytica 36. Interestingly, tens of different sequence types have been assigned to mcr-1-bearing E. coli isolates 1, 15, 37, 38. From the view of ecological distribution, the carriage of plasmid-borne mcr-1 exhibits unprecedented complexity and diversity. So far, the list of reservoirs (host and/or vectors) where the mcr-1-carring bacteria grow/inhabit, is already quite long, at least include environments (rivers 39, 40, public beaches 41, well water 42, wastewater 43, 44 and hospital sewage 28, 33), foods (vegetables 36, 39 and meats 45-49), animals (wild birds 50, 51, housefly/blowfly 52, cattle 21, 48
, pigs 53, 54, poultry 47, 51, 55 and companion animals 56) and humans (inpatients 16, 19,
37, 57-59
& healthy individuals) 60-62. Though an increasing amount of data suggests that
flies may act as intermediate vectors for mcr-1 between companion animals and humans, the precise route for circulation/spread of mcr-1 remains largely mysterious.
Emergence of mcr-like Genes The transferability of colistin resistance seems to be largely mediated by diversified MCR-like intramembrane enzymes (Table 1 and Fig. 2). As of this mini-review, four additional mcr-like genes have been identified, namely mcr-2 63, mcr-3 64, mcr-4 65 and mcr-5 66 (Fig. 2B-E). In comparison to the representative MCR-1 [Acc. no.: ANH55937] 1, eleven functional genetic variants have been reported (Table 1), which include MCR-1.2 [Acc. no.: WP_065274078, Q3L] 67, MCR-1.3 [Acc. no.: WP_077064885, I37L] 68, MCR-1.4 [Acc. no.: WP_076611062, D440N], MCR-1.5 [Acc. no.: ARX60875, H452Y] 69, MCR-1.6 [Acc. no.: 5
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 33
WP_077248208, R536H] 61, MCR-1.7 [Acc. no.: WP_085562392, A215T], MCR-1.8 [Acc. no.: NG_054697, Q3R], MCR-1.9 [Acc. no.: KY964067,
V413A], MCR-1.10
[Acc. no.: MF176238, M2V, R11C, A23S, M155V, M234T, A354T & A443T], MCR-1.11 [Acc. no.: NG_055784, with an additional residue of V8] and MCR-1.12 [Acc. no.: LC337668, Q3H]. Of note, three of them display a point mutation at the same position (Q3L in MCR1.2, Q3R in MCR-1.8 and Q3H in MCR-1.12). Thus, it seems that mcr-1 is evolving under an unknown selection pressure. Analyzing the global distribution of mcr-1 shows that MCR-1 (541 aa) is a prevalent member of MCR enzymes while MCR-2 (538 aa), a homologue of MCR-1 with 81% identity, is a rare member that has only been observed so far in an IncX4 plasmid from an E. coli isolate from Belgium 63. Both MCR-1 and MCR-2 are found in the same subclade in terms of the phylogeny of phosphoethanolamine (PEA)-lipid A transferases. Intriguingly, Moraxella species have been suggested to be reservoir hosts for MCR-1/2 since genetic homologues have been detected in their chromosome 70, 71. The candidate progenitors of MCR-1/2 include i) AXE82_07515 of M. osloensis [Acc. no.: AME01623, 548 aa] for MCR-1 71 and ii) two MCR-2 variants, MCR-2.1 of M. pluranimalium [Acc. no.: ASK49941, 538 aa] plus MCR-2.2 of Moraxella sp. MSG47-C17 [Acc. no.: ASK49942, 538 aa] 70.
Very recently, the third mcr-like gene, mcr-3 was revealed by Wang and coworkers 64 from an IncHI2-type plasmid pWJ1, from a swine isolate of E. coli in Shandong Province, China. Sequence alignment suggests that MCR-3 (541 aa) 6
ACS Paragon Plus Environment
Page 7 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
exhibits an appreciably higher similarity to the chromosome-encoded EptA (53.1%) than to MCR-1 (44.1%). This is consistent with the fact that MCR-3 is clustered in a sub-clade distinct from that of MCR-1 (or MCR-2). Similarly, ten genetic variants have also been assigned to MCR-3. Among them, MCR-3.6, MCR-8, MCR-9 and MCR-10 have a number of mutations (Table 1). The remaining six variants correspond to MCR-3.2 [Acc. no.: NZ_FLWO01000034, D295E] 64, MCR-3.3 [Acc. no.: NG_055492, G373V] 64, MCR-3.4 [Acc. no.: NG_055497, M23V], MCR-3.5 [Acc. no.: ERR1971735, T488I] 72 , MCR-3.7 [Acc. no.: MF489760, M23V, A457E & T488I] 73, and MCR-3.11 [Acc. no.: NG_056184, Q468T], respectively. Apart from the fact that MCR-3.6 contains three point-mutations 73, all the other five MCR-3 variants consistently possess a single residue substitution 73, 74. Since MCR-3 is a relatively weak version of MCR-like enzymes (i.e., the MIC of colistin is 2 µg/ml for MCR-3, whereas 4 µg/ml for MCR-1), the coexistence of MCR-1 and MCR-3 does not exhibit a significantly additive impact on polymyxin resistance 75. More intriguingly, two more novel MCR-like enzymes were elucidated from Salmonella species of animal origin in Europe i.e. MCR-4 [Acc. no.: MF543359, 541 aa] from Italy 65 and MCR-5 [Acc. no.: KY807920, 547 aa] from Germany 66. In particular, two more variants of MCR-4 have been detected, namely MCR-4.2 (Acc. no.: MG581979, Q331R) and MCR-4.3 (Acc. no.: MG026621, V179G, V236F). Unlike the scenario observed with MCR-1/2 and MCR-3, the discovery of MCR-4 65 and MCR-5 66 represents two additional unique members of the MCR-like enzyme collection and extends the diversity of MCR-aided transfer of colistin resistance. 7
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Diversity in mcr-1-bearing Plasmid Reservoirs Following the initial description of an IncI2 plasmid pHNSHP45 carrying mcr-1, our earlier genetic studies have proposed the presence of diversity amongst mcr-1-harbouring plasmids (Fig. 2A) 1, 16, 53, 54. As expected, the mcr-1 gene was detected in the IncHI2 48, 51, 76, IncX4 77 and IncP 28, 61 plasmids 78, 79. As of the 15th of October, 2017, no less than 12 types of mcr-1-bearing plasmids have been determined 15
. Overall, the diversified replicon types are grouped into IncI2 1, IncHI2 76, IncP 28,
IncX4 76, 80, IncY 81, IncF 18, IncFI 31, IncFII 82, IncFIB 83, IncK2 84 including hybrid versions like IncX3-IncX4 85 and IncI2-IncFIB 15. Additionally, we observe that two types of distinct mcr-1-harboring plasmids (IncI2-type plasmid pGD65-3 & IncX4-like plasmid pGD65-4) can co-occur in a single E. coli isolate with phenotypic resistance to colistin 15. Most interestingly, the mcr-1 gene also appears in the MDR-containing bacteria with either ESBL 86, 87 or NDM-1 88 [or its variants NDM-5 89
& NDM-9 90], highlighting the possible emergence of super-bugs with pan-drug
resistance. This would most likely render the two-remaining line of refuge antibiotics [carbapenem and colistin] useless in the clinical therapeutics, implying that we are almost on cusp of a “post-antibiotic era”.
