5 Selective Substitution of Sucrose Hydroxyl Groups via Chelates E. AVELA, S. ASPELUND, B. HOLMBOM, and B. MELANDER Academy of Finland, Pyorokiventie 10, 00830 Helsinki 83, Finland
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
H. JALONEN and C. PELTONEN Abo Academy, 20500 Turko 50, Finland A l l of the three primary and five secondary hydroxy l groups of sucrose usually react with the same reagents causing p a r t i a l derivatization and producing a mixture of degrees of substitution and isomer locations. Due to the multistages of reactions required, the protection of some hydroxyls followed by specific substitutions and reconversions not only causes low yields but usually produces insufficient s e l e c t i v i t y . We have found that, i f instead, a reaction site i n a polyol molecule i s converted to a chelate group, usually involving binding two of the hydroxyl groups into a f i v e - or sixmembered ring compound, a high y i e l d s e l ective reaction i s obtained (1-4). Such a reaction i s , e.g. the selective monoacetylation of methyl 4,6-benzylidene-a-D-glucopyranoside mercuric chelate with acet i c anhydride giving a 94 mole-% y i e l d of 2-O-acetyl ester, 2% of 3-O-acetyl and 4% of the di-O-acetyl ester (5) . S i m i l a r l y , the methylation of the cupric chelate of the same compound with methyl iodide gives solely monoethers or 19 mole-% of 2-O-methyl ether and 73% of 3-0-methyl ether (2). The preparations of the s e l ectively reacting chelates are seen i n Figure 1. The substitution reaction can be i l l u s t r a t e d by Figure 2. The reason why a bidentate ligand gives solely monosubstitution instead of a diderivative can be explained by blockage of the underivatized oxygen by salt formation as shown i n Figure 3. In the present study, selective substitution v i a chelates w i l l be applied to etherification and e s t e r i fication of sucrose. To be a homogenous substrate for a selective reaction, sucrose should give stoichiomet r i c a l l y definable chelates that are s u f f i c i e n t l y soluble i n a dry aprotic solvent, such as N,N-dimethyIformamide or dimethylsulphoxide. One might question whether the unchelated hydroxyl groups of sucrose also would be derivatized. 62 In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
5.
Substitution of Hydroxyl Groups via Chelates
AVELA ET AL.
x:
ONa
i : 2:c 1:2:0
il 1:1:0
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
: 0:0.5
III
|o:0
J
ix>o i
v 2:2:1 0:0:l|
x:
"0 cr ^0 ^ 2:4:1 VI 2:4
x
vu 1:1:1
0
1:2:1
x: Figure 1. Preparation and interchangeabilité of mono- and disodium alcoholates 1:1:0 and 1:2:0 resp., and copper (II) derivatives 1:2:1, 2:2:1, 2:4:1,1:1:1, and 1:2:2 of a dihydroxyl compound. Compounds characterized by mole ratio of diol:NaH:CuCl in synthesis; notations of + and — charges omitted. g
di-derivotive
mono-derivative
Figure 2
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
63
SUCROCHEMISTRY
64
—X
-OCu -OR
—
X
-OH -OR
Figure 3
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Experimental E t h e r i f i c a t i o n o f S u c r o s e C h e l a t e s by A l l y l H a l i d e s , and S o d i u m B r o m o a c e t a t e . A l l y l bromide or c h l o r i d e was a d d e d t o a d i m e t h y l s u l p h o x i d e (DMSO) s o l u t i o n of sucrose c h e l a t e i n the r a t i o s of sucrose: a l l y l h a l i d e 1 : 1 , 1 , 1 : 1 , 3 , 1:2,0 a n d 1:2,5 a n d k e p t a t 80°C f o r 16 t o 48 h . The a l l y l b r o m i d e r e a c t i o n s w e r e c a r r i e d o u t i n s c r e w c a p , s e a l e d t e s t t u b e s and most o f the a l l y l c h l o r i d e r e a c t i o n s i n a sealed a u t o c l a v e . D e c o m p o s i t i o n o f t h e s u c r o s e was p r e v e n t e d b y k e e p i n g the r a t i o of sucrose t o a l l y l h a l i d e equal or l e s s t h a n t h e r a t i o 1:2,5. The r e a c t i o n b e t w e e n s u c r o s e c h e l a t e s a n d s o d i u m b r o m o a c e t a t e was p e r f o r m e d i n t h e f o l l o w i n g r a t i o s ; s u c r o s e : b r o m o a c e t a t e , 1:2,6, 1:3,8, 1:5,2 a n d 1 : 7 , 0 , i n DMSO f o r 72 h a t 70°C.
E s t e r i f i c a t i o n o f S u c r o s e C h e l a t e s by A c i d Anhydrides and C h l o r i d e s . A c e t i c , c a p r y l i c , s t e a r i c , m a l e i c o r p h t h a l i c a c i d a n h y d r i d e s were added t o a N , N - d i m e t h y l f o r m a m i d e (DMF) s o l u t i o n o f a s u c r o s e c h e l a t e i n r a t i o s o f s u c r o s e : a n h y d r i d e 1:1,3 o r 1:3. The r e a c t i o n m i x t u r e was a l l o w e d t o s t a n d w i t h a c e t i c a n h y d r i d e f o r 15 h a t 22°C, w i t h c a p r y l i c a n d s t e a r i c a n h y d r i d e f o r 3 h a t 60°C, o r w i t h m a l e i c a n d p h t h a l i c a n h y d r i d e f o r 10 h a t 60°C. The i s o l a t i o n , e . g . o f m o n o s t e a r a t e s , was made b y e x t r a c t i o n w i t h 1 - b u t a n o l (6) a f t e r a d d i t i o n o f 1 0 % a q s o d i u m c h l o r i d e t o t h e DMF. E s t e r i f i c a t i o n s w i t h a c r y l o y l , c a p r o y l and l a u r o y l c h l o r i d e s was c a r r i e d o u t o v e r 3 h a t 60°C. The h y d r o l y s i s i s a v o i d e d when no m o r e t h a n 3 m o l e s o f a c i d c h l o r i d e i s used p e r mole o f s u c r o s e .
