2D Covalent Organic Frameworks with Alternating Triangular and

Publication Date (Web): August 27, 2015. Copyright © 2015 American Chemical ... A Series of Layered Assemblies of Hydrogen-Bonded, Hexagonal Networks...
1 downloads 9 Views 23MB Size
Subscriber access provided by UNIV OF CAMBRIDGE

Communication

2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores Luke A. Baldwin, Jonathan W. Crowe, Matthew D Shannon, Christopher P. Jaroniec, and Psaras L. McGrier Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/acs.chemmater.5b02053 • Publication Date (Web): 27 Aug 2015 Downloaded from http://pubs.acs.org on August 31, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Chemistry of Materials is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores Luke  A.  Baldwin‡,  Jonathan  W.  Crowe‡,  Matthew  D.  Shannon,  Christopher  P.  Jaroniec,  and   Psaras  L.  McGrier*   Department  of  Chemistry  &  Biochemistry,  The  Ohio  State  University,  Columbus,  Ohio  43210,  United  States   Supporting  Information     Covalent   organic   frameworks   (COFs)1,2   are   an   incipient   class   of   porous   crystalline   materials   that   have   attracted   considerable  attention  for  applications  related  to  gas  stor-­‐ age3,    separations4,  optoelectronics5-­‐7,  and  catalysis8,9.  The   modular   nature   of   COFs   permits   the   integration   of   vari-­‐ ous   rigid   π-­‐conjugated   molecular   building   blocks   into   highly   ordered   columnar   periodic   arrays   producing   poly-­‐ meric   materials   that   exhibit   low   densities,   permanent   porosity  and  high  thermal  stabilities.  Many  COFs  are  gen-­‐ erally   constructed   through   a   dynamic   nucleation-­‐ elongation  process  to  produce  the  desired  highly  ordered   polymeric   networks.10,11   Utilizing   this   process,   two-­‐ dimensional   (2D)   and   three-­‐dimensional   (3D)12   COFs   have   been   synthesized   with   imine13,   boronate   ester14,   bo-­‐ razine15,  and  hydrazone16  bond  linkages.          The  predictable  design  and  applicability  of  various  bond   linkages   has   enabled   the   creation   of   many   distinctive   COFs  with  tunable  pore  sizes.    Although  the  pore  size  and   shape   can   be   modulated   by   meticulous   selection   of   the   monomer,   finding   ways   to   incorporate   functional   mono-­‐ mers  that  can  bind  analytes  (i.e.  metal  cations)  or  interact   selectively   with   guest   molecules   without   compromising   the   surface   area   and   pore   volume   of   the   materials   is   still   a   particular   challenge.   However,   Zhao   and   coworkers   have   recently   shown   that   the   careful   choice   of   monomers   can   lead  to  a  2D  COF  structure  with  a  mixture  of  micro-­‐  and   mesopores   utilizing   a   one   step   polycondensation   reac-­‐ tion.17  However,  the  micropore  of  the  COF  investigated  in   this  report  relies  upon  monomers  with  D2h  and  C2  symme-­‐ tries,  which  can  limit  the  control  over  the  specific  size  of   the   micropore   as   the   lengths   of   the   C2-­‐symmetric   mono-­‐ mers  are  protracted.  Having  precise  control  over  the  size   of   the   micropore   is   important   for   designing   functional   multipore  COF  architectures  that  can  interact  with  specif-­‐ ic   analytes   as   the   pore   size   is   extended   to   increase   the   surface  area  of  the  material.  Jiang  and  coworkers  recently   reported   utilizing   a   C3-­‐symmetric   phenanthrene   cyclotri-­‐ mer   and   C2-­‐symmetric   monomers   to   construct   star-­‐ shaped  multipore  2D  COFs,  which  demonstrated  the  po-­‐ tential   of   employing   a   macrocycle   to   control   the   mi-­‐ cropore  of  2D  COFs.18  Such  investigations  are  imperative    

Scheme  1.    Synthesis  of  DBA-­‐COF  1  and  DBA-­‐COF  2  using   DBA  monomers  and  a  diboronic  acid  linker.       HO OH HO OH

DBA[12]