In addition, many other types of plasmids like IncP 91 were identified to harbor mcr-like genes (Fig. 2B-E), suggesting that the mcr-1-like genes might have been circulated by multiple plasmids in Enterobacteriaceae worldwide. However, the types 8
ACS Paragon Plus Environment
Page 8 of 33
Page 9 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
of plasmids carrying other mcr-like genes are very few, due to the low prevalence rate of these mcr-like genes. As for mcr-2 gene, it is only found in an IncX4 plasmid 63, whereas the mcr-3 gene can be detected in IncHI2 plasmids 92, 93, as well as the IncP plasmid 94. Unexpectedly, we notice that the two genes mcr-4 and mcr-5 are transferred by the same ColE-type plasmid with relatively-small size 95, 96.
Complexity of Genetic Environment for mcr-like Genes The diversity of mcr-1-bearing plasmids has resulted in various genetic contexts of mcr-1 gene. In general, ISApl1 is flanked with mcr-1, and involves its transposition 97-99. The mcr-1-pap2 cassette (pap2 encodes a putative PAP2-like family of transmembrane protein) is neighbored with two (or one) ISApl1 (Rare case occurs without ISApl1). It seems likely that the ISApl1 whose location is downstream of mcr-1 is not as stable as it does in the upstream of mcr-1. In some instances, it can be completely (or partly) inverted, and even possess an insert sequence truncation. Similar scenarios were also seen with pap2 gene, indicating that PAP2, the product of pap2 is not prerequisite for MCR-1 colistin resistance 100. Apart from ISApl1, IS1 might also appear upstream of the mcr-1 gene. The genetic environment of mcr-2 is similar to that of mcr-1 because that it is adjacent to two IS1595 elements. In mcr-3-bearing plasmids, the transposon TnAs2 is located upstream of nimC/nimA-mcr-3 92, 94. In the mcr-4-positive ColE10-type plasmid, the IS5 element (ISKpn6) occurs upstream of mcr-4. As for the mcr-5 gene, it is carried within a Tn3-family transposon harbored on a 12-kb ColE-type plasmid 96. 9
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Mechanisms of MCR-1/2 The outer membrane of Gram-negative bacteria contains negatively-charged LPS-lipid A moieties in its outer leaflet that act as the primary target for cationic polypeptide antibiotics like colistin and polymyxin B. Historically, it was understood that colistin relies upon the disruption of the integrity and permeability of the bacterial outer membrane 13. Therefore, colistin resistance arises from in part (if not all) from the inability of colistin to bind the outer membrane with altered LPS-lipid A moieties 101, 102
. In fact, the attachment of PEA to 1(4′)-phosphate position of glucosamine
moieties of LPS-lipid A is an effective way to reduce the net negative charge on bacterial membrane (Fig. 3A) 77, 103, leading to resistance to the cationic antibiotic polymyxin. This chemical modification is generally catalyzed by members of PEA-lipid A transferase family.
The Neisseria EptA is a paradigm of PEA-lipid A transferases, comprising two unique motifs: a transmembrane (TM) region and an enzymatic core domain. Structural dissection suggests a possible “ping-pong” mechanism for PEA modification of lipid A by EptA, in which an intermediate of EptA-bound PEA might occur (in first-half reaction, PEA is donated by PE, giving EptA-bound PEA; in second-half reaction, lipid A is a receiver of PEA from an adduct of EptA-bound PEA) 104, 105
. In similarity to the chromosomally-encoded EptA, the two plasmid-borne
MCR proteins (MCR-1 and MCR-2) are also annotated as PEA-lipid A transferases 10
ACS Paragon Plus Environment
Page 10 of 33
Page 11 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
displaying conserved structural properties (Figs 3B & C). Structurally-guided site-directed mutagenesis has identified the in vivo role of the catalytic motif in MCR-1(MCR-2) colistin resistance (Figs 3B-D). The six residues required for the zinc-bound catalytic domain separately refer to E246, T285, H395, D465, H466 & H478 for MCR-1 (Figs 3B & D) 77 (E244, T283, H393, D463, H464 & H476 for MCR-2 (Figs 3C & D) 103).
Domain swapping shows that the two domains of MCR-1 are equivalent to that in MCR-2 (Figs 4A & B) 103. Genetic deletion assays also show that the TM region of MCR-1 (MCR-2) is essential to its physiological function (Fig. 4C) 77, 103. Combined with colistin susceptibility assays, MALDI-TOF MS analyses of LPS-lipid A pools confirm that none of point-mutants of MCR-1(MCR-2) with defective catalytic domains are functional PEA-lipid A enzymes. Together with other research groups 106-109, we also define a zinc-requiring catalytic motif in MCR-1 (MCR-2), which is critical for the enzymatic hydrolysis of PE by MCR-1/2 as well as its resultant colistin resistance 77, 103. Thus, EptA and MCR-1/2 remodel bacterial surfaces rendering them resistant to colistin.
Conclusions This mini-review aims to update the current understanding of diversified dissemination of MCR-1 colistin resistance. The complicated mechanisms involved in the spread of MCR-1 indicates that this transferability might be a tough challenge to 11
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
conquer. Given that new MCR-like genes are being increasingly detected, we believe that an environmental fluctuation/alteration with unknown selection pressure is causing their rapid evolution. This might partially stem from the indiscriminate prophylactic use of antibiotics in animal husbandry. Mechanistic insights into MCR-1/2 colistin resistance might provide better clues that might lead to the development of small molecule drugs/inhibitors targeting antibiotic resistance via bypassing the enzymatic activity of MCR-1/2. Because that different MCR-like enzymes share similar architectures of enzymatically-catalytic domains, it is of possibility to design a common inhibitor inactivating different MCR-like proteins. Given the subcellular localization of MCR-like enzymes in bacterial inner-membrane, the drug development in the future might consider potential barriers for drug delivery. In summary, the use of colistin in agriculture and clinical therapy needs strict re-evaluation and guidelines. Since the resistance in pathogens often co-evolves with the antibiotic pressure, a combination therapy with appropriate regimens of colistin that deliver the best clinical efficacy while minimizing toxicity might warrant further studies 110. As of formulating this manuscript, there is not any reported case of an ineffective colistin therapy in patients carrying mcr-positive bacteria yet. Thus, it might be a remaining question in this field.