T r a n s e s t e r i f i c a t i o n . S i x t o 30 m o l e s o f m e t h y l or e t h y l a c e t a t e , m e t h y l c a p r i n a t e , l a u r a t e , o l e a t e , stéarate o r m e t h a c r y l a t e was a d d e d t o a DMF solution o f one m o l e o f s u c r o s e c h e l a t e . The r e a c t i o n m i x t u r e s w e r e a l l o w e d t o s t a n d 3 h a t 100° o r 120°C a n d a n a l y z ed.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
5.
AVELA ET AL.
Substitution of Hydroxyl Groups via Chelates
65
Analytical Sucrose e t h e r s and e s t e r s were a n a l y z e d a s t r i m e t h y l s i l y l d e r i v a t i v e s p r e p a r e d b y a d d i n g t o 0,5 m l o f r e a c t i o n s o l u t i o n , 0,1 m l h e x a m e t h y l d i s i l a z a n e a n d 0,05 ml d i m e t h y l c h l o r o s i l a n e . The c a r b o x y m e t h y l e t h e r s were g a s - c h r o m a t o g r a p h i c a l l y s e p a r a t e d o n a 12 f t 3% OV-17 g l a s s c o l u m n a t f i r s t w i t h t h e t e m p e r a t u r e p r o grammed a t 180°-280°C, 4°/min, a n d t h e n i s o t h e r m a l l y . The a l l y l e t h e r s w e r e s e p a r a t e d o n a 28 m, 0,33 mm i d OV-17 g l a s s c a p i l l a r y c o l u m n i s o t h e r m a l l y a t 245°C. The a c e t a t e s w e r e g a s - c h r o m a t o g r a p h i c a l l y separated on a 12 f t 3% OV-17 g l a s s c o l u m n , w i t h t h e t e m p e r a t u r e p r o g r a m m e d a t 2 4 0 -260° C, l / m i n , o r a t 245°C i s o t h e r mally. The r e s p o n s e v a l u e s f o r t h e p a r t i a l l y a c e t y l a t e d s u c r o s e d e r i v a t i v e s were d e t e r m i n e d by i n t e r p o l a t i o n based on v a l u e s o f s u c r o s e and s u c r o s e o c t a a c e tate. T h e c a p r y l a t e s , stéarates, m a l e a t e s a n d p h t h a l a t e s w e r e s e p a r a t e d o n a 1 f t 1% OV-1 g l a s s c o l u m n t e m p e r a t u r e p r o g r a m m e d a t 150°-340°C, 10°/min. The a c r y l a t e s a n d l a u r a t e s w e r e s e p a r a t e d o n a 1 f t 1% S E 30 g l a s s c o l u m n w i t h t h e t e m p e r a t u r e p r o g r a m m e d a t 150°-330°C, 10°/min. The m e t h a c r y l a t e s were s e p a r a t e d on a 4 f t 3% OV-17, w i t h t h e t e m p e r a t u r e p r o g r a m m e d a t 180°-280°C, 4°/min. The d e g r e e o f s u b s t i t u t i o n o f t h e e t h e r s a n d e s t e r s was d e t e r m i n e d b y LKB g a s c h r o m a t o g r a p h - m a s s s p e c t r o m e t e r (GC-MS). The p r o g r e s s o f t h e e s t e r i f i c a t i o n r e a c t i o n s w a s f o l l o w e d b y t h i n l a y e r c h r o m a t o g r a p h y (TLC) i n a d d i t i o n to gas chromatography. Merck s i l i c a g e l p l a t e s were developed with a mixture o f toluene - e t h y l acetate 95 % e t h a n o l ( 2 : 1 : 1 v / v / v ) (1)• The s p o t s were v i s u a l i z e d by spraying t h ep l a t e s with a s o l u t i o n o f 1 g u r e a , i n 4,5 m l 8 0 % p h o s p h o r i c a c i d a n d 48 m l 1 - b u t a n o l , d y e d p l a t e s h e a t e d i n a n o v e n a t 110°C f o r 30 m i n , a n d analyzed with a V i t a t r o n densitometer.
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
6
ô
Results A l l o f t h e sucrose metal complexes i n v e s t i g a t e d gave c o l o r e d s o l u t i o n s e x c e p t mercury c h e l a t e s , w h i c h were c o l o r l e s s . Results o f thea l l y l a t i o n reactions a r e shown i n T a b l e s I a n d I I . T h e c h e l a t e r e a c t i o n s are s u p e r i o r i n s e l e c t i v i t y t o t h e c o r r e s p o n d i n g a l c o holate reactions. F o r i n s t a n c e , i nTable H t h e chel a t e 2 : 4 : 1 : 4 , 0 g a v e 6 9 % mono- a n d 2% d i e t h e r s w h i l e t h e a l c o h o l a t e g a v e 5 0 % mono- a n d 3 5 % d i e t h e r s . Furtherm o r e , t h e c h e l a t e 2:4:1 w a s m o r e r e a c t i v e t h a n t h e c h e l a t e 1:2:1 a n d t h e s e l e c t i v i t y d e c r e a s e d f o r t h e c h e l a t e s when t h e r a t i o , s u c r o s e : r e a g e n t w a s i n c r e a s e d .