DBA[18] OH OH

HO HO

2:1 Dioxane / Mesitylene 105 °C / 3 days

HO HO

HO OH B

B HO OH

OH OH

2:1 Dioxane / Mesitylene 105 °C / 3 days

B O O B O O

O BO

O OB

O BO

OB O

BO O

OB O

BO O

O O B

BO O

O O B

O O B

B O O

B

B O O

O BO

O OB OB O

BO O

BO O

OB O

O O B

DBA-COF 2

DBA-COF 1

O BO

O OB

OB O

B O O

O O

O OB

O BO

O OB

O BO BO O

O OB

OB O

O O B O O B

__________________________________________________   for   advancing   the   structural   diversity   of   this   advanced   class  of  polymeric  materials.          Herein,  we  report  the  synthesis  of  two  2D  COFs  with  a   mixture   of   alternating   triangular   and   hexagonal   pores   utilizing   C3-­‐symmetric   π-­‐conjugated   dehydrobenzoannu-­‐ lenes   (DBAs)19   and   a   C2   symmetric   1,4-­‐benzenediboronic   acid   (BDBA)   monomer.   DBAs   are   planar   macrocycles   that   exhibit   the   ability   to   form   ordered   2D   porous   net-­‐ works20,21,   and   the   potential   to   bind   low   oxidation   state   transition    metals.22  Both    features    make  DBAs  attractive   monomers   to   utilize   for   the   construction   of   a   distinct   class  of  functional  COFs.    We  demonstrate  that  the  size  of   the  micropore  (0.4  nm  to  0.5  nm)  and  mesopore  (3.2  nm  to   3.6 nm)  can  be  tuned  by  extending  the  length  of  the  DBA   monomer   by   adding   three   additional   alkynyl   units   to   yield  periodic  crystalline  networks  with  very  high  surface   areas.23          DBA-­‐COF   1   and   DBA-­‐COF   2   were   synthesized   under   solvothermal   conditions   by   reacting   DBA[12]   and   DBA[18]   monomers24  with  BDBA  in  a  2:1  (v/v)  1,4-­‐dioxane  and  me-­‐ sitylene   mixture   in   flame   sealed   glass   ampules   at   105   °C   for  3  days.  DBA-­‐COF  1  and  DBA-­‐COF  2  were  obtained  by    

1 ACS Paragon Plus Environment

Chemistry of Materials

tion   of   13C   types   based   on   their   proximity   to   1H   nuclei.   Specifically,   for   13C   atoms   with   directly   bonded   protons,   significant   dipolar   dephasing   of   the   13C   spectral   intensity   is   observed   for   short   (~100   µs)   recoupling   times.   In   con-­‐ trast,   longer   dipolar   recoupling   periods   (~1-­‐2   ms)   are   re-­‐ quired   to   modulate   the   resonance   intensities   for   the   re-­‐ maining  carbons,  with  the  extent  of  dephasing  correlated   with  the  distance  to  the  nearest  proton.  Scanning  electron   microscopy   (SEM)   images   revealed   hexagonal   crystallites   and   one   bulk   phase   morphology   for   both   COFs   (Figure   S20  &  S21,  SI).  

3.4#Å#

40000"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

[1#0#0]#

35000" 30000" 25000"

DBA$COF(1(

20000" 15000" 10000"

[1#1#0]# [2#0#0]# [2#1#0]# ####[3#1#0]#

5000"

[0#0#1]#

0"

0"

5"

10"

15"

20"

2θ#(Degrees)#

25"

30"

  3.4#Å#

30000"

[1#0#0]# 25000"

20000"

DBA$COF(2(

15000"

10000"

[1#1#0]# [2#0#0]# [2#1#0]# [3#1#0]#

5000"

[0#0#1]#

0"

0"

5"

10"

15"

20"

2θ#(Degrees)#

25"

Page 2 of 5

30"

 

Figure   1.   Indexed   experimental   (red)   and   Pawley   refined   (blue)   PXRD   patterns   of   DBA-­‐COF   1   (top)   and   DBA-­‐COF   2   (bottom)   compared   to   the   bnn   simulated   unit   cell   (green)   with   views   along   the   c   and   b   directions   for   each   hexagonal   crystal  model.  