12
ACS Paragon Plus Environment
Page 12 of 33
Page 13 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Abbreviations MCR-1, Mobilized colistin resistance determinant 1; MDR: Multi-drug resistance; CPE: Carbapenemase-producing Enterobacteriaceae; CRE: Carbapenem-resistant Enterobacteriaceae; NDM: New Delhi Metallo-β-lactamase; VIM: Verona Integron-Mediated Metallo-β-lactamase; ESBL: Extended-Spectrum β-Lactamases; IS: Insertion sequence; TM: Transmembrane region; PEA: Phosphoethanolamine; K. pneumoniae: Klebsiella pneumoniae; A. baumannii: Acinetobacter baumannii. Author Information Youjun Feng (PhD) Professor of Microbiology Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China Conflict of Interest I declare that no conflict of interest is present. Acknowledgements The work in this lab was supported by National Key R&D Program of China (2017YFD0500202), National Key Basic Research Program of China (2016YFC1200100) and the National Natural Science Foundation of China (31570027 & 81772142). Dr. Feng is a recipient of the “Young 1000 Talents” Award. I would like to thank Dr. Swaminath Srinivas and Mr. Vishnu Goutham Kota for critical reading this manuscript.
13
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
References 1. Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., and Shen, J. (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study, Lancet Infect Dis 16, 161-168. 2. Laxminarayan, R., Amabile-Cuevas, C. F., Cars, O., Evans, T., Heymann, D. L., Hoffman, S., Holmes, A., Mendelson, M., Sridhar, D., Woolhouse, M., and Rottingen, J. A. (2016) UN High-Level Meeting on antimicrobials--what do we need?, Lancet 388, 218-220. 3. Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., Krishnan, P., Kumar, A. V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D. L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J. B., Sharma, M., Sheridan, E., Thirunarayan, M. A., Turton, J., Upadhyay, S., Warner, M., Welfare, W., Livermore, D. M., and Woodford, N. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study, Lancet Infect Dis 10, 597-602. 4. Xu, L., Sun, X., and Ma, X. (2017) Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae, Ann Clin Microbiol Antimicrob16, 18. 5. Logan, L. K., and Weinstein, R. A. (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace, J Infect Dis 215, S28-S36. 6. Cai, J. C., Zhang, R., Hu, Y. Y., Zhou, H. W., and Chen, G. X. (2014) Emergence of Escherichia coli sequence type 131 isolates producing KPC-2 carbapenemase in China, Antimicrob Agents Chemother 58, 1146-1152. 7. Wilson, B. M., El Chakhtoura, N. G., Patel, S., Saade, E., Donskey, C. J., Bonomo, R. A., and Perez, F. (2017) Carbapenem-resistant Enterobacter cloacae in patients from the US veterans health administration, 2006-2015, Emerg Infect Dis 23, 878-880. 8. Naas, T., and Nordmann, P. (1994) Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein, PNAS 91, 7693-7697. 9. Johnson, A. P., and Woodford, N. (2013) Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance, J Med Microbiol 62, 499-513. 10. Nordmann, P., Dortet, L., and Poirel, L. (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm!, Trends Mol Med 18, 263-272. 11. Poirel, L., and Nordmann, P. (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology, Clin Microbiol Infect 12, 826-836. 12. Shaheen, M., Li, J., Ross, A. C., Vederas, J. C., and Jensen, S. E. (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics, Chem Biol 18, 1640-1648. 13. Dixon, R. A., and Chopra, I. (1986) Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli, J Antimicrob Chemother 18, 557-563. 14. Paterson, D. L., and Harris, P. N. (2016) Colistin resistance: a major breach in our last line of defence, Lancet Infect Dis 16, 132-133. 15. Wang, Q., Sun, J., Li, J., Ding, Y., Li, X. P., Lin, J., Hassan, B., and Feng, Y. (2017) Expanding 14
ACS Paragon Plus Environment
Page 14 of 33
Page 15 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
landscapes of the diversified mcr-1-bearing plasmid reservoirs, Microbiome 5 (1): 70. doi: 10.1186/s40168-017-0288-0. 16. Ye, H., Li, Y., Li, Z., Gao, R., Zhang, H., Wen, R., Gao, G. F., Hu, Q., and Feng, Y. (2016) Diversified mcr-1-harbouring plasmid reservoirs confer resistance to colistin in human gut microbiota, mBio 7, e00177. 17. Wang, X., Zhang, H., Sun, J., Liu, Y. H., and Feng, Y. (2017) The MCR-1 colistin resistance: A new challenge to global public health, Chin Sci Bull 62 (10): 1018-1029 18. McGann, P., Snesrud, E., Maybank, R., Corey, B., Ong, A. C., Clifford, R., Hinkle, M., Whitman, T., Lesho, E., and Schaecher, K. E. (2016) Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: First report of mcr-1 in the United States, Antimicrob Agents Chemother 60, 4420-4421. 19. Mediavilla, J. R., Patrawalla, A., Chen, L., Chavda, K. D., Mathema, B., Vinnard, C., Dever, L. L., and Kreiswirth, B. N. (2016) Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States, mBio 7. pii: e01191-16. 20. Meinersmann, R. J., Ladely, S. R., Plumblee, J. R., Cook, K. L., and Thacker, E. (2017) Prevalence of mcr-1 in the cecal contents of food animals in the United States, Antimicrob Agents Chemother 61 (2). pii: e02244-16. 21. Kawanishi, M., Abo, H., Ozawa, M., Uchiyama, M., Shirakawa, T., Suzuki, S., Shima, A., Yamashita, A., Sekizuka, T., Kato, K., Kuroda, M., Koike, R., and Kijima, M. (2017) Prevalence of colistin resistance gene mcr-1 and absence of mcr-2 in Escherichia coli isolated from healthy food-producing animals in Japan, Antimicrob Agents Chemother 61 (1). pii: e02057-16. 