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
66
SUCROCHEMISTRY
Table I . Composition o f t h e e t h e r i f i c a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s w i t h a l l y l bromide i n DMSO, 80°C, 48 h , m o l e - % . Reactions performed i n screw cap sealed t e s t tubes. Mole
ratio
NaH:metal allyl
of
sucrose:
chloride:
metal
Sucrose Unreacted
bromide
2:4:1:2,6
Mono-O-
D i - O -
Hydrolysis
ethers
ethers
products
C o
75
25
"
:4,0
"
59
41
"
:6,0
"
2
"
89
11
"
74
26
1:2:1:1,3
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Chelating
"
:2,0
1:2:0:1,3 "
:2,0
98
-
N a
64
29
7
"
42
43
15
Table I I . Composition o f t h ee t h e r i f i c a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s w i t h a l l y l c h l o r i d e a n d a l l y l b r o m i d e i n DMSO, 80°C, 16 h , m o l e - % . Reactions performed i n a sealed autoclave. Mole
ratio
NaH:metal allyl
of
sucrose:
chloride:
Chelating metal
Sucrose Unreacted
reagent
Mono-O-
D i - O -
Hydrolysis
ethers
ethers
products
-
Allylchloride 2:4:1:2,2
C o
45
55
"
:4,0
"
29
69
"
:5,0
"
7
1:2:1:2,0
"
63
37
-
1:2:0:2,0
N a
15
50
35
C o
63
37
-
"
56
43
Allyl
93
bromide
2:4:1:2,2 "
2
:4,0
1
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
5.
AVELA ET AL.
Substitution of Hydroxyl Groups via Chelates
67
The r e s u l t s o f t h e c a r b o x y m e t h y l a t i o n r e a c t i o n c a n be s e e n i n T a b l e I I I . H e r e a g a i n t h e c h e l a t e s w e r e m o r e s e l e c t i v e than t h e a l c o h o l a t e s , although the d i f f e r e n ces were n o t as s i g n i f i c a n t as i n t h e former examples. The c h e l a t e 2:4:1:7,6 g a v e 4 1 % mono- a n d 4% d i e t h e r s and t h e a l c o h o l a t e 2 2 % mono- a n d 6% d i e t h e r s . Again, t h e s e l e c t i v i t y o f t h e c h e l a t e r e a c t i o n d e c r e a s e d when g r e a t e r r a t i o s o f s u c r o s e : r e a g e n t were used. Table I I I . C o m p o s i t i o n o f t h e e t h e r i f i c a t i o n products o f s u c r o s e c h e l a t e s a n d a l c o h o l a t e s w i t h sodium bromo a c e t a t e i n DMSO, 70°C, 7 2 h , m o l e - % .
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Mole
ratio
Nahhmetal sodium
of
sucrose:
chloride:
Chelating metal
Sucrose Unreacted
Mono-O-
Di-O-
_
Co
71
29
"
:7,6
H
55
41
4
"
:10,4
H
37
50
13
"
:14,0
H
24
55
21
_
2:4:1:5,2
H
67
33
"
:3,8
H
45
48
"
:5,2
H
23
51
1:4:2:3,8
H
50
44
1:2:0:2,6
1:2:1:2,6
Hydrolysis
eth
ethers
bromoacetate
7 26 6
_
Na
85
15
"
:3,8
H
72
22
6
"
:5,2
M
58
32
10
The a l l y l a t i o n a n d c a r b o x y m e t h y l a t i o n r e a c t i o n v e l o c i t i e s d i f f e r from each o t h e r . For a l l y l a t i o n , the c h e l a t e s r e a c t e d slower than t h e a l c o h o l a t e s ,b u t the carboxymethylation proceeded f a s t e r w i t h c h e l a t e s than w i t h a l c o h o l a t e s . However, t h e s e l e c t i v i t y o f the c h e l a t e s , i n t h i s case, i s s t i l l b e t t e r than the selectivity of the alcoholates. The c o m p o s i t i o n s o f t h e p r o d u c t m i x t u r e s f r o m t h e treatment of sucrose w i t h a c e t i c anhydride are given i n T a b l e s I V a n d V. I t i s s e e n t h a t , w i t h 1,3 m o l e s o f a c e t i c a n h y d r i d e , t h e c o b a l t c h e l a t e formed from s u c r o s e , sodium h y d r i d e and c o b a l t o u s c h l o r i d e , i n t h e m o l e r a t i o 2 : 4 : 1 , g i v e s 98 m o l e - % o f m o n o a c e t a t e s . E v e n t h e c o b a l t c h e l a t e 1:2:1 a n d c o p p e r c h e l a t e s 1:2:1 a n d 2:4:1 g a v e o v e r 90 m o l e - % o f m o n o a c e t a t e s . The c o r r e s p o n d i n g s u c r o s e a l c o h o l a t e , 1:2:0, g a v e no s e l e c t i v i t y a n d a t b e s t , 59 m o l e - % m o n o a c e t a t e s . Mass s p e c t r o m e t r y d i s c l o s e d t h a t t h e p e a k s 1-8 i n t h e g a s c h r o m a t o g r a m r e p r e s e n t a l l t h e p o s s i b l e s u c r o s e mono-
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
68
SUCROCHEMISTRY
T a b l e IV« Composition o f the acetylation products of sucrose c h e l a t e s and a l c o h o l a t e s w i t h a c e t i c anhydride i n DMF, 1 5 h , 22°C, m o l e - % . Mole
ratio
NaH:metal A c
2
sucrose:
chloride:
Chelating metal
Sucrose Unreacted
0
1:2:1
1,3
M
Co
H
1,3
H
3
H
1,3 ii
H
Fe II
H
1/3 3
1:4:2
1,3
(II)
Mono-O-
Di-
acetyl
ace
10
90
8
92
32
66
5
46
(II)
4
93
3
(II)
24
71
5
(II)
Na II
Co
(II)
10
89
52
48
12
59
29
71
_
34
65
II
3
H
1/3
Fe
(II)
28
72
M
H
Cu
(II)
4
89
H
H
Hg
(II)
43
55
"
Mn
H
1,3 3
1:6:3
1,3 II
H
II H
II
H
II
1:6:0 3
2
49
Hg
H
1:4:0
_
-
Cu Mn
1:2:0
(II)
It
3
M
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
of
1
(II)
N a
"
20
-
37
63 42
43
48
_
(II)
34
66
Fe
(II)
29
71
Cu
(II)
12
84
Hg
(II)
62
38
Mn
(II)
59
41
65
31
7 2
58
Co
Na
1
-
-
4
4
T a b l e V. Composition o f the a c e t y l a t i o n products o f s u c r o s e c h e l a t e s w i t h a c e t i c a n h y d r i d e i n DMF, 15 h , 22°C, m o l e - % . Chelate:
Chelating metal
AC2O
:2,6
Co
:6
II
:2,6
Fe
Sucrose Unreacted
2
(II)
(II)
:6
Mono-O-
Di-O-
acetyl
acetyl
98 28
-
72
21
76
3
4
55
41
= 1,3
Cu
(II)
5
92
3
:1,3
Hg
(II)
17
71
12
:1,3
Mn
26
71
3
(II)
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
5.
