A Critical Review of Cellulose Solvent Systems - ACS Symposium

Jun 1, 1977 - ITT Rayonier, Inc., Eastern Research Div., Whippany, N.J. 07981. Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives. Chapter ...
2 downloads 0 Views 1MB Size
2 A Critical Review of Cellulose Solvent Systems A.F.TURBAK, R. B. HAMMER, R. E. DAVIES, andN.A.PORTNOY

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

ITT Rayonier, Inc., Eastern Research Div., Whippany,N.J.07981

C e l l u l o s e is the most abundant renewable, organic raw material a v a i l a b l e in the world today. Y e t ,forallit'savailability, i t has still not reached its potential utility in many areas of application. One o f the major reasons f o r t h i s is t h a t many end-use a p p l i c a t i o n s r e q u i r e t h a t c e l l u l o s e be in a different form from that found in nature. I n most of these applications, it is necessary first to dissolve cellulose in some manner and then t o re-form it from such s o l u t i o n s i n t o the d e s i r e d products. It is this very important d i s s o l v i n g step which has proved to be either cumbersome o r expensive compared t o alternate m a t e r i a l s which compete for market p o s i t i o n s . In many cases only c e l l u l o s e has the d e s i r a b l e p r o p e r t i e s r e q u i r e d f o r end product use and, in these i n s t a n c e s , the methods r e q u i r e d t o achieve cellulose s o l u t i o n present p o t e n t i a l hazards and pollution control problems. Thus, improved techniques f o r d i s s o l v i n g cellul o s e are u r g e n t l y needed if cellulose is to continue t o occupy a c o m p e t i t i v e market position. This is particularly t r u e o f the v i s c o s e i n d u s t r y where pollution control continues to p l a c e ever i n c r e a s i n g restraints on the process. Scientists have long recognized the need f o r more efficient cellulose s o l v e n t systems and hundreds of p u b l i c a t i o n s have been i s s u e d covering a wide range of approaches. S e v e r a l e x c e l l e n t review articles on s w e l l i n g and dissolving cellulose by Warwicker (1,2) Jayme ( 3 ) , Phillip ( 4 , 5 ) , P o l y o l a (6) and Brandrup (7) have been p u b l i s h e d and we shall not attempt simply t o resubmit t h e i r data. Rather, t h i s paper shall attempt t o consider the v a r i o u s processes from the commercial as well as the scientific viewpoint t o emphasize potential areas f o r c o n t r i b u t i o n which still e x i s t , particularly f o r systems capable of producing cellulosic fibers through the use of organic s o l v e n t s . Fundamentally, a l l o f the known methods f o r d i s s o l v i n g c e l l u l o s e can be summarized under f o u r main c a t e g o r i e s : A. C e l l u l o s e As A Base B. C e l l u l o s e As An A c i d C. C e l l u l o s e Complexes D. C e l l u l o s e D e r i v a t i v e s 12

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

2.

TURBAK E T A L .