__________________________________________________  

filtration   and   washed   with   acetonitrile   to   afford   green   crystalline   powders   that   were   insoluble   in   common   or-­‐ ganic   solvents.   The   COF   materials   were   purified   by   im-­‐ mersing  them  in  acetonitrile  for  24  h  to  remove  unreacted   monomers   and   dried   under   vacuum   (SI).   Thermogravi-­‐ metric   analysis   (TGA)   revealed   that   DBA-­‐COF   1   main-­‐ tained  more  than  97%  of  its  weight  up  to  465  °C  (Figure   S10,  supporting  information  (SI))  while  DBA-­‐COF  2  main-­‐ tained   ~   80%   of   its   weight   up   to   the   same   temperature   (Figure  S11,  SI).          DBA-­‐COF  1  and  DBA-­‐COF  2  were  characterized  by  Fou-­‐ rier   transform   infrared   (FT-­‐IR)   and   13C   cross-­‐polarization   magic  angle  spinning  (CP-­‐MAS)  spectroscopies.    The  FT-­‐ IR  spectra  of  DBA-­‐COF  1  and  DBA-­‐COF  2  showed  stretch-­‐ ing   modes   at   1326   cm-­‐1   and   1329   cm-­‐1,   respectively,   which   is  indicative  of  boronate  ester  (B-­‐O)  formation  (Figure  S1   &  S2,  SI).  Solid-­‐state   13C  CP-­‐MAS  NMR  was  used  to  estab-­‐ lish   the   connectivity   of   the   COF   materials.   The   presence   of  alkynyl  units  was  confirmed  via  the  characteristic  reso-­‐ nance  at  94.0  ppm  for  DBA  -­‐COF  1  and  two  signals  at  78.6   and   83.2   ppm   for   DBA-­‐COF   2   (Figure   S9,   SI).   For   both   COF  materials  the  spectra  also  contain  all  the  expected  13C   resonances   in   the   120-­‐160   ppm   region   and   no   other   sig-­‐ nals.  To  assign  the   13C  resonances,  in  addition  to  utilizing   the  general  chemical  shift  trends,  we  performed   R1871    1H-­‐ 13 C  dipolar  recoupling  experiments34  for  DBA-­‐COF  1  (Fig-­‐ ure   S8,   SI).   These   measurements   enable   the   differentia-­‐

     Powder  x-­‐ray  diffraction  (PXRD)  was  used  to  assess  the   crystallinity   and   unit   cell   parameters   of   DBA-­‐COF   1   and   DBA-­‐COF  2.  Figure  1  shows  the  experimental  and  refined   PXRD  profiles  for  both  COFs,  which  were  indexed  using  a   primitive   hexagonal   lattice.     Since   the   both   DBA   mono-­‐ mers  are  C3-­‐symmetric,  it  was  anticipated  that  combining   DBA[12]   or   DBA[18]   with   the   linear   C2-­‐symmetric   BDBA   building   block   would   yield   ordered   2D   hexagonal   layers.     We   predicted   that   these   layers   would     pack     in     eclipsed   bnn   (P6/mmm)   or   staggered   gra   (P63/mmc)   confor-­‐ mations.   DBA-­‐COF   1   displays   intense   peaks   at   3.01,   5.16,   5.93,  7.83,  10.65,  and  26.1°  which  corresponds  to  the  (100),   (110),  (200),  (210),  (310),  and  (001)  planes,  respectively.  The   broad   reflection   peak   at   26.1   corresponding   to   the   (001)   reflection   plane   highlights   the   vertical   spacing   between   the  stacked  COF  layers  at  a  distance  of  3.4  Å.  The  crystal   structure   of   DBA-­‐COF   1   was   simulated   using   the   Reflex   module   of   the   Materials   Studio   7.0   software.   Pawley   re-­‐ finement   of   the   observed   PXRD   data   using   a   bnn   net   pro-­‐ vided  unit  cell  parameters  of  a=b=  33.929  Å  and  c=  3.4  Å (residuals Rp = 6.89%, Rwp = 8.83%).   The   diffraction   peaks   for   DBA-­‐COF   2   are   analogous   to   DBA-­‐COF   1   displaying   intense  peaks  at  2.67,  4.55,  5.23,  6.92,  9.44,  and  26.2  corre-­‐ sponding   to   the   (100),   (110),   (200),   (210),   (310),   and   (001)   planes,  respectively.  The  unit  cell  was  also  refined  using  a   bnn   net   to   provide   parameters   of   a=b=   37.889   Å   and   c=   3.4  Å (residuals  Rp   =  3.86%,  Rwp   =  4.96%).  With  an  inter-­‐ layer  spacing  of  3.4   Å,  the  butadiyne  units  of  DBA[18]  are   not   in   close   enough   proximity   to   undergo   polymeriza-­‐ tion,25  an  observation  that  is  consistent  with  another  pre-­‐ viously   reported   COF   using   a   similar   butadiyne   building   block.26   Although   the   simulated   PXRD   patterns   were   in   good  agreement  with  the  experimental  peak  positions  for   DBA-­‐COF  1  and  DBA-­‐COF  2,  computational  studies  have   shown28  that  the  adjacent  layers  of  most  COFs  are  slightly   offset   from   their   completely   eclipsed   bnn   packing   struc-­‐ ture.  We  also  considered  gra  PXRD  patterns  in  which  the   a   and   b   planes   are   offset   by   half   of   the   unit   cell   for   both   materials   (Figure   S5   &   S7,   SI).   However,   the   simulated   PXRD   patterns   could   not   reproduce   the   experimental   peak  intensities.        The  permanent  porosity  of  DBA-­‐COF  1  and  DBA-­‐COF  2   were   determined   by   nitrogen   gas   adsorption   measure-­‐ ments   at   77   K.     DBA-­‐COF   133   exhibits   a   type   IV   isotherm   displaying   a   sharp   uptake   under   low   relative   pressure   (P/P0   <  0.01)  followed  by  a  sharp  step  between  P/P0=  0.04   -­‐   0.21,   which   is   indicative   of   a   mesoporous   material   (Fig-­‐ ure  2a).    The    Brunauer-­‐Emmett-­‐Teller  (BET)    model    was    