AVELA ET AL.
69
Substitution of Hydroxyl Groups via Chelates
T a b l e V I . C o n t e n t o f t h e d i f f e r e n t s u c r o s e mono-O-acet a t e s i n a c e t y l a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s , y i e l d o f r e a c t i o n mole-%. Mole
ratio
of
sucrose: N a H : metal
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
A c
2
Chelating
Total
Peak
metal
mono-O-
acetates
chloride:
acetate
0
2:4:1:2,6
1
number 2
in 3
of
different
gas 4
Co(ll)
54
66
-
58
-
76
4
27
11
8
66
5
15
8
18
92
1:2:1:3,0
M
90
1:4:2:1,3
"
71
1:6:3:1,3
H
2:4:1:2,6
Fe(ll) II
6
8
7
4
68
98
H
1:2:1:1,3
5 mole-%
yield
1:2:1:1,3
mono-O-
chromatograms
54 60
-
5 5 1 1
-
26
-
33 31 10 7
14
5
7
10
5
5
2:4:1:2,6
Cu(ll)
92
24
1
38
13
5
4
2
5
1:2:1:1,3
"
92
26
1
35
15
5
2
2
6
ii
39
16
1
38
14
7
2
3
8
ii
84
11
3
35
18
7
1
3
6
70
12
6
22
8
9
8
2
3
71
9
18
15
10
12
—
5
2
17
11
12
2
2
3
8
10
13
2
5
6
1:4:2:1,3 1:6:3:1,3 2:4:1:2,6
Hg(ll) II
1:2:1:1,3
2:4:1:2,6
Mn(ll) H
1:2:1:1,3
71
8
16
89
5
40
1:3:1:1,3
Fe(lll)
65
6
5
12
18
12
3
3
6
2:3:1:2,6
Cr(lll)
63
12
7
22
7
9
3
1
2
1:2:0:3,0
Na
5
11
11
6
2
4
4
17
22
2
1
13
14
1
-
-
57
14
1:4:0:3,0
H
48
5
1:6:0:3,0
H
31
2
-
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
-
1
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
70
SUCROCHEMISTRY
acetate isomers. The c o b a l t o u s c h e l a t e s gave o n l y three d i f f e r e n t monoacetate isomers, t h e f e r r o u s chel a t e s gave seven, w h i l e a l l t h e o t h e r c h e l a t e s s t u d i e d Cu ( I I ) , Hg ( I I ) , Mn ( I I ) , F e ( I I I ) a n d C r ( I I I ) , g a v e a l l eight isomers. With f a t t y a c i d anhydrides, Table V I I , t h e sucrose c h e l a t e s g a v e much h i g h e r y i e l d s , o f m o n o e s t e r s , t h a n w i t h t h e c o r r e s p o n d i n g f a t t y a c i d c h l o r i d e s , a s shown i n Table I X . The m o n o e s t e r y i e l d a l s o was h i g h e r when, i n s t e a d o f d i s o d i u m a l c o h o l a t e s , t h e c h e l a t e s were t r e a t e d w i t h a n h y d r i d e s . The c o b a l t c h e l a t e 2:4:1 g a v e 82 m o l e - % o f m o n o s t e a r a t e o r 8 9 % o f m o n o c a prylate. E v e n t h e s l o w e r r e a c t i n g c o p p e r 2:4:1 c h e l a t e gave a h i g h e r a n d more s e l e c t i v e y i e l d t h a n d i sodium s u c r a t e . The c o p p e r c h e l a t e 2:4:1 g a v e t h e same t h r e e monostearates b u ta higher y i e l d than the disodium sucrate. C o b a l t c h e l a t e 2:4:1 g a v e o n l y t w o m o n o s t e a r a t e s w h i c h b a s e d o n T L C a n d GC-MS a r e n o t t h e same o n e s w h i c h a r e formed from sodium s u c r a t e . The c o b a l t c h e l a t e 2:4:1 r e a c t e d w i t h m a l e i c o r p h t h a l i c a n h y d r i d e s e l e c t i v e l y g i v i n g r e s p . 72 a n d 85 mole % o f monoesters as seen i n Table V I I I . I n cont r a s t t h e d i s o d i u m a l c o h o l a t e g a v e u p t o 6 5 % o f monoesters. No s e l e c t i v i t y w a s o b t a i n e d w i t h s u c c i n i c anhydride. Reacting the f a t t y acid chlorides with chelates and a l c o h o l a t e s u s u a l l y gave p r i m a r i l y m o n o e s t e r s , b u t the y i e l d o b t a i n e d from r e a c t i n g c h e l a t e s w i t h anhyd r i d e s was l o w e r , a s s e e n i n T a b l e I X . Table VII » Composition o f e s t e r i f i c a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s w i t h c a p r y l i c o r s t e a r i c a n h y d r i d e i n DMF, 3 h , 60°C, m o l e - % . Chelate:
Chelating
anhydride
metal
Co
Sucrose Unreacted
8
-
44
28
1:2:0:1
3
Na
H
22
Stearic
14
3
Co
"
1:2:1:1
3
Cu
2:4:1:2
6
1:2:0:1
3
(II)
esters
11
H
6
esters
89
M
1:2:1:1
Di-
73
3 6
Caprylic
Mono-
19
1:2:1:1 2:4:1:2
2:4:1:2
(II)
Anhydride
5
61
25
82
13
63
14
H
23
II
"
25
62
13
Na
H
33
40
27
(II)
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Triesters
-
6
_
-
5.