Cellulose Solvent Systems

13

While each of the above areas has r e c e i v e d e x t e n s i v e study and some have been commercialized, s e v e r a l of the approaches are r e a l l y not completely understood. S t i l l others i n v o l v e mixtures of many i n g r e d i e n t s and could never be v a l u a b l e i n d u s t r i a l l y . In t r y i n g to e x p l a i n why c e r t a i n m a t e r i a l s do i n f a c t d i s s o l v e c e l l u l o s e , s e v e r a l authors have s i m p l i s t i c a l l y i n d i c a t e d that what i s r e q u i r e d i s that the s o l u b i l i t y parameter of the s o l v e n t must be the same as t h a t of c e l l u l o s e . While such s t a t e ments are d i r e c t i o n a l l y c o r r e c t , they are incomplete and, perhaps, even a l i t t l e m i s l e a d i n g , s i n c e many s o l v e n t s having the proper s o l u b i l i t y parameter values w i l l not d i s s o l v e c e l l u l o s e . For example, DMF and DMSO both have s o l u b i l i t y parameters i n the range c a l c u l a t e d f o r c e l l u l o s e but n e i t h e r o f these d i s s o l v e c e l l u l o s e under any known c o n d i t i o n s . The s o l u b i l i t y parameter ( i ) or cohesive energy d e n s i t y (CED) values r e l a t e d i r e c t l y to the energy of v a p o r i z a t i o n which i s e a s i l y o b t a i n a b l e f o r many l i q u i d s , and w i l l apply d i r e c t l y t o the m i s c i b i H t y of l i q u i d s o r amorphous polymers where (&) values w i l l r e l a t e to simple heats of m i x i n g . When d e a l i n g w i t h polymers i n g e n e r a l , other f a c t o r s may be e q u a l l y as important, o r even more important than s i n g l e s o l u b i l i t y parameter v a l u e s . For example, w i t h c r y s t a l l i n e polymers, the heat o f f u s i o n or m e l t i n g energy, must a l s o be considered as an e n t i r e l y separate f a c t o r . Furthermore, superimposed on these f a c t o r s i s the hydrogen bonding c a p a b i l i t y of the polymer i n q u e s t i o n which may not be c o n s e q u e n t i a l f o r polymers such as c r y s t a l l i n e polypropylene, but which i s extremely important w i t h n a t u r a l polymers such as p r o t e i n s and c e l l u l o s e i n p a r t i c u l a r . These f a c t o r s , as w e l l as second order e f f e c t s were recognized many years ago by Spur l i n , B u r r e l l , and Barton and s e v e r a l exc e l l e n t reviews are a v a i l a b l e f o r f u r t h e r reference (8,9,10)· A combination of such f a c t o r s must be considered i n t r y i n g t o f i n d a s o l v e n t f o r c e l l u l o s e and help to g i v e guidance as t o c o n d i t i o n s as w e l l as compounds which must be employed i f usable c e l l u l o s e s o l u t i o n s are to be o b t a i n e d . Even i f a m a t e r i a l i s a s a t i s f a c t o r y s o l v e n t f o r c e l l u l o s e , i t i s necessary to emphasize two other important f a c t o r s which must be s e r i o u s l y evaluated f o r any p o t e n t i a l l y commercial c e l l u l o s e s o l v e n t system, these are "recovery" and " r e c y c l e " . The recovery and r e c y c l e f a c t o r s , perhaps more than any o t h e r s , are the most important ones which, i n the f i n a l a n a l y s i s , decide whether or not any p a r t i c u l a r approach w i l l be economically feasible. One f i n a l f a c t o r must a l s o be kept i n mind r e l a t i v e t o e v a l u a t i n g a l l o f the d a t a t h a t appear i n the l i t e r a t u r e r e garding c e l l u l o s e s o l v e n t s . S p e c i f i c a l l y i t must be emphasized t h a t v a s t d i f f e r e n c e s e x i s t between being able to coagulate o r

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SOLVENT SPUN RAYON, MODIFIED CELLULOSE FIBERS

14

p r e c i p i t a t e a s o l i d mass, as compared to t r u l y spinning f i b e r s w i t h reasonable p h y s i c a l p r o p e r t i e s . Keeping these f a c t o r s i n mind, l e t us examine the f o u r c a t e g o r i e s l i s t e d above which encompass e s s e n t i a l l y a l l of the c e l l u l o s e s o l v e n t systems reported i n the l i t e r a t u r e .

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

A.