2 ACS Paragon Plus Environment

Page 3 of 5

__________________________________________________  

Desorp2on"

200" 0"

3.2$nm$

20" 15" 10" 5" 0"

0"

0.25"

(b)" 700"

0.5"

P/P0"

0.75"

1"

1"

2"

14"

3"

(d)"12"

600" 500" 400" 300"

Adsorp2on"

200"

Desorp2on"

4"

Pore"Width"(nm)"

5"

6"

3.6$nm$

spectra   of   DBA-­‐COF   2   is   within   the   range   of   the                       absorption  maximum  of  DBA[18],  but  the  powders  are  not   fluorescent  under  UV  illumination  at  365  nm  (Figure  S16,   SI).   The   reason   for   the   dramatic   difference   in   the   lumi-­‐ nescent   properties   of   DBA-­‐COF   1   and   DBA-­‐COF   2   is   not   well   understood.   We   believe   the   extended   size   of   the   DBA[18]   vertices   leads   to   additional   offsets,   which   could   limit  their  coplanar  interactions  with  the  adjacent  layers.     __________________________________________________  

10" 8" 4" 2"

100"

0"

0" 0"

0.25"

0.5"

P/P0"

0.75"

1"

(b)"700"

(a)"5"

6"

1"

2"

3"

4"

5"

Pore"Width"(nm)"

6"

  Figure   2.   Nitrogen   adsorption   isotherms   for   DBA-­‐COF   1   (a)   and   DBA-­‐COF   2   (b)   measured   at   77   K   followed   by   NLDFT   pore  size  distributions  of  DBA-­‐COF  1  (c)  and  DBA-­‐COF  2  (d).  