AVELA ET AL.
Substitution of Hydroxyl Groups via Chelates
71
Table V I I I . Composition o f e s t e r i f i c a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s w i t h maleic and phthal i c a n h y d r i d e i n DMF, 3 h , 60°C, m o l e - % . Chelate:
Chelating
anhydride
metal
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
2:4:1:
4
Co
Anhydride
Sucrose Unreacted
(II)
Mono-
Di-half-
half-esters
esters
46
54
2:4:1:16
II
18
72
10
1:2:0:
2
Na
31
60
9
2:4:1:
4
Co
Maleic
(II)
90
10
2:4:1:16
II
15
85
1:2:0:
Na
34
65
8
Phthalic
T a b l e IX. Composition o f e s t e r i f i c a t i o n products o f sucrose c h e l a t e s and a l c o h o l a t e s w i t h a c r y l o y l , lauroyl a n d o l e o y l c h l o r i d e s i n DMF, 3 h , 60°C, m o l e - % . Chelate:
Chelating
Acid
acid
metal
chloride
chloride
1:2:1:1
5
1:2:0:1
5
1:2:1:2
(II)
Na
Unreacted
Mono-
D i -
ester
ester
49
51
42
58
"
44
55
Acryloyl
-
Lauroyl
46
49
5
II
H
26
59
15
5
Na
H
39
57
4
Co
Oleoyl
59
41
_
M
69
31
H
92
8
Co
2:4:1:4 1:2:0:1
Co H
2:4:1:3
Sucrose
1:2:1:1
5
2:4:1:2
6
1:2:0:1
5
Na
(II)
(II)
-
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
72
SUCROCHEMISTRY
I n c r e a s i n g t h e amounts o f a c y l c h l o r i d e r e l a t i v e t o s u c r o s e t o m o l a r r a t i o s o f o v e r 3:1 d i d n o t i m p r o v e the e s t e r y i e l d b u t r a t h e r i n i t i a t e d t h e h y d r o l y s i s o f sucrose. H y d r o l y s i s was n o t f o u n d t o o c c u r a t l o w e r levels of acyl chloride. A r a t i o o f sucrose t o a l k y l c h l o r i d e o f 1:1.5 was f o u n d t o b e p r e f e r a b l e . A simil a r r e a g e n t t h r e s h o l d a m o u n t was f o u n d i n t h e e t h e r i f i c a t i o n o f sucrose w i t h a l k y l h a l i d e s . The u s e o f 1.3 m o l e s o f e . g . m e t h y l i o d i d e p e r m o l e o f s u c r o s e c h e l a t e seemed p r e f e r a b l e . R a t i o s over 3 moles o f a l k y l h a l i d e c a u s e d s u c r o s e h y d r o l y s i s , a s was o b s e r v e d w i t h e a r l i e r attempts a t sucrose e s t e r i f i c a t i o n (_). The t r a n s e s t e r i f i c a t i o n o f s u c r o s e w i t h t h e r e a d i l y a v a i l a b l e , f a t t y a c i d methyl esters i n the presence o f a l k a l i n e c a t a l y s t s ( 6 , 9 ) i s a common m e t h o d o f p r e p a r i n g sucrose f a t t y a c i d e s t e r s w i t h a low degree o f substitution. When t h e r e a c t i o n was a p p l i e d t o s u crose c h e l a t e s , i t produced predominantly monoesters, with diesters. The c h e l a t e t r a n s e s t e r i f i c a t i o n t h u s i s more s e l e c t i v e and g i v e s h i g h e r y i e l d s t h a n t h e standard t r a n s e s t e r i f i c a t i o n . F o r example, t h e s u c r o s e c o b a l t c h e l a t e 2:4:1 w i t h e t h y l a c e t a t e y i e l d e d 92 m o l e - % o f e s t e r s w i t h t h e c o m p o s i t i o n o f 6 8 % o f m o n o a c e t a t e , 2 4 % o f d i a c e t a t e a n d 8% o f u n r e a c t e d s u crose. The c h e l a t e s r e g u l a r l y g a v e h i g h e r sucrose e s t e r y i e l d s (60-92%) t h a n t h e c o r r e s p o n d i n g disodium stéarates ( 3 2 - 6 3 % ) i n t h e t r a n s e s t e r i f i c a t i o n s s t u d i e d . I n c r e a s i n g t h e r e a c t i o n t e m p e r a t u r e f r o m 80°C t o 120°C, o r t h e amount o f m e t h y l e s t e r , i m p r o v e d t h e s u c r o s e ester yield. Reaction o f sucrose chelates w i t h a c i d anhydrides and c h l o r i d e s g i v e s s e l e c t i v e p r o d u c t i o n o f m o n o e s t e r s a n d o n l y some d i e s t e r s , i n c o n t r a s t t o t h e r e a c t i o n products of sucrose alcoholates with a c i d anhydrides, c h l o r i d e s a n d e s t e r s g i v i n g s u c r o s e mono- a s w e l l a s diesters. T h i s r e s u l t i s i n good a c c o r d a n c e w i t h o u r e a r l i e r observations of s e l e c t i v e s u b s t i t u t i o n of polyols v i achelates (1-5). I n t h i s case as w e l l , t h e r e a s o n why o n l y o n e o f t h e t w o o x y g e n a t o m s o f a c h e l a t e group i s d e r i v a t i z e d i s o b v i o u s l y t h a t f u r t h e r s u b s t i t u t i o n o f another oxygen i s b l o c k e d by s a l t formation. Adding water w i l l convert t h i s oxygen back t o a h y d r o x y l group, w h i l e t h e other oxygen i s d e r i v a t i z e d t o e s t e r , a s shown i n F i g u r e 4. In case o f t r a n s e s t e r i f i c a t i o n , the b l o c k i n g react i o n i s n o t e f f e c t i v e because a cobaltous d i a l c o h o l a t e , -O-Co-O-CH^is f o r m e d w h i c h r e a c t s f u r t h e r c a u s i n g p a r t i a l e s t e r i f i c a t i o n o f t h e o t h e r o x y g e n w h i c h was involved o r i g i n a l l y i n the chelate formation. The p r i n c i p a l mono- a n d p a r t i a l d i e s t e r f o r m a t i o n f r o m
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
5.