22. Cannatelli, A., Giani, T., Antonelli, A., Principe, L., Luzzaro, F., and Rossolini, G. M. (2016) First detection of the mcr-1 colistin resistance gene in Escherichia coli, Italy, Antimicrob Agents Chemother 60, 3257-3258. 23. Corbella, M., Mariani, B., Ferrari, C., Comandatore, F., Scaltriti, E., Marone, P., and Cambieri, P. (2017) Three cases of mcr-1-positive colistin-resistant Escherichia coli bloodstream infections in Italy, August 2016 to January 2017, Euro Surveill 22(16). pii: 30517. 24. Surbhi Malhotra-Kumar, B. B. X., Anupam J Das, Christine Lammens, Ha Thi Thu Hoang, Ngoc Thi Pham, Herman Goossens. (2016) Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam, Lancet Infect Dis 16, 286-287. 25. Trung, N. V., Matamoros, S., Carrique-Mas, J. J., Nghia, N. H., Nhung, N. T., Chieu, T. T., Mai, H. H., van Rooijen, W., Campbell, J., Wagenaar, J. A., Hardon, A., Mai, N. T., Hieu, T. Q., Thwaites, G., de Jong, M. D., Schultsz, C., and Hoa, N. T. (2017) Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam, Emerg Infect Dis 23, 529-532. 26. Rolain, J. M., Kempf, M., Leangapichart, T., Chabou, S., Olaitan, A. O., Le Page, S., Morand, S., and Raoult, D. (2016) Plasmid-mediated mcr-1 gene in colistin-resistant clinical isolates of Klebsiella pneumoniae in France and Laos, Antimicrob Agents Chemother 60, 6994-6995. 27. El Garch, F., Sauget, M., Hocquet, D., LeChaudee, D., Woehrle, F., and Bertrand, X. (2017) mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe, Clin Microbiol Infect 23(1):51.e1-51.e4. doi: 10.1016/j.cmi.2016.08.033. 28. Zhao, F., Feng, Y., Lu, X., McNally, A., and Zong, Z. (2017) IncP plasmid carrying colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage, Antimicrob Agents Chemother 61(2). pii: e02229-16. 15
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 33
29. Yang, Y. Q., Zhang, A. Y., Ma, S. Z., Kong, L. H., Li, Y. X., Liu, J. X., Davis, M. A., Guo, X. Y., Liu, B. H., Lei, C. W., and Wang, H. N. (2016) Co-occurrence of mcr-1 and ESBL on a single plasmid in Salmonella enterica, J Antimicrob Chemother 71, 2336-2338. 30. Pham Thanh, D., Thanh Tuyen, H., Nguyen Thi Nguyen, T., Chung The, H., Wick, R. R., Thwaites, G. E., Baker, S., and Holt, K. E. (2016) Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate, J Antimicrob Chemother 71, 2314-2317. 31. Zeng, K. J., Doi, Y., Patil, S., Huang, X., and Tian, G. B. (2016) Emergence of the Plasmid-Mediated mcr-1 Gene in Colistin-Resistant Enterobacter aerogenes and Enterobacter cloacae, Antimicrob Agents Chemother 60, 3862-3863. 32. Liu, B. T., Song, F. J., Zou, M., Hao, Z. H., and Shan, H. (2017) Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal, Antimicrob Agents Chemother 61(2). pii: e01444-16. 33. Zhao, F., and Zong, Z. (2016) Kluyvera ascorbata strain from hospital sewage carrying the mcr-1 colistin resistance gene, Antimicrob Agents Chemother 60, 7498-7501. 34. Li, X. P., Fang, L. X., Jiang, P., Pan, D., Xia, J., Liao, X. P., Liu, Y. H., and Sun, J. (2017) Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii, Int J Antimicrob Agents 49(6):786-787. 35. Sennati, S., Di Pilato, V., Riccobono, E., Di Maggio, T., Villagran, A. L., Pallecchi, L., Bartoloni, A., Rossolini, G. M., and Giani, T. (2017) Citrobacter braakii carrying plasmid-borne mcr-1 colistin resistance gene from ready-to-eat food from a market in the Chaco region of Bolivia, J Antimicrob Chemother 72 (7): 2127-2129. 36. Luo, J., Yao, X., Lv, L., Doi, Y., Huang, X., Huang, S., and Liu, J. H. (2017) Emergence of mcr-1 in Raoultella ornithinolytica and Escherichia coli Isolates from retail vegetables in China, Antimicrob Agents Chemother 61 (10). pii: e01139-17. 37. Quan, J., Li, X., Chen, Y., Jiang, Y., Zhou, Z., Zhang, H., Sun, L., Ruan, Z., Feng, Y., Akova, M., and Yu, Y. (2017) Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study, Lancet Infect Dis 17, 400-410. 38. Chen, K., Chan, E. W., Xie, M., Ye, L., Dong, N., and Chen, S. (2017) Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016, Euro Surveill 22 (39). doi: 10.2807/1560-7917.ES.2017.22.39.17-00206. 39. Zurfuh, K., Poirel, L., Nordmann, P., Nuesch-Inderbinen, M., Hachler, H., and Stephan, R. (2016) Occurrence
of
the
plasmid-borne
mcr-1
colistin
resistance
gene
in
extended-spectrum-beta-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland, Antimicrob Agents Chemother 60, 2594-2595. 40. Ovejero, C. M., Delgado-Blas, J. F., Calero-Caceres, W., Muniesa, M., and Gonzalez-Zorn, B. (2017) Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain, J Antimicrob Chemother 72, 1050-1053. 41. Fernandes, M. R., Sellera, F. P., Esposito, F., Sabino, C. P., Cerdeira, L., and Lincopan, N. (2017) Colistin-resistant mcr-1-positive Escherichia coli in public beaches, an infectious threat emerging in recreational waters, Antimicrob Agents Chemother 61(7). pii: e00234-17. 42. Sun, P., Bi, Z., Nilsson, M., Zheng, B., Berglund, B., Stalsby Lundborg, C., Borjesson, S., Li, X., Chen, B., Yin, H., and Nilsson, L. E. (2017) Occurrence of blaKPC-2, blaCTX-M, and mcr-1 in 16
ACS Paragon Plus Environment