__________________________________________________  

applied   over   the   low-­‐pressure   region   (0.04   <   P/P0   <   0.18)   of   the   isotherm   providing   a   surface   area   of   1952   m2   g-­‐1.   This  value  is  very  close  to  the  predicted  Connolly  surface   area  value  of  2085  m2  g-­‐1  allowing  us  to  activate  up  to  90%   of  its  maximum  nitrogen  uptake.    It  should  also  be  noted   that   the   BET   surface   area   of   DBA-­‐COF   1   is   larger   than   COF-­‐5   (1590   m2   g-­‐1)1,   NTU-­‐COF-­‐2   (1619   m2   g-­‐1)27,   COF-­‐10   (1760   m2   g-­‐1)3,     and   TT-­‐COF   (1810   m2   g-­‐1)7.   Its   total   pore   volume   calculated   at   P/P0  =   0.993   was   1.27   cm3/g,   which   is   also  close  to  the  theoretical  value  of  1.32  cm3/g.    DBA-­‐COF   2  also  exhibits  a  type  IV  isotherm  indicative  of  a  mesopo-­‐ rous  material.  Application  of  the  BET  model  over  the  low   pressure  0.08  <  P/P0  <  0.21  range  provided  a  surface  area   of   984   m2   g-­‐1,   which   is   significantly   lower   than   the   pre-­‐ dicted   Connolly   surface   area   of   2166   m2   g-­‐1.   We   attribute   the  lower  surface  area  to  the  presence  of  unreacted  mon-­‐ omers   trapped   within   the   1D   hexagonal   channels   of   the   material.  However,  further  optimization  to  attain  its  theo-­‐ retical   value   is   ongoing.   The   total   pore   volume   of   DBA-­‐ COF   2   calculated   at   P/P0   =   0.997   was   0.741   cm3   g-­‐1.   The   nonlocal   density   functional   theory   (NLDFT)   was   used   to   estimate   the   pore   size   distributions   of   DBA-­‐COF   1   and   DBA-­‐COF  2  yielding  average  pore  sizes  of  3.2  and  3.6  nm,   respectively.  The  observed  pore  sizes  for  DBA-­‐COF  1  and   DBA-­‐COF   2   are   very   close   to   the   predicted   values   of   3.4   nm   and   3.8   nm,   respectively,   utilizing   the   bnn   crystal   models.   However,   we   were   not   able   to   confirm   the   pres-­‐ ence  of  the  predicted  micropore  values  of  0.4  nm  and  0.5   nm for   DBA[12]   and   DBA[18],   respectively.   We   attribute   this   to   possible   defects   and   offsets   between   the   stacked   layers   of   the   materials,   which   is   a   typical   phenomenon   that  has  been  observed  with  other  COFs.28          Interestingly,   DBA-­‐COF   1   powders   are   highly   fluores-­‐ cent   in   the   solid-­‐state   on   account   of   the   coplanar   ar-­‐ rangement   of   the   DBA[12]   vertices   (Figure   3c).   UV-­‐vis   diffuse  reflectance  spectra  show  that  the  material  absorbs   within  310-­‐380  nm  range  which  is  consistent  with  the  ab-­‐ sorption   maximum   of   DBA[12]   in   THF   (Figure   S12   in   the   SI).  The  solid-­‐state  emission  spectra  exhibits  a  λmax  of  530   nm   (λexc=   365   nm),   which   is   red-­‐shifted   by   ~10   nm   from   DBA[12]   in   THF   (Figure   S13,   SI).   The   diffuse   reflectance  

600"

4"

Intensity"

Adsorp2on"

400"

25"

Kubelka?Munk"F(R)"

600"

dV"(cm3/g)"

(c)"

dV"(cm3/g)"

N2"Uptake"(cm3/g)"

1000" (a)" 800"

N2"Uptake"(cm3/g)"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

3" 2" 1" 0" 225"

(c)"

500" 400" 300" 200" 100"

325"

425"

Wavelength"(nm)"

525"

0" 460"

510"

560"

610"

Wavelength"(nm)"

660"

710"

 

 

Figure   3.   Kubelka-­‐Munk   function   diffuse   reflectance   (a),   emission   spectrum   (b),   and   photograph   (c)   of   DBA-­‐COF   1   powder  (λexc=365  nm),  respectively.  A  photograph  of  the  flu-­‐ orescent  powder  was  taken  using  a  handheld  UV-­‐lamp  at  365   nm.  

__________________________________________________        In   conclusion,   we   have   demonstrated   that   DBA   mono-­‐ mers  can  be  used  to  construct  multipore  COFs  with  high   surface   areas   and   unique   luminescent   properties.   Alt-­‐ hough   luminescent   COFs   could   be   useful   for   developing   solid-­‐state   materials   for   sensory-­‐based   applications29,   we   also  believe  the  proof-­‐of-­‐principle  is  important  as  theoret-­‐ ical   studies   have   shown   that   DBA   monomers   exhibit   the   potential   to   strongly   bind   not   only   alkali   and   alkaline   earth  metals,  but  also  low  oxidation  state  transition  met-­‐ als.30   Incorporating   metals   at   the   vertices   of   2D   DBA-­‐ based   COFs   raises   the   possibility   of   developing   novel   functional  COF  materials  with  enhanced  binding  sites  for   separations31   and   gas   storage   applications.32   Such   investi-­‐ gations  are  currently  underway  in  our  laboratory  and  will   be  reported  in  the  near  future.   Supporting Information Synthetic   procedures,   FT-­‐IR,   PXRD,   solid   state   13C   NMR,   TGA  and  SEM.  This  material  is  available  free  of  charge  via   the  internet  at  http://pubs.acs.org.    

AUTHOR INFORMATION Corresponding Author *[email protected]   Author Contributions ‡ L.B  and  J.C  contributed  equally  to  this  work.       Notes The  authors  declare  no  competing  financial  interests.  

ACKNOWLEDGMENTS P.L.M   acknowledges   the   National   Science   Foundation   (NSF)  and  Georgia  Tech  Facilitating  Academic  Careers  in   Engineering   and   Science   (GT-­‐FACES)   for   a   Career   Initia-­‐ tion  Grant,  and  funding  from  The  Ohio  State  University.    