Substitution of Hydroxyl Groups via Chelates
AVELA ET AL.
73
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Table X. C o m p o s i t i o n o f t r a n s e s t e r i f i c a t i o n p r o d u c t s of sucrose c h e l a t e s and a l c o h o l a t e s w i t h e t h y l a c e t a t e , m e t h y l c a p r i n a t e , l a u r a t e , stéarate, o l e a t e , a n d e t h y l m e t h a c r y l a t e i n DMF, 3 h , 80°-120°C, m o l e - % . Chelate:
Chelating
ester
metal
2:4:1:20
Co
1:2:0:20
Na
2:4:1:20
Co
1:2:0:10
Na
2:4:1:20
Co
1:2:0:15
Na
2:4:1:20
Co
1:2:0:10
Na
2:4:1:20
Co
1:2:0:10
Na
2:4:1:12
Co
1:2:0:
Na
6
>
R-C
—o
-Of
Unreacted
(II)
Acetate
(II)
(II)
(II)
(II)
D i -
ester
ester
29
45
68
24
8
Caprinate
30
58
12
H
61
34
5
H
(II)
Mono-
26
35
56
9
55
38
7
Stéarate
34
55
11
H
37
50
13
Oleate
40
52
8
H
58
32
10
Methacrylate
45
45
10
H
38
37
25
Laurate
—o-c
.Co
Co
Ester
+
"CI
^O ^
—O-Co-CI
-
R
- O - C o - O - C f
— OH
^
^
R
- O H
Figure 4
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
74
SUCROCHEMISTRY
sucrose v i a t r a n s e s t e r i f i c a t i o n , shown i n F i g u r e 5.
°\
X
OCH
Co
v
X
R
c a n be w r i t t e n a s
OCH
-R
3
S
•
+
—O
—0-Co-OCH
— 0-Co-OCH
3
R y
— °
3
_
C
\
O R
-o-c*°
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
—OH
Figure 5
Summary S u c r o s e c h e l a t e s i n DMSO r e a c t s e l e c t i v e l y w i t h a l l y l h a l i d e a n d s o d i u m b r o m o a c e t a t e t o p r o d u c e monoethers i n high yields. S u c r o s e c h e l a t e s i n DMF s o l u t i o n react s e l e c t i v e l y with a c i d c h l o r i d e s , anhydrides a n d e s t e r s t o p r o d u c e s u c r o s e m o n o e s t e r s o r , i n some cases, d i e s t e r s as w e l l . The y i e l d s a n d s e l e c t i v i t i e s of the p a r t i a l e s t e r i f i c a t i o n o f sucrose v i a chelates i s h i g h e r t h a n w i t h o t h e r methods. The y i e l d r a n g e o f t h e a c i d d e r i v a t i v e s s t u d i e d a r e shown i n T a b l e X I . Table X I . Composition o f E s t e r i f i c a t i o n Products sucrose cheTates w i t h a c i d d e r i v a t i v e s , mole-%. Acid
derivative
reacting sucrose
Acid
Yield
with chelate
chlorides
Acetic Higher
acid
anhydride
fatty
acid
anhydrides
Dicarboxylic
acid
anhydrides
Acetic
esters
acid
Methacrylic Higher
fatty
acid acid
ester esters
of sucrose
ester,
mole-':
Total
Mono-
Di-
esters
esters
esters
41-74
41-59
90-98
90-98
95-100
82-89
82-85
72-85
0-10
71-80
43-50
26-30
55 60-70
0-15 0 11-13
45
10
52-58
8-12
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
of
5.
AVELA ET AL.
Substitution of Hydroxyl Groups via Chelates
75
Acknowledgements The f i n a n c i a l a i d f r o m T h e I n t e r n a t i o n a l S u g a r R e s e a r c h F o u n d a t i o n , I n c . , B e t h e s d a , M a r y l a n d , U.S.A. a n d f r o m The N a t i o n a l R e s e a r c h C o u n c i l o f T e c h n i c a l S c i e n c e s o f The Academy o f F i n l a n d i s g r a t e f u l l y a c k n o w l e d g ed.