Page 17 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Enterobacteriaceae from well water in rural China, Antimicrob Agents Chemother 61 (4). pii: e02569-16. 43. Lekunberri, I., Balcazar, J. L., and Borrego, C. M. (2017) Detection and quantification of the plasmid-mediated mcr-1 gene conferring colistin resistance in wastewater, Int J Antimicrob Agents 50 (6):734-736. 44. Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T., and Schwartz, T. (2017) Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany, Front Microbiol 8, 1282. doi: 10.3389/fmicb.2017.01282. eCollection 2017. 45. Monte, D. F., Mem, A., Fernandes, M. R., Cerdeira, L., Esposito, F., Galvao, J. A., Franco, B., Lincopan, N., and Landgraf, M. (2017) Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America, Antimicrob Agents Chemother 61(5). pii: e02718-16. 46. Kuo, S. C., Huang, W. C., Wang, H. Y., Shiau, Y. R., Cheng, M. F., and Lauderdale, T. L. (2016) Colistin resistance gene mcr-1 in Escherichia coli isolates from humans and retail meats, Taiwan, J Antimicrob Chemother 71, 2327-2329. 47. Kluytmans-van den Bergh, M. F., Huizinga, P., Bonten, M. J., Bos, M., De Bruyne, K., Friedrich, A. W., Rossen, J. W., Savelkoul, P. H., and Kluytmans, J. A. (2016) Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009, Euro Surveill 21 (9):30149. doi: 10.2807/1560-7917.ES.2016.21.9.30149. 48. Grami, R., Mansour, W., Mehri, W., Bouallegue, O., Boujaafar, N., Madec, J. Y., and Haenni, M. (2016) Impact of food animal trade on the spread of mcr-1-mediated colistin resistance, Tunisia, July 2015, Euro Surveill 21 (8):30144. doi: 10.2807/1560-7917.ES.2016.21.8.30144. 49. Figueiredo, R., Card, R. M., Nunez, J., Pomba, C., Mendonca, N., Anjum, M. F., and Da Silva, G. J. (2016) Detection of an mcr-1-encoding plasmid mediating colistin resistance in Salmonella enterica from retail meat in Portugal, J Antimicrob Chemother 71, 2338-2340. 50. Wang, J., Ma, Z. B., Zeng, Z. L., Yang, X. W., Huang, Y., and Liu, J. H. (2017) The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes, Zool Res 38, 55-80. 51. Yang, R. S., Feng, Y., Lv, X. Y., Duan, J. H., Chen, J., Fang, L. X., Xia, J., Liao, X. P., Sun, J., and Liu, Y. H. (2016) Emergence of NDM-5 and MCR-1-producing Escherichia coli clone ST648 and ST156 from a single Muscovy duck (Cairina moschata), Antimicrob Agents Chemother, 60 (11): 6899-6902. 52. Zhang, J., Wang, J., Chen, L., Yassin, A. K., Kelly, P., Butaye, P., Li, J., Gong, J., Cattley, R., Qi, K., and Wang, C. (2017) Housefly (Musca domestica) and blow fly (Protophormia terraenovae) as vectors of colistin resistance genes-carrying bacteria, Appl Environ Microbiol. 84(1). pii: e01736-17. 53. Li, Z., Tan, C., Lin, J., and Feng, Y. (2016) Diversified variants of the mcr-1-carrying plasmid reservoir in the swine lung microbiota, Sci China Life Sci 59, 971-973. 54. Gao, R., Li, Y., Lin, J., Tan, C., and Feng, Y. (2016) Unexpected complexity of multidrug resistance in the mcr-1-harbouring Escherichia coli, Sci China Life Sci 59, 732-734. 55. Shen, Z., Wang, Y., Shen, Y., Shen, J., and Wu, C. (2016) Early emergence of mcr-1 in Escherichia coli from food-producing animals, Lancet Infect Dis 16, 293. 56. Zhang, X. F., Doi, Y., Huang, X., Li, H. Y., Zhong, L. L., Zeng, K. J., Zhang, Y. F., Patil, S., and Tian, G. B. (2016) Possible transmission of mcr-1-harboring Escherichia coli between companion animals 17
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 33
and human, Emerg Infect Dis 22, 1679-1681. 57. Wang, Y., Tian, G. B., Zhang, R., Shen, Y., Tyrrell, J. M., Huang, X., Zhou, H., Lei, L., Li, H. Y., Doi, Y., Fang, Y., Ren, H., Zhong, L. L., Shen, Z., Zeng, K. J., Wang, S., Liu, J. H., Wu, C., Walsh, T. R., and Shen, J. (2017) Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study, Lancet Infect Dis 17, 390-399. 58. Wang, Q., Sun, J., Ding, Y., Li, X. P., Liu, Y. H., and Feng, Y. (2017) Genomic insights into mcr-1-positive plasmids carried by colistin-resistant Escherichia coli isolates from inpatients, Antimicrob Agents Chemother 61 (7). pii: e00361-17. 59. Hasman, H., Hammerum, A. M., Hansen, F., Hendriksen, R. S., Olesen, B., Agerso, Y., Zankari, E., Leekitcharoenphon, P., Stegger, M., Kaas, R. S., Cavaco, L. M., Hansen, D. S., Aarestrup, F. M., and Skov, R. L. (2015) Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015, Euro Surveill 20 (49). doi: 10.2807/1560-7917.ES.2015.20.49.30085. 60. Zhong, L. L., Zhang, Y. F., Doi, Y., Huang, X., Zhang, X. F., Zeng, K. J., Shen, C., Patil, S., Xing, Y., Zou, Y., and Tian, G. B. (2017) Coproduction of MCR-1 and NDM-1 by colistin-resistant Escherichia coli isolated from a healthy individual, Antimicrob Agents Chemother 61 (1). pii: e01962-16. 61. Lu, X., Hu, Y., Luo, M., Zhou, H., Wang, X., Du, Y., Li, Z., Xu, J., Zhu, B., Xu, X., and Kan, B. (2017) MCR-1.6, a new MCR variant carried by an IncP plasmid in a colistin-resistant Salmonella enterica Serovar Typhimuriumisolate from a healthy individual, Antimicrob Agents Chemother 61 (5). pii: e02632-16. 62. Bi, Z., Berglund, B., Sun, Q., Nilsson, M., Chen, B., Tarnberg, M., Ding, L., Stalsby Lundborg, C., Bi, Z., Tomson, G., Yao, J., Gu, Z., Yin, X., Kou, Z., and Nilsson, L. E. (2017) Prevalence of the mcr-1 colistin resistance gene in extended-spectrum beta-lactamase-producing Escherichia coli from human faecal samples collected in 2012 in rural villages in Shandong Province, China, Int J Antimicrob Agents 49, 493-497. 63. Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., and Malhotra-Kumar, S. (2016) Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2,
in
Escherichia
coli,
Belgium,
June
2016,
Euro
Surveill
21
(27).