3 ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

REFERENCES (1)   Côté,   A.P.;   Benin,   A.I;   Ockwig,   N.W;   O’Keeffe,   M.;   Matzger,  A.J.;  Yaghi,  O.  M.  Porous,  Crystalline,  Covalent  Organic   Frameworks  Science  2005,  310,  1166-­‐1170.     (2)   Feng,   X.   Ding,   X.   Jiang,   D.   Covalent   organic   frameworks.   Chem  Soc.  Rev.  2013,  41,  6010-­‐6022     (3)  Furukawa,  H.;  Yaghi,  O.  M.  Storage  of  Hydrogen,  Methane,   Carbon  Dioxide  in  Highly  Porous  Covalent  Organic  Frameworks   for  Clean  Energy  Applications.  J.  Am.  Chem.  Soc.  2009,  131,  8875-­‐ 8883.     (4)   Oh,   H.;   Kalidini,   S.B;   Um,   Y;   Bureekaew,   S.;   Schmid,   R.;   Fischer,  R.A.;  Hirsher,  M.  A  Cryogenically  Flexible  Covalent  Or-­‐ ganic   Framework   for   Efficient   Hydrogen   Isotope   Separation   by   Quantum  Sieving.  Angew.  Chem.  Int.  Ed.,  2013,  52,  13219-­‐13222.   (5)   Wan,   S.;   Guo,   J.;   Kim,   J.;   Ihee,   H;   Jiang,   D.   A   Belt-­‐Shaped   Blue   Luminescent,   Semiconducting   Covalent   Organic   Frame-­‐ work.  Angew.  Chem.,  Int.  Ed.  2008,  47,  8826-­‐8830.     (6)  Bertrand,  G.  H.  V.;  Michaelis,  V.  K.;  Ong,  T.-­‐C.;  Griffin,  R.   G.;   Dincă,   M.   Thiophene-­‐Based   Covalent   Organic   Frameworks.   Proc.  Natl.  Acad.  Sci  U.  S.  A.  2013,  110,  4923-­‐4928.     (7)  Dogru,  M.;  Handloser,  M.;  Auras,  F.;  Kunz  T.;  Medina,  D.;   Hartschuh,   A.;   Knochel,   P;   Bein   T.   A   Photoconductive   Thienothiophene-­‐Based   Covalent   Organic   Framework   Showing   Charge  Transfer  Towards  Included  Fullerene.   Angew.   Chem.,   Int.   Ed.  2013,  52,  2920-­‐2924.   (8)   Ding,   S.-­‐Y.;   Gao,   J.;   Wang,   Q;   Zhang,   Y.;   Song,   W.-­‐G.;   Su,   C.-­‐Y.;   Wang,   W.     Construction   of   Covalent   Organic   Framework   for   Catalysis:   Pd/COF-­‐LZU1   in   Suzuki-­‐Miyaura   Coupling   Reac-­‐ tion.  J.  Am.  Chem.  Soc.  2011,  133,  19816-­‐19822.      (9)  Fang,  Q.;  Gu,  S.;  Zheng,  J.;  Zhuang,  Z.;  Qiu,  S;  Yan,  Y.  3D   Microporous   Base-­‐Functionalized  Covalent  Organic  Frameworks   for  Size-­‐Selective  Catalysis.  Angew.  Chem.,  Int.  Ed.  2014,  53,  2878-­‐ 2882.   (10)   Smith,   B.J.;   Dichtel,   W.   R.   Mechanistic   Studies   of   two-­‐ dimensional  Covalent  Organic  Frameworks  Rapidly  Polymerized   from  Initially  Homogeneous  Conditions.  J.  Am.  Chem.  Soc.  2014,   136,  8783-­‐8789.     (11)     Smith,   B.J.;   Hwang,   N.;   Chavez,   A.D.   Novotney,   J.   L.;   Dichtel,  W.  R.  Growth  rates  and  water  stability  of  2D  boronate-­‐ ester   covalent   organic   frameworks.   Chem.   Commun.   2015,   51,   7532-­‐7535.   (12)      El-­‐Kaderi,  H.  M.;  Hunt,  J.R.;  Mendoza-­‐Cortes,  J.  L.;  Côté,   A.P.;  Taylor,  R.  E.;  O’Keeffe,  M.  O.;  Yaghi,  O.  M.  Designed  Syn-­‐ thesis   of   3D   Covalent   Organic   Frameworks.   Science   2007,   316,   268-­‐272.     (13)   Das,   G.;   Shinde   D.   B.;   Kandambeth,   S.;   Biswal,   B.   P.;   Banerjee,  R.  Mechanosynthesis  of  Imine,   β-­‐ketoenamine,   Hydro-­‐ gen-­‐bonded   imine-­‐linked   Covalent   Organic   Frameworks   using   Liquid  Assisted  Grinding.  Chem.  Commun.  2014,  50,  12615-­‐12618.     (14)    Tilford,  R.  W.;  Gemmil,  W.  R.;  zur  Loye,  H.-­‐C.;  Lavigne,  J.   J.  Facile  Synthesis  of  a  Highly  Crystalline  Covalently  Linked  Po-­‐ rous  Boronate  Network.  Chem.  Mater.  2006,  18,  5296-­‐5301.     (15)  Jackson,  K.  T.;  Reich,  T.  E.;  El-­‐Kaderi,  H.  M.  Targeted  Syn-­‐ thesis  of  a  Porous  Borazine-­‐Linked  Covalent  Organic  Framework   Chem.  Commun.  2012,  48,  8823-­‐8825.   (16)  Uribe-­‐Romo,  F.  J.;  Doonan,  C.  J.;  Furukawa,  H.;  Oisaki,  K.;   Yaghi,   O.   M.   Crystalline   Covalent   Organic   Frameworks   with   Hydrazone  Linkages.  J.  Am.  Chem.  Soc.  2011,  133,  11478-­‐11481.     (17)     Zhou,   T.-­‐Y.;   Xu,   S.-­‐Q.;   Wen,   Q.;   Pang,   Z.-­‐F.;   Zhao,   X.   One-­‐Step  Construction  of  Two  Different  Kinds  of  Pores  in  a  2D   Covalent  Framework.  J.  Am.  Chem.  Soc.  2014,  136,  15885-­‐15888.     (18)  Feng,  X.;  Dong,  Y.;  Jiang,  D.  Star-­‐shaped  two-­‐dimensional   covalent  organic  frameworks.    CrystEngComm  2013,  15,  1508-­‐1511.   (19)  Spitler,  E.  L.;  Johnson  II,  C.  A.;  Haley,  M.  M.  Renaissance   of  Annulene  Chemistry.  Chem  Rev.  2006,  106,  5344-­‐5386.  