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Abstract The partial derivatization of sucrose hydroxyls generally gives isomer mixtures with various degrees of substitution. We have reported earlier a method to selectively monoetherify or monoesterify polyols and glucosides via metal chelates instead of using multistage organic protection and reconversion reactions. Sucrose chelates also give directly a selective and, to a certain DS level, limited reaction. The chelates are prepared in anhydrous DMF or DMSO by ionization of the desired number of hydroxyl groups of the sucrose molecule with stoichiometric amounts of sodium hydride to form alcoholates which, with metal salts, give the chelates. The etherification of sucrose with alkyl halides or esterification with organic acids causes hydrolysis. The hydrolysis or diether formation is avoided if sucrose chelate is etherified at moderate temperatures and with only a small excess of a l l y l halide or sodium bromoacetate, giving 55-69% mono- and 0-2% diallyl ethers respectively, 41-48% mono- and 4-7% dicarboxymethyl ethers of sucrose. The partial esterification of sucrose with organic acid chlorides, anhydrides or esters gives mixtures of esters and a low yield. Acid chlorides with chelates in anh. DMF give monoester 41-59 mole-%, diester 0-15% and no higher esters. Acid anhydrides give mainly monoesters, low molecular weight anhydrides 80-98%,and higher fatty acid anhydrides 82-89%.Transesterification of chelates with acetic acid ethyl ester gives monoesters 45% and diesters 26%, and higher molecular fatty acid esters give monoester 52-58% and diester 8-12%. Literature Cited 1. Avela, E . , Finn. Appl. 2578/1971, Brit. Pat. 1 410 033/1975, Austrian 321319/1975, Can. 981663/1976, U.S. 3,972,868/1976. 2. Avela, E . , and Holmbom, B . , Acta Acad. Aboensis, (1971), 31, 14, 1. 3. Avela, E . , Melander, B . , and Holmbom, B . , Ibid
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
76
SUCROCHEMISTRY
(1971), 31, 15, 1. 4. Avela, E., La Sucrerie Belge, (1973), 92, 337. 5. Avela, E., and Melander, B., Paper presented at VI Int. Symp. on Carbohydr. Chem., 1972, Madison, Wise, U.S.A. 6. Hickson, J.L., Sucrose Ester Surfactants, Int. Sugar Res. Found., Inc., New York 1960, pp. 1-10. 7. Weiss, T. J., Brown, M., Zeringue, Jr., H.J., and Feuge, R.O., J. Am. Oil Chem. Soc. (1971), 48,145. 8. Black, W.A.P., Dewar, E.T., Paterson, J.C., and Rutherford, D., J. Appl. Chem. (1959), 9, 256. 9. Osipow,L., Snell, F.D., York, W.C., and Finchler,A., Ind. Eng. Chem. (1956), 48, 1459. 10. Avela, E., Abstracts of papers, 138th ACS Nat. Meeting, New York, (1960), 18D, No. 51.
Biographic Notes Professor Eero Avela, Ph.D., Prof, of Chem. Educated at Helsinki Univ., Oxford Univ., State Univ. of New York, and Hamburg Univ. Director of Research at Oy Kaukas Ab (Finland), Norland Papier GmbH & Co. (West Germany), Dir. of Res., Academy of Finland, Prof, of Technical Polymers and Plastics Chemistry, Abo Academy, Finland. Some 86 papers and 4 patents on cellulose, polymers and carbohydrates. Academy of Finland, Pyorokiventie 10, 00830 Helsinki, 83 Finland.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Discussion
Question; Has t h e r e b e e n a n y s t u d y o f t o x i c i t y of o r LD50 w o r k d o n e w i t h , t h e t e t r a c h l o r o " g a l a c t o " sucrose d e r i v a t i v e ? f
P r o f e s s o r Hough: S t u d i e s h a v e been i n i t i a t e d by T a t e and L y l e b u t , as f a r as I know, t h e r e s u l t s a r e not yet a v a i l a b l e . One m u s t n o t e , o f c o u r s e , t h a t we came a c r o s s t h e sweetness a c c i d e n t a l l y . I t obviously i s a hazardous p r o c e s s t o t a s t e compounds h a p h a z a r d l y . Yet, because o f t h i s a c c i d e n t a l d i s c o v e r y , w h a t we h a v e t o do now i n o u r p r o g r a m o f w o r k , w h i c h we h a v e n o t d o n e p r e v i o u s l y b e c a u s e we n e v e r s u s p e c t e d t h a t t h e s e c o m p o u n d s w o u l d be s w e e t e r t h a n s u c r o s e , i s t o s u b m i t a l l o f o u r c o m p o u n d s t o t o x i c i t y s c r e e n i n g b e f o r e we t a s t e t h e m . O t h e r w i s e , I m i g h t l o s e many r e s e a r c h s t u d e n t s i n t h e p r o c e s s , and t h e y a r e t o o v a l u a b l e t o l o s e I I m i g h t j u s t comment on how u n p r e d i c t a b l e t h e s w e e t n e s s was, b e c a u s e i t has b e e n b e l i e v e d t h a t a l l the monoacetates are l e s s sweet than s u c r o s e . Suc r o s e o c t a a c e t a t e , as I m e n t i o n e d , i s v e r y , v e r y b i t ter. The g e n e r a l p r e d i c t i o n , t h e r e f o r e , was t h a t y o u c a n n o t make s u c r o s e s w e e t e r t h a n i t i s . Question: A l t h o u g h one may n o t f i n d t o x i c i t y i n s u c h a t e s t , i t m i g h t be t h a t t h e c o m p o u n d may be a c o m p e t i t i v e i n h i b i t o r , which c o u l d r e s u l t , f o r example, i n hypoglycemic a c t i v i t y . There i s a f u r t h e r c o m p l i c a t i o n ; i t c o u l d be h y d r o l i z e d , a n d p r o b a b l y w o u l d be h y d r o l i z e d t o c h l o r o g a l a c t o s e and c h l o r o f r u c t o s e . I f s o , someone h a s t o s t u d y a g r e a t d e a l o f t h e b i o c h e m i s t r y o f c h l o r o g l u c o s e and c h l o r o f r u c t o s e . As f a r a s I k n o w , no s t u d i e s h a v e b e e n c a r r i e d o u t i n t h i s r e g a r d .
77
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
78
SUCROCHEMISTRY
P r o f e s s o r Hough; Dr. Norman T a y l o r , o f c o u r s e , i s quite correct. As a n e x p e r t on f l u o r o c a r b o h y d r a t e s , he i s w e l l aware o f the p r o b l e m s i n t h i s f i e l d . He has made i t a l i f e t i m e s t u d y . I s h a l l h o p e t h a t he w i l l t a k e up c h l o r o c a r b o h y d r a t e s now, and a s s i s t u s i n o u r work i n e x p l o i t i n g t h e c h l o r o d e r i v a t i v e s o f s u c r o s e by studying t h e i r biochemistry. Professor Taylor: May I a d d i n h i b i t o r of glucose transport.
that
saccharin
is
an
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
Question: Are the dianhydrosucrose d e r i v a t i v e s appreciably soluble i n organic solvents? P r o f e s s o r Hough: Y e s , t h e y a r e . They a r e more s o l u b l e than sucrose i t s e l f , which, f o r example, i s d i f f i c u l t to dissolve i n pyridine. The d i a n h y d r o s u c r o s e d i s s o l v e s v e r y much m o r e r e a d i l y . Question: atization?