doi:
10.2807/1560-7917.ES.2016.21.27.30280. 64. Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T. R., Shen, J., and Wang, Y. (2017) Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli, mBio 8 (3). pii: e00543-17. 65. Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., Pezzotti, G., and Magistrali, C. F. (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016, Euro Surveill 22 (31). pii: 30589. doi: 10.2807/1560-7917.ES.2017.22.31.30589. 66. Borowiak, M., Fischer, J., Hammerl, J. A., Hendriksen, R. S., Szabo, I., and Malorny, B. (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B, J Antimicrob Chemother. 72 (12): 3317-3324. 67. Di Pilato, V., Arena, F., Tascini, C., Cannatelli, A., Henrici De Angelis, L., Fortunato, S., Giani, T., Menichetti, F., and Rossolini, G. M. (2016) MCR-1.2: a new MCR variant encoded by a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella 18
ACS Paragon Plus Environment
Page 19 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
pneumoniae of sequence type 512, Antimicrob Agents Chemother 60, 5612-5615. 68. Yang, Y. Q., Li, Y. X., Song, T., Yang, Y. X., Jiang, W., Zhang, A. Y., Guo, X. Y., Liu, B. H., Wang, Y. X., Lei, C. W., Xiang, R., and Wang, H. N. (2017) Colistin resistance gene mcr-1 and its variant in Escherichia coli isolates from chickens in China, Antimicrob Agents Chemother 61 (5). pii: e01204-16. 69. Tijet, N., Faccone, D., Rapoport, M., Seah, C., Pasteran, F., Ceriana, P., Albornoz, E., Corso, A., Petroni, A., and Melano, R. G. (2017) Molecular characteristics of mcr-1-carrying plasmids and new mcr-1 variant recovered from polyclonal clinical Escherichia coli from Argentina and Canada, PLoS One 12, e0180347. 70. Poirel, L., Kieffer, N., Fernandez-Garayzabal, J. F., Vela, A. I., Larpin, Y., and Nordmann, P. (2017) MCR-2-mediated plasmid-borne polymyxin resistance most likely originates from Moraxella pluranimalium, J Antimicrob Chemother. 72 (10):2947-2949. 71. Kieffer, N., Nordmann, P., and Poirel, L. (2017) Moraxella species as potential sources of MCR-like polymyxin resistance determinants, Antimicrob Agents Chemother 61 (6). pii: e00129-17. 72. Roer, L., Hansen, F., Stegger, M., Sonksen, U. W., Hasman, H., and Hammerum, A. M. (2017) Novel mcr-3 variant, encoding mobile colistin resistance, in an ST131 Escherichia coli isolate from bloodstream infection, Denmark, 2014, Euro Surveill 22 (31). doi: 22846. 73. Liu, L., Feng, Y., Zhang, X., McNally, A., and Zong, Z. (2017) A new variant of mcr-3 in an extensively drug-resistant Escherichia coli clinical isolate carrying mcr-1 and blaNDM-5, Antimicrob Agents Chemother. 61(12). pii: e01757-17. doi: 10.1128/AAC.01757-17. 74. Litrup, E., Kiil, K., Hammerum, A. M., Roer, L., Nielsen, E. M., and Torpdahl, M. (2017) Plasmid-borne colistin resistance gene mcr-3 in Salmonella isolates from human infections, Denmark, 2009-17, Euro Surveill 22 (31). pii: 30587. 75. Hernandez, M., Iglesias, M. R., Rodriguez-Lazaro, D., Gallardo, A., Quijada, N., Miguela-Villoldo, P., Campos, M. J., Piriz, S., Lopez-Orozco, G., de Frutos, C., Saez, J. L., Ugarte-Ruiz, M., Dominguez, L., and Quesada, A. (2017) Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015, Euro Surveill 22 (31). pii: 30586. 76. Doumith, M., Godbole, G., Ashton, P., Larkin, L., Dallman, T., Day, M., Day, M., Muller-Pebody, B., Ellington, M. J., de Pinna, E., Johnson, A. P., Hopkins, K. L., and Woodford, N. (2016) Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales, J Antimicrob Chemother 71, 2300-2305. 77. Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., Ye, H., Liu, F., Srinivas, S., Li, D., Zhu, B., Liu, Y. H., Tian, G. B., and Feng, Y. (2016) Dissemination and mechanism for the MCR-1 colistin resistance, PLoS Pathog 12, e1005957. 78. Falgenhauer, L., Waezsada, S. E., Yao, Y., Imirzalioglu, C., Kasbohrer, A., Roesler, U., Michael, G. B., Schwarz, S., Werner, G., Kreienbrock, L., Chakraborty, T., and consortium, R. (2016) Colistin resistance
gene
mcr-1
in
extended-spectrum
beta-lactamase-producing
and
carbapenemase-producing Gram-negative bacteria in Germany, Lancet Infect Dis 16, 282-283. 79. Malhotra-Kumar, S., Xavier, B. B., Das, A. J., Lammens, C., Butaye, P., and Goossens, H. (2016) Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid, Lancet Infect Dis 16, 283-284. 80. Li, A., Yang, Y., Miao, M., Chavda, K. D., Mediavilla, J. R., Xie, X., Feng, P., Tang, Y. W., Kreiswirth, B. 19
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
N., Chen, L., and Du, H. (2016) Complete sequences of mcr-1-harboring plasmids from extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae, Antimicrob Agents Chemother 60, 4351-4354. 81. Zhang, C., Feng, Y., Liu, F., Jiang, H., Qu, Z., Lei, M., Wang, J., Zhang, B., Hu, Y., Ding, J., and Zhu, B. (2017) A phage-like IncY plasmid carrying the mcr-1 gene in Escherichia coli from a pig farm in China, Antimicrob Agents Chemother 61(3). pii: e02035-16. 82. Xavier, B. B., Lammens, C., Butaye, P., Goossens, H., and Malhotra-Kumar, S. (2016) Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms, J Antimicrob Chemother 71, 2342-2344. 83. Li, R., Xie, M., Lv, J., Wai-Chi Chan, E., and Chen, S. (2017) Complete genetic analysis of plasmids carrying mcr-1 and other resistance genes in an Escherichia coli isolate of animal origin, J Antimicrob Chemother 72, 696-699. 84. Dona, V., Bernasconi, O. J., Pires, J., Collaud, A., Overesch, G., Ramette, A., Perreten, V., and Endimiani, A. (2017) Heterogeneous genetic location of mcr-1 in colistin-resistant Escherichia coli isolated from humans and retail chicken meat in Switzerland: Emergence of mcr-1-carrying IncK2 plasmids, Antimicrob Agents Chemother 61(11), pii: e01245-17. 85. Sun, J., Yang, R. S., Zhang, Q., Feng, Y., Fang, L. X., Xia, J., Li, L., Lv, X. Y., Duan, J. H., Liao, X. P., and Liu, Y. H. (2016) Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli, Nat Microbiol 1, 16176. 86. Haenni, M., Metayer, V., Gay, E., and Madec, J. Y. (2016) Increasing trends in mcr-1 prevalence among ESBL-producing E. coli in French calves despite decreasing exposure to colistin, Antimicrob Agents Chemother 60, 6433-6434. 