Page 4 of 5

(20)    Tahara,  K.;  Furukawa,  S.;  Uji-­‐I,  H.;  Uchino,  T.;  Ichikawa,   T.;  Zhang,  J.;  Mamdouh,  W.;  Sonoda,  M.;  De  Schryver,  F.  C.;  De   Feyter,  S.;  Tobe,  Y.  Two-­‐Dimensional  Porous  Networks  of  Dehy-­‐ drobenzo[12]annulene   Derivatives   via   Alkyl   Chain   Interdigita-­‐ tion.  J.  Am.  Chem.  Soc.  2006,  128,  16613-­‐16625.     (21)   Tahara,   K.;   Johnson   II,   C.   A.;   Fujita,   T.;   Sonoda,   M.;   De   Schryver,  F.  C.;  De  Feyter,  S.;  Haley,  M.  M.  Tobe,  Y.  Synthesis  of   Dehydrobenzo[18]annulene   Derivatives   and   Formation   of   Self   Assembled  Monolayers:  Implications  of  Core  Size  on  Alkyl  Chain   Interdigitation.  Langmuir  2007,  23,  10190-­‐10197.   (22)  Youngs,  W.  J.;  Tessier,  C.  A.;  Bradshaw,  J.  D.  ortho-­‐Arene   Cyclynes,   Related   Heterocyclynes,   and   Their   Metal   Chemistry.   Chem.  Rev.  1999,  99,  3153-­‐3180.   (23)   A   2D   mulitporous   supramolecular   network   utilizing   do-­‐ decadehydorbenzo[18]annulene   has   been   reported   recently.   However,   the   network   is   connected   via   hydrogen   bonds   and   is   not   covalent   bonds.   See   Hisaki,   I.;   Nakagawa,   S.;   Tohnai,   N.;   Miyata,   M.     A   C3-­‐Symmetric   Macrocycle-­‐Base,   Hydrogen   Bond-­‐ ed,   Multiporous   Hexagonal   Network   as   a   Motif   of   Porous   Mo-­‐ lecular  Crystals.  Angew.  Chem.,  Int.  Ed.  2015,  54,  3008-­‐3012.           (24)   The   number   in   brackets   denotes   the   number   of   sp   and   sp2  hybridized  carbon  atoms  within  the  triangular  pore.       (25)  Coates,  G.  W.;  Dunn,  A.  R.;  Henling,  L.M.;  Dougherty,  D.   A.;   Grubbs,   R.   H.Phenyl-­‐Perfluorophenyl   Stacking   Interactions:   A  New  Strategy  for  Supermolecuale  Construction.  Angew.  Chem.,   Int.  Ed.  1997,  36,  248-­‐251.   (26)     Spitler,   E.   L.;   Koo,   B.   T.;   Novotney,   J.   L.;   Colson,   J.   W.;   Uribe-­‐Romo,   F.   J.;   Gutierrez,   G.   D.;   Clancy,   P.;   Dichtel   W.   R.   A   2D  Covalent  Organic  Framework  with  4.7-­‐nm  Pores  and  Insight   into   Its   Interlayer   Stacking.   J.   Am.   Chem.   Soc.   2011,   133,   19416-­‐ 19421.   (27)  Zeng,  Y.;  Zou,  R.  Luo,  Z.;  Zhang,  H.;  Yao,  X.  Ma,  X.;  Zou,   R.;   Zhao,   Y.   Covalent   Organic   Frameworks   Formed   with   Two   types  of  Covalent  Bonds  Based  on  Orthogonal  Reactions.  J.  Am.   Chem.  Soc.  2015,  137,  1020-­‐1023.     (28)   Koo,   B.   T.;   Dichtel,   W.   R.;   Clancy,   P.   A   classification   scheme   for   the   stacking   of   two-­‐dimensional   boronate   ester-­‐ linked   covalent   organic   frameworks.   J.   Mater.   Chem.   2012,   22,   17460-­‐17469.   (29)   Das,   G.;   Biswal,   B.   P.;   Kandambeth,   S.;   Venkatesh,   V.;   Kaur,   G.;   Addicoat,   M.;   Heine,   T.;   Verma,   S.;   Banerjee,   R.   Chemi-­‐ cal   sensing   in   two-­‐dimensional   porous   covalent   organic   nanosheets.  Chem.  Sci.  2015,  6,  3931-­‐3939.       (30)   Li,   Y.;   Xu,   L.;   Liu,   H.;   Li,   Y.   Graphdiyne   and   graphyne:   from  theoretical  predictions  to  practical  construction.  Chem  Soc.   Rev.  2014,  43,  2572-­‐2586.         (31)  Li,  B.;  Zhang,  Y.;  Krishna,  R.;  Yao,  K.;  Han,  Yu,  H.;  Wu,  Z.;   Ma,   D.;   Shi,   Z.;   Pham,   T.;   Space,   B.;   Liu,   J.;   Thallapally,   P.   K.;   Liu,   J.;  Chrzanowski,  Ma,  S.  Introduction  of  π-­‐complexation  into  Po-­‐ rous   Aromatic   Framework   for   Highly   Selective   Adsorption   of   Ethylene  over  Ethane.  J.  Am.  Chem.  Soc.  2014,  136,  8654-­‐8660.   (32)    Lan,  J.;  Cao,  D.;  Wang,  W.;  Smit,  B.  Doping  of  Alkali,  Al-­‐ kaline-­‐Earth,   and   Transition   Metals   in   Covalent-­‐Organic   Frameworks   for   Enhancing   CO2   capture   by   First-­‐Principles   Cal-­‐ culations   and   Molecular   Simulations.   ACS   Nano   2010,   4,   4225-­‐ 4237.   (33)   A   COF   using   a   DBA[12]   monomer   was   recently   reported   using   a   different   method   providing   a   lower   surface   area.   Also,   the   luminescent   properties   of   the   material   were   not   reported.   See   Yang,   H.;   Du,   Y.;   Wan,   S.;   Trahan,   G.D.   Jin,   Y.;   Zhang,   W.   Mesoporous  2D  Covalent  Organic  Frameworks  Based  on  Shape-­‐ Persistent   Arylene-­‐Ethynylene   Macrocycles.   Chem.   Sci.   2015,   6,   4049-­‐4053.     (34)   Levitt,   M.   H.   Symmetry   in   the   design   of   NMR   multiple-­‐ pulse  sequences.  J.  Chem.  Phys.  2008,  128,  052205.  

4 ACS Paragon Plus Environment

Page 5 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

 

Chemistry of Materials

TOC  Graphic:  

   

ACS Paragon Plus Environment

5