W o u l d t h i s be
a route
to further deriv-
P r o f e s s o r Hough: C e r t a i n l y , yes. I t i s a very i m p o r t a n t r o u t e t o f u r t h e r d e r i v a t i z a t i o n i n my v i e w b e c a u s e o n l y f o u r h y d r o x y l s a r e now e x p o s e d , w h i c h i s s o m e t h i n g t h a t we c a n e x p l o i t , a n d t h e d i a n h y d r i d e i s readily available. Question: Is i t possible to prepare galacto-sucrose?
1 4
C-labelled-
P r o f e s s o r Hough: D r . R i a z K h a n c o u l d make e x p e r t comments s i n c e he h a s d e s c r i b e d a g o o d s y n t h e s i s o f galacto-sucrose i n Carbohydrate Research. Taking randomly--L4c l a b e l l e d s u c r o s e , p r e s u m a b l y p r e p a r e d p h o t o s y n t h e t i c a l l y , i t c o u l d be c o n v e r t e d r e a d i l y i n t o galacto-sucrose. The i m p o r t a n t o b j e c t i v e i s a g o o d radiochemical y i e l d . Dr. Khan: The s y n t h e s i s o f g a l a c t o - s u c r o s e s u c r o s e p r o c e e d s i n q u i t e a good y i e l d .
from
Question: Why a r e t h e b u l k y s u l p h o n y l c h l o r i d e s more s e l e c t i v e f o r t h e C - l - p o s i t i o n ? 1
P r o f e s s o r H o u g h : We w o u l d h a v e p r e d i c t e d t h a t r e a c t i o n would occur p r e f e r e n t i a l l y at the 6 , o p p o s i tions. T h i s , i n f a c t , does happen i f you reduce the q u a n t i t y of the reagents. The n e x t r e a c t i v e p o s i t i o n c e r t a i n l y i s the I m p o s i t i o n i n s u l p h o n y l a t i o n . This
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
79
Downloaded by MIT on October 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch005
DISCUSSION
r e a c t i o n does depend, I b e l i e v e , upon the r e l a t i v e acc e s s a b i l i t y and a c i d i t y o f t h e h y d r o x y l g r o u p s , i n c o n trast to nucleophilic substitution reactions. When you i n t r o d u c e a f o u r t h s u l p h o n a t e s u b s t i t u e n t , i t goes t o t h e C-2 g r o u p i n g o f s u c r o s e , s i m i l a r t o e t h e r i f i c a tion. I t h i n k t h i s accounts f o r the r e a c t i v i t y of the 1^-position. I f you l o o k c l o s e l y a t the mechanism o f the r e a c t i o n , i t depends l a r g e l y upon the s t e r e o c h e m i s t r y , which i s a l l r i g h t at the primary p o s i t i o n s . In a d d i t i o n , t h e h y d r o x y l g r o u p must r e a c t w i t h b a s e and t h e s u l p h o n y l h a l i d e w i t h the removal of hydrogen, or a proton, from t h a t primary p o s i t i o n . T h i s i s more f a v o r able at the 1 ^ - p o s i t i o n than i t i s , f o r example, at the 4-position. T h i s i s how I w o u l d e x p l a i n t h e r e a c t ivity. Question: In bimolecular n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n s , the 1 ^ - p o s i t i o n i s very hindered. W o u l d y o u comment? P r o f e s s o r Hough: N u c l e o p h i l i c s u b s t i t u t i o n i s q u i t e d i f f e r e n t i n mechanism from a s e l e c t i v e a c y l a t i o n r e a c t i o n because, i n the l a t t e r , o n l y the hydrogen of a h y d r o x y g r o u p i s b e i n g r e p l a c e d by a b u l k y g r o u p . No a t t e m p t i s b e i n g made t o r e p l a c e o x y g e n p l u s t h e b u l k y group by a r e a r w a r d a t t a c k . Therefore, e s t e r i f i c a t i o n a t t h e l - p o s i t i o n w i l l p r o c e e d as a t a n o r m a l primary hydroxyl. 1
Question: Dr. Khan, would you r e p e a t the c o n d i t i o n s you used f o r your h y p o o x i d a t i o n s ? You had h i g h y i e l d s , a n d y o u do n o t l o s e a n y o f t h e a c e t a t e g r o u p s . Dr. Khan: A c t u a l l y , t h e p r o d u c t i s c o m p l e t e l y d e e s t e r i f i e d b u t , i n o r d e r t o i s o l a t e i t , we r e e s t e r i f y i t , a n d t h e n we g e t t h e a c e t y l d e r i v a t i v e s . Question: P r o f e s s o r H a l l , have you e s t a b l i s h e d which protons i n the f r u c t o s e r e s i d u e are r e s p o n s i b l e f o r t h e r e l a x a t i o n o f ^H? Professor Hall: I am a f r a i d n o t . To do t h i s , we n e e d e i t h e r a 1,000 m e g a c y c l e n.m.r. m a c h i n e , w h i c h i s n o t a v a i l a b l e , o r t o make t h e c o r r e s p o n d i n g d e u t e r a t e d derivatives. We w o u l d be v e r y i n t e r e s t e d t o know i f a n y b o d y h a s a n y g o o d i d e a s o n how t o g e t t h e c a r b o x y l i c a c i d s , b e c a u s e t h e n we c o u l d g e t t h e d e u t e r i u m i n . T h a t i s t h e r e a s o n why we w o u l d l i k e t o g e t d e u t e r a t e d sucrose d e r i v a t i v e s .
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.