C e l l u l o s e As A Base

A l l a l c o h o l s , whether polymeric or not, can be f o r c e d t o act as acids or bases r e l a t i v e to other reagents, depending upon the s t r e n g t h of the reagent employed. Thus, c e l l u l o s e w i l l act as a base and become protonated by p r o t o n i c a c i d s or w i l l act as a "Lewis" base and supply e l e c t r o n s from i t s oxygens t o e l e c t r o n r e c e p t i v e centers on "Lewis" a c i d s . 1. P r o t o n i c Acids (phosphoric, s u l f u r i c , n i t r i c ) . The a b i l i t y of 78% phosphoric a c i d , 68% n i t r i c a c i d , 42% h y d r o c h l o r i c a c i d or 70% s u l f u r i c a c i d to d i s s o l v e c e l l u l o s e r a p i d l y at room temperature i s w e l l known. While the l i t e r a t u r e i s f u l l of r e p o r t s i n which the r e s u l t i n g s o l u t i o n s are r e f e r r e d to as hyd r a t e s " , they can a l s o be regarded as protonated hydroxyIs where the s p e c i f i c reagent concentrations employed were the ones needed to provide s u f f i c i e n t a c i d s t r e n g t h to protonate the c e l l u l o s e so that the r e s u l t i n g p o s i t i v e l y changed ROHj c e l l u l o s e moiety i s able to d i s s o l v e i n the excess reagent. I n these cases, recovery and r e c y c l e of the concentrated a c i d s i s the l i m i t i n g f a c t o r , economically. For example, e x c e l l e n t c e l l u l o s e s o l u t i o n s can be r a p i d l y prepared a t room temperature using phosphoric a c i d . However, no one has yet suggested a f e a s i b l e approach to c a s t i n g the c e l l u l o s e and recovering the phosphoric a c i d without n e u t r a l i z a t i o n . In our l a b o r a t o r y , we have t r i e d to p r e c i p i t a t e such phosphoric a c i d s o l u t i o n s i n t o g l a c i a l a c e t i c a c i d i n the a n t i c i p a t i o n that the a c e t i c a c i d could be v o l a t i l i z e d , recovered and r e c y c l e d , along w i t h the r e l e a s e d pure phosphoric a c i d . The i n i t i a l r e s u l t s were not too s u c c e s s f u l s i n c e the p r e c i p i t a t i o n was too slow to be u s e f u l under the p a r t i c u l a r c o n d i t i o n s emp l o y e d . However, the concept of using a weaker, v o l a t i l e a c i d i c m a t e r i a l to coagulate strong a c i d c e l l u l o s e s o l u t i o n s does r e present a n o v e l approach to developing a t o t a l r e c y c l a b l e c e l l u l o s e s o l v e n t system. lf

2. Lewis Acids ( z i n c c h l o r i d e , thiocyanates. iodides» b r o ~ mides). The a b i l i t y of c e r t a i n s a l t s o l u t i o n s to s w e l l and d i s s o l v e c e l l u l o s e i s a l s o reported (11). At the high concentrat i o n s normally necessary to achieve s o l u t i o n , these s a l t s not only provide necessary a c i d f u n c t i o n a l i t y but a l s o s i g n i f i c a n t l y a l t e r the i o n i c nature of the aqueous mediums so as to f u r t h e r a s s i s t d i s s o l u t i o n . The need f o r having a c i d s a l t s i s demonstrated i n the case of thiocyanates where the sodium, potassium and ammonium thiocyanates do not d i s s o l v e c e l l u l o s e w h i l e the calcium and

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2.

TURBAK E T A L .

Cellulose Solvent Systems

15

s t r o n t i u m s a l t s do g i v e c e l l u l o s e s o l u t i o n s up to about the 400 D.P. l e v e l i n d i c a t i n g t h a t i t i s the t h i o c y a n i c a c i d formed i n s o l u t i o n which i s a c t u a l l y i n v o l v e d i n the d i s s o l v i n g a c t i o n . B.