87. Zhang, H., Seward, C. H., Wu, Z., Ye, H., and Feng, Y. (2016) Genomic insights into the ESBL and MCR-1-producing ST648 Escherichia coli with multi-drug resistance, Sci Bull (Beijing) 61, 875-878. 88. Delgado-Blas, J. F., Ovejero, C. M., Abadia Patino, L., and Gonzalez-Zorn, B. (2016) Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela, Antimicrob Agents Chemother 60, 6356-6358. 89. Du, H., Chen, L., Tang, Y. W., and Kreiswirth, B. N. (2016) Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae, Lancet Infect Dis 16, 287-288. 90. Yao, X., Doi, Y., Zeng, L., Lv, L., and Liu, J. H. (2016) Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1, Lancet Infect Dis 16, 288-289. 91. Zhao, F., Feng, Y., Lu, X., McNally, A., and Zong, Z. (2017) IncP plasmid carrying colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage, Antimicrob Agents Chemother 61, e02229-02216. 92. Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T. R., Shen, J., and Wang, Y. (2017) Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli, mBio 8, e00543-00517. 93. Litrup E, K. K., Hammerum AM, Roer L, Nielsen EM, Torpdahl M. (2017) Plasmid-borne colistin resistance gene mcr-3 in Salmonella isolates from human infections, Denmark, 2009–17, Euro Surveill 22 (31). pii: 30587. 94. Liu, L., Feng, Y., Zhang, X., McNally, A., and Zong, Z. (2017) A new variant of mcr-3 in an extensively drug-resistant Escherichia coli clinical isolate carrying mcr-1 and blaNDM-5, Antimicrob Agents Chemother 61, e01757-01717. 20
ACS Paragon Plus Environment
Page 20 of 33
Page 21 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
95. Carattoli A, V. L., Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF. (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016, Euro Surveill 22 (31). pii: 30589. 96. Maria Borowiak, J. F., Jens A. Hammerl, Rene S. Hendriksen, Istvan Szabo and Burkhard Malorny. (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B, J Antimicrob Chemother 72(12):3317-3324. 97. Snesrud, E., He, S., Chandler, M., Dekker, J. P., Hickman, A. B., McGann, P., and Dyda, F. (2016) A model for transposition of the colistin resistance gene mcr-1 by ISApl1, Antimicrob Agents Chemother 60, 6973-6976. 98. Poirel, L., Kieffer, N., and Nordmann, P. (2017) In-vitro study of ISApl1-mediated mobilization of the colistin resistance gene mcr-1, Antimicrob Agents Chemother 61 (7). pii: e00127-17. 99. Snesrud, E., Ong, A. C., Corey, B., Kwak, Y. I., Clifford, R., Gleeson, T., Wood, S., Whitman, T. J., Lesho, E. P., Hinkle, M., and McGann, P. (2017) Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon, Antimicrob Agents Chemother 61 (5). pii: e00056-17. 100. Zurfluh, K., Kieffer, N., Poirel, L., Nordmann, P., and Stephan, R. (2016) Features of the mcr-1 cassette related to colistin resistance, Antimicrob Agents Chemother 60, 6438-6439. 101. Petrou, V. I., Herrera, C. M., Schultz, K. M., Clarke, O. B., Vendome, J., Tomasek, D., Banerjee, S., Rajashankar, K. R., Belcher Dufrisne, M., Kloss, B., Kloppmann, E., Rost, B., Klug, C. S., Trent, M. S., Shapiro, L., and Mancia, F. (2016) Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation, Science 351, 608-612. 102. Hankins, J. V., Madsen, J. A., Giles, D. K., Brodbelt, J. S., and Trent, M. S. (2012) Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria, PNAS 109, 8722-8727. 103. Sun, J., Xu, Y., Gao, R., Lin, J., Wei, W., Srinivas, S., Li, D., Yang, R. S., Li, X. P., Liao, X. P., Liu, Y. H., and Feng, Y. (2017) Deciphering MCR-2 colistin resistance, mBio 8 (3). pii: e00625-17. 104. Anandan, A., Evans, G. L., Condic-Jurkic, K., O'Mara, M. L., John, C. M., Phillips, N. J., Jarvis, G. A., Wills, S. S., Stubbs, K. A., Moraes, I., Kahler, C. M., and Vrielink, A. (2017) Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding, PNAS 114, 2218-2223. 105. Wanty, C., Anandan, A., Piek, S., Walshe, J., Ganguly, J., Carlson, R. W., Stubbs, K. A., Kahler, C. M., and
Vrielink,
A.
(2013)
The
structure
of
the
neisserial
lipooligosaccharide
phosphoethanolamine transferase A (LptA) required for resistance to polymyxin, J Mol Biol 425, 3389-3402. 106. Ma, G., Zhu, Y., Yu, Z., Ahmad, A., and Zhang, H. (2016) High resolution crystal structure of the catalytic domain of MCR-1, Sci Rep 6, 39540. 107. Hu, M., Guo, J., Cheng, Q., Yang, Z., Chan, E. W., Chen, S., and Hao, Q. (2016) Crystal structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for colistin resistance, Sci Rep 6, 38793. 108. Hinchliffe, P., Yang, Q. E., Portal, E., Young, T., Li, H., Tooke, C. L., Carvalho, M. J., Paterson, N. G., Brem, J., Niumsup, P. R., Tansawai, U., Lei, L., Li, M., Shen, Z., Wang, Y., Schofield, C. J., Mulholland, A. J., Shen, J., Fey, N., Walsh, T. R., and Spencer, J. (2017) Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the 21
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
catalytic domain of MCR-1, Sci Rep 7, 39392. 109. Stojanoski, V., Sankaran, B., Prasad, B. V., Poirel, L., Nordmann, P., and Palzkill, T. (2016) Structure of the catalytic domain of the colistin resistance enzyme MCR-1, BMC Biol 14, 81. 110. Zhou, Y. F., Tao, M. T., Feng, Y., Yang, R. S., Liao, X. P., Liu, Y. H., and Sun, J. (2017) Increased activity of colistin in combination with amikacin against Escherichia coli co-producing NDM-5 and MCR-1, J Antimicrob Chemother 72(6), 1723-1730. 111. AbuOun, M., Stubberfield, E. J., Duggett, N. A., Kirchner, M., Dormer, L., Nunez-Garcia, J., Randall, L. P., Lemma, F., Crook, D. W., Teale, C., Smith, R. P., and Anjum, M. F. (2017) mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015, J Antimicrob Chemother 72, 2745-2749. 112. Teo, J. W. P., Kalisvar, M., Venkatachalam, I., Tek, N. O., Lin, R. T. P., and Octavia, S. (2017) mcr-3 and mcr-4 variants in carbapenemase-producing clinical Enterobacteriaceae do not confer phenotypic polymyxin resistance, J Clin Microbiol, pii: JCM.01562-17.
22
ACS Paragon Plus Environment
Page 22 of 33
Page 23 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
For Table of Contents Use Only Table 1 Diversity of mcr-like genes Genes
Length (aa)
Plasmid
Bacteria
Origin
Country
Acc. no.
Ref.