C e l l u l o s e As An A c i d

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

Perhaps more work has been undertaken on s w e l l i n g c e l l u l o s e w i t h bases than w i t h any other c l a s s of chemical compounds. The hydrogen atoms on the hydroxyIs of c e l l u l o s e , l i k e most a l c o h o l s , have a degree o f a c i d c h a r a c t e r and t h e r e f o r e r e a d i l y i n t e r a c t w i t h reasonably strong i n o r g a n i c and organic bases. 1. Inorganic Bases (sodium z i n c a t e , hydrazine, i n o r g a n i c hydroxides). I t should be immediately noted that the conc e n t r a t i o n of base needed f o r o b t a i n i n g maximum s w e l l i n g of c e l l ulose by osmotic a c t i o n i s not the same c o n c e n t r a t i o n that i s r e q u i r e d to e f f e c t a c t u a l compound formation. Thus w h i l e 8-10% NaOH e x h i b i t s the maximum s w e l l i n g o f c e l l u l o s e f i b e r s , concent r a t i o n s of about 18% NaOH are a c t u a l l y r e q u i r e d t o form sodium c e l l u l o s a t e s t r u c t u r e s . Other i n o r g a n i c bases l i k e potassium and l i t h i u m hydroxide have a l s o been used s i m i l a r l y f o r t h e i r s w e l l i n g a c t i o n . Various a d d i t i v e s t o the c a u s t i c soda, such as z i n c oxide, have been used to make sodium z i n c a t e s o l u t i o n s which enhance the a c t i o n of c a u s t i c so higher D.P. m a t e r i a l s can be d i s s o l v e d . The temperatures o f these aqueous bases p l a y a f u r t h e r dominant r o l e i n the s w e l l i n g and d i s s o l v i n g phenomenon; w i t h the c o l d e r c o n d i t i o n s g i v i n g more s w e l l i n g and d i s s o l u t i o n . While a c o n s i d e r a b l e amount o f e f f o r t has been devoted t o aqueous a l k a l i systems, they normally do not d i s p l a y s u f f i c i e n t d i s s o l v ing power to completely overcome the c r y s t a l and hydrogen bonding energies of c e l l u l o s e t o g i v e acceptable s o l u t i o n s of h i g h e r D.P. m a t e r i a l s of i n t e r e s t f o r d i r e c t commercial conversion. I n a d d i t i o n , these aqueous a l k a l i n e systems present s e v e r a l r e covery and r e c y c l e problems. The use of the i n o r g a n i c base, h y d r a z i n e , f o r s w e l l i n g c e l l ulose was considered by Hess and Trogus many years ago.(12) However, they were never able to o b t a i n c e l l u l o s e s o l u t i o n s under the c o n d i t i o n s they employed. More r e c e n t l y , L i t t (13) has r e ported c o n d i t i o n s under which he has been able t o o b t a i n comp l e t e s o l u t i o n s of high D.P. c e l l u l o s e i n hot (150°-200°C) hydrazine and 207-345 kPa (30-50 p s i ) p r e s s u r e . These r e s u l t s serve to demonstrate t h a t s e v e r a l f a c t o r s are important f o r a s w e l l i n g reagent t o become a s o l v e n t . The o r i g i n a l i n v e s t i g a t i o n s i n 1931 by Hess employed hydrazine hydrate but d i d not employ the more extreme c o n d i t i o n s of heat and temperature r e c e n t l y employed by L i t t i n 1976 t o o b t a i n s o l u t i o n s . L i t t was able to get s o l u t i o n s of c e l l u l o s e u s i n g e i t h e r pure hydrazine or hydrazine hydrate p r o v i d i n g he employed elevated temperatures and p r e s s u r e s . I t was noted p r e v i o u s l y that c r y s t a l l i n e f o r c e s

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

16

SOLVENT SPUN RAYON, MODIFIED CELLULOSE FD3ERS

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

and hydrogen bonding could be important f a c t o r s and t h i s case c l e a r l y demonstrates t h a t even a m a t e r i a l having the proper s o l u b i l i t y parameter had t o be employed under f o r c i n g c o n d i t i o n s t o overcome these f a c t o r s t o achieve s o l u t i o n . I t has y e t t o be demonstrated, however, i f t e x t i l e q u a l i t y yarns o r packaging q u a l i t y f i l m s can be prepared from such hydrazine s o l u t i o n s . C e r t a i n l y , t o our knowledge no data along these l i n e s have y e t been p u b l i s h e d . 2. Organic Bases ( T r i t o n - q u a t e r n a r y h y d r o x i d e s , amines, DMSO/CH^NH?, amine o x i d e s ) . The a b i l i t y of c e l l u l o s e t o a c t as an a c i d towards v a r i o u s o r g a n i c bases has a l s o been e v a l u a t e d . Perhaps the b e s t known organic bases a r e the v a r i o u s " T r i t o n " bases which are quaternary ammonium hydroxides and the best s o l vent of t h i s s e r i e s i s " T r i t o n B" o r benzyltrimethylammoniurn hyd r o x i d e . I t i s i n t e r e s t i n g again t o note here t h a t the b e n z y l grouping i s f a r more e f f e c t i v e than other groups such as m e t h y l , e t h y l o r p r o p y l and t h i s Improvement has been a t t r i b u t e d t o the f a c t t h a t the b u l k i e r b e n z y l group behaves l i k e a "wedge" t o e f f e c t i v e l y separate the c e l l u l o s e chains once i t has entered the c r y s t a l l i n e region. A c o n s i d e r a b l e amount of work has a l s o been r e p o r t e d by S e g a l and others (14) r e l a t i v e t o the use of v a r i o u s amines and diamines f o r s w e l l i n g c e l l u l o s e . None o f these systems were claimed t o cause s u f f i c i e n t s w e l l i n g t o g i v e c e l l u l o s e s o l u t i o n s . More r e c e n t l y , P h i l l i p and h i s co-workers (15,16) have r e p o r t e d t h a t 16.5% methylamine i n DMSO gave b e t t e r c e l l u l o s e s o l u t i o n s than any other amine o r any other c o n c e n t r a t i o n o f methylamine used. The c e l l u l o s e i s claimed t o d i s s o l v e by r e a c t i o n w i t h an equimolar complex of CH3NH2/DMSO and 80% of the i n t r o d u c e d c e l l u l o s e d i s s o l v e d under c o l d anhydrous c o n d i t i o n s . As exc i t i n g as t h i s seems a t f i r s t g l a n c e , d i s s o l u t i o n of only 80% of the c e l l u l o s e may not be o f v a l u e f o r commercial c o n s i d e r a t i o n . Unless the d i s s o l u t i o n of c e l l u l o s e i s a c t u a l l y b e t t e r than 99%, the system would c e r t a i n l y be too expensive t o use r e l a t i v e t o y i e l d and f i l t r a t i o n c o s t s . The s p e c i f i c i t y of CH3NH2 and i n p a r t i c u l a r the 16.5% c o n c e n t r a t i o n i s i n t r i g u i n g and deserves more study. Perhaps, t h i s system might more p r o p e r l y belong under c o n s i d e r a t i o n as an organic complex r a t h e r than as a pure base system, but more data are needed t o f i r m l y decide the exa^t nature of t h e r e a c t i o n . One other organic base system which d i s s o l v e s c e l l u l o s e as an a c i d i n v o l v e s compounds not normally considered as bases, b u t which i n f a c t , are v e r y good "Lewis" bases. I n 1939, Graenacher and Sallman (17) reported t h a t a l i p h a t i c and c y c l o a l i p h a t i c amine oxides such as t r i e t h y l a m i n e oxide o r c y c l o h e x y l d i m e t h y l amine o x i d e gave 7-10% s o l u t i o n s of c e l l u l o s e a t 50-90°C. More r e c e n t l y , Johnson (18) has r e p o r t e d t h a t a l i c y c l i c amine oxides such as N-methylmorpholine oxide g i v e up t o 6% s o l u t i o n s o f c e l l u l o s e a t 110°C. These m a t e r i a l s are most i n t e r e s t i n g and could

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

TURBAK E T A L .

2.

Cellulose Solvent Systems

17

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

o f f e r commercial p o s s i b i l i t i e s i f adequate recovery and r e c y c l e procedures c o u l d be e s t a b l i s h e d . To our knowledge, no one has yet p u b l i s h e d any a c t u a l f i b e r o r f i l m d a t a on products d e r i v e d from such systems. Thus, a wide range of i n o r g a n i c and organic bases have been examined f o r d i s s o l v i n g and s w e l l i n g c e l l u l o s e . S e v e r a l systems have achieved a s u f f i c i e n t l y good balance of p r o p e r t i e s t o pro­ v i d e good c e l l u l o s e s o l u t i o n s and i t i s expected t h a t f u r t h e r e f f o r t s w i l l be forthcoming t o achieve a c c e p t a b l e r e c o v e r y / r e c y c l e and p h y s i c a l p r o p e r t i e s which could l e a d t o i n d u s t r i a l acceptance. C.