541
pHNSHP4 5 (IncI2, 64015 bp)
E. coli
Swine
China
ANH55937
1
541 (Q3L)
pMCR1.2IT (IncX4, 33.3 kb)
K. pneumoniae
Rectal swab of child
Italy
WP_065274 078
67
541 (I38V)
pHeN867 (IncI2, 60,757 bp)
E. coli
Chicken
China
WP_077064 885
68
541 (D440N)
pMCR_W CHEC161 8
E. coli
/
China
KY463454
/
541 (H452Y)
pMCR-M 19241 (IncI1)
E. coli
Clinical isolate
Argentina/Ca nada
ARX60875
69
541 (R536H)
pMCR1.6 _P053 (IncP)
S. enterica
Healthy individu al
China
WP_077248 208
61
mcr-1.7
541 (A215T)
pMCR_W CHEC160 4-IncI2
E. coli
Sewage isolate
China
WP_085562 392
/
mcr-1.8
541 (Q3R)
/
E. coli
Poultry
Brunei
NG_054697
/
mcr-1.9
541 (V413A)
pLV23529 -MCR-1.9 (IncX4)
E. coli
Swine
Portugal
KY964067
/
mcr-1.10
541 (M2V, R11C, A23S, M155V, M234T, A354T, A443T)
Genomic DNA
Moraxella sp. MSG13-C03
Pig caecal contents
United Kingdom
MF176238
111
mcr-1.11
542 (with an additional V8)
Genomic DNA
E. coli
Human blood
Peru
NG_055784
/
mcr-1.12
541 (Q3H)
Genomic DNA
E. coli EC15-101
Pig
Japan
LC337668
/
pKP37-BE (IncX4, 35104 bp)
E. coli
Pig
Belgium
NG_051171
63
mcr-1
mcr-1.2
mcr-1.3
mcr-1.4
mcr-1.5
mcr-1.6
mcr-2
538
23
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
mcr-2.1
mcr-2.2
mcr-3
538
Genomic DNA
Moraxella pluranimaliu m
538
Genomic DNA pWJ1 (IncHI2, 261119)
541
Page 24 of 33
70
Pig
Spain
ASK49941
Moraxella sp. MSG47-C17
Pig
UK
ASK49942
70
E. coli
Pig
China
NG_055505
64
EC15 Contig67 (4732 bp)
E. coli
Pig, Vulval swab
Malaysia
NZ_JWKH 01000067
64
Contig (3346 bp)
S. enterica
Human stool
USA
NZ_NAAS 01000133
64
Contig (3501 bp)
K. pneumoniae
Human pus
Thailand
NZ_FLWZ 01000042
64
mcr-3.2
541 (D295E)
Contig (2631 bp)
K. pneumoniae
Human urine
Thailand
NZ_FLWO 01000034
64
mcr-3.3
541 (G373V)
Genomic DNA
K. pneumoniae
Human pus
Thailand
NG_055492
/
mcr-3.4
541 (M23V)
/
Citrobacter freundii
Pig
China
NG_055497
/
mcr-3.5
541 (T488I)
SNTR36B 6 (IncHI2)
E. coli
Human blood
Denmark
ERR197173 5
72
mcr-3.6
540 (M13I, D41Y, I71V, S117N, V122G, E139D, R297L, I313V, E337K, H341Y, G428A, L458M, Q468K, T488I, V493M, D494N, A496E, Q500M, K501N, D504A, T505N, S525A, V526I, K529Q, G530E, S535K, V540N)
Genomic DNA
Aeromonas veronii
Leucisc us idus
Germany
AST36140
/
541 (M23V, A457E, T488I)
pMCR3_L L123 (TnAs3/ IncP, 52.2 kb)
E. coli
Patient
China
MF489760
73
mcr-3.7
24
ACS Paragon Plus Environment
Page 25 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
mcr-3.8
540 (M13I, V122G, R297L, I313V, E337K, H341Y, D358E, G428A, L458M, Q468K, T488I, V493M, D494N, A496E, Q500M, K501N, D504A, T505N, S525A, V526I, K529Q, G530E, S535K, V540N)
Genomic DNA
Aeromonas hydrophila
Cyprinu s carpio
Germany
MF598079
/
mcr-3.9
541 (M13I, I71V, V122G, E144K, L151I, R297L, I313V, E337K, H341Y, D358E, Q468K)
Genomic DNA
Aeromonas hydrophila
Cyprinu s carpio
Germany
NG_055663
/
Genomic DNA
Aeromonas caviae
Cloaca
China
NG_055799
/
mcr-3.10
541 (V122G, R297L, I313V, E337K, H341Y, D358E, Q468K)
Genomic DNA
E. coli
Cloaca
China
MG214533
/
541 (Q468T)
Genomic DNA
E. coli
/
China
NG_056184
/
mcr-4
541
pMCR_R3 445 (8,749 bp)
Salmonella
Pig
Italy
MF543359
65
mcr-4.2
541 (Q331R)
Genomic DNA
S. enterica
Italy
MG581979
/
mcr-4.3 (Rename d from mcr-4.2)
541 (V179G, V236F)
Genomic DNA
Enterobacter cloacae
/
Singapore
MG026621
112
547
pSE13-SA 01718 & pSE12-02 541 (Tn3 transposon from ColEtype plasmid)
S. enterica subsp. entericaserov ar Paratyphi B
Poultry/ chicken meat
mcr-3.11
mcr-5
Human feces
25
ACS Paragon Plus Environment
KY807921 Germany
66
KY807920
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The symbol “/” denotes “not applied”
26
ACS Paragon Plus Environment
Page 26 of 33
Page 27 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Figure Legends
Fig. 1 Structures of two leading types of polymyxins A. Chemical structure of polymyxin B B. Chemical structure of colistin (polymyxin E) Red letters in red denoted positive charges. Using ChemDraw, it was adapted in part from Sun and coworkers’ finding 103 with permission of Copyright [2017, ASM publisher/mBio].
27
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Fig. 2 Complex dissemination of five mcr-like genes A. Unexpected complexity in diversified mcr-1-harbouring plasmids B. Transfer of mcr-2 by the IncX4-type plasmid pKP37-BE C. Carriage of mcr-3 in two types of plasmids The two types of mcr-3-positive plasmids referred to IncHI2-type plasmid pWJ1 and IncP-like plasmid pMCR3_LL123. D. Discovery of mcr-4, a new mobilized colistin resistance gene in the ColE10-type plasmid pMCR-R3445 E. The novel mcr-5 colistin resistance gene encoded by the two ColE10-type plasmids pSE12-02541 and pSE13-SA01718
28
ACS Paragon Plus Environment
Page 28 of 33
Page 29 of 33
ACS Infectious Diseases
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 29
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Fig. 3 Mechanistic insights into MCR-1/2 colistin resistance A. Working model for PEA modification of lipid A by MCR-1/2 Structural basis for the catalytic motif of MCR-1 (B) and MCR-2 (C) D. Structure-guided site-directed mutagenesis analyses for the putative active sites of MCR-1/2 It was adapted in part from Sun and coworkers’ finding 103 with permission of Copyright [2017, ASM publisher/mBio].
30
ACS Paragon Plus Environment
Page 30 of 33
Page 31 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Fig. 4 Functional dissection of TM regions in MCR-1/2 A. Scheme for domain swapping of MCR-1 and MCR-2 B. Functional analyses of the chimeric variants of MCR-1/2 on LBA plates supplied with various level of colistin C. Transmembrane domain of MCR-1/2 is prerequisite for the phenotypic colistin resistance It was adapted in part from Sun and coworkers’ finding 103 with permission of Copyright [2017, ASM publisher/mBio].
31
ACS Paragon Plus Environment
ACS Infectious Diseases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Graphic for TOC Colistin resistance in MCR-1-harboring E. coli
32
ACS Paragon Plus Environment
Page 32 of 33
Page 33 of 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Infectious Diseases
Colistin resistance in MCR-1-harboring E. coli 215x115mm (300 x 300 DPI)
ACS Paragon Plus Environment