C e l l u l o s e Complexes

1. I n o r g a n i c Complexes (cuene, cadoxene, EWNN, cuprammonium). The use of v a r i o u s copper complexes t o d i s s o l v e c e l l u ­ l o s e i s w e l l known. More r e c e n t l y , complexes of cadmium and i r o n have been added t o the l i s t t o reduce the s e n s i t i v i t y of such c e l l u l o s e s o l u t i o n s t o degradation by exposure t o a i r . T h i s work i s reviewed r a t h e r completely by Jayme (3) who, w i t h h i s c o ­ workers, has c o n t r i b u t e d e x t e n s i v e l y t o t h i s a r e a . I n o r g a n i c m e t a l l i c complexes such as cuprammonium have met w i t h o n l y minimal commercial success f o r p r o d u c t i o n f i b e r s and f i l m s f o r two reasons. F i r s t , complete recovery of m e t a l l i c e f f ­ l u e n t contaminants i s d i f f i c u l t a t the extremely low ppm l e v e l s needed t o meet p o l l u t i o n requirements and secondly the o v e r a l l economics and f i b e r p r o p e r t i e s (of the cuprammonium p r o c e s s , a t l e a s t ) were not as good as those of the v i s c o s e p r o c e s s . The second f a c t o r would today be l e s s important than the recovery and p o l l u t i o n aspect and, u n t i l t h i s aspect i s s o l v e d , metal i n o r ­ ganic complexes w i l l continue t o have l i m i t e d u t i l i t y f o r f i l m and f i b e r p r o d u c t i o n . 2 . Organic Complexes (DMSO/CH3NH2, (KOCH2CHOHCH9S) 2. The p o s s i b l e use o f organic complexes t o d i s s o l v e c e l l u l o s e appears to be extremely l i m i t e d . Of a l l the systems r e p o r t e d , o n l y two seem to q u a l i f y as organic complexes. The f i r s t of these uses DMSO/16.5% CH3NH2 and was p r e v i o u s l y d i s c u s s e d under category Β (above) s i n c e i t s a c t i o n may be r e l a t e d more t o i t s b a s i c nature than t o a t r u e complex f o r m a t i o n . The second system was r e p o r t e d by P e t r o v i n 1965 (19) who c l a i m s t h a t c e l l u l o s e d i s s o l v e s d i r e c t l y a t 110°C i n a n e u t r a l s o l v e n t - b i s (φ-Y dihydroxypropyl) d i s u l f i d e - prepared by o x i d a t i o n of t h i o g l y c e r o l . T h i s s o l v e n t works w e l l f o r d i s ­ s o l v i n g cellophane f i l m s a t 300-600 D.P., but i s not good f o r d i r e c t l y d i s s o l v i n g h i g h e r D.P. c o t t o n l i n t e r s o r r e g u l a r p u r i ­ f i e d wood p u l p s . I n any case, i t i s i n t r i g u i n g t o f i n d a n e u t r a l s o l v e n t t h a t appears to be capable o f d i r e c t l y d i s s o l v i n g reason­ ably h i g h D.P. c e l l u l o s e and f u r t h e r work should be undertaken t o a s c e r t a i n why t h i s p a r t i c u l a r s t r u c t u r e seems t o be e f f e c t i v e .

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SOLVENT SPUN RAYON, MODIFIED CELLULOSE FD3ERS

18

D.

Cellulose Derivatives

1. S t a b l e D e r i v a t i v e s ( e s t e r s , e t h e r s ) , A wide v a r i e t y of s t a b l e c e l l u l o s e d e r i v a t i v e s are known and used commercially. The e s t e r s and e t h e r s have found scores of commercial uses but only the acetate and n i t r a t e have ever been u t i l i z e d f o r producing regenerated c e l l u l o s e products; the acetate t o g i v e F o r t i s a n and the n i t r a t e t o make regenerated t u b u l a r c e l l u l o s e f i l m s .

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

2,

Unstable D e r i v a t i v e s , a.

Sulfur

(xanthates, SC^/amines - s u l f i t e s )

b.

Nitrogen

(DMF/N2O4, DMSO/N 0 - n i t r i t e s )

c.

Carbon

(carbonates, formates, DMSO/(CH 0)x me thy l o i )

2

4

2

Unstable c e l l u l o s e d e r i v a t i v e s have been and are being a c t i v e l y i n v e s t i g a t e d i n depth f o r use i n p r e p a r i n g regenerated f i b e r s and f i l m s . This paper w i l l c o n s i d e r such " t r a n s i e n t " d e r i v a t i v e s under three main headings: a) s u l f u r - b) n i t r o g e n and c) carbon-containing i n t e r m e d i a t e s . a) S u l f u r Intermediates: The use of CS to form xanthates some 90 years ago s t i l l forms the backbone of the present day rayon i n d u s t r y . Improved processes are u r g e n t l y needed which can not only overcome the v a r i o u s p o l l u t i o n problems a s s o c i a t e d w i t h the v i s c o s e process, but which might a l s o h o p e f u l l y lower both the i n i t i a l c a p i t a l investment and subsequent o p e r a t i n g c o s t s a s s o c i a t e d w i t h present day rayon p l a n t s . One attempt along these l i n e s i s reported by Kimura et a l (20) who used a m o d i f i e d organic type system f o r x a n t h a t i o n . They used DMSO/CS2/amine to d i s s o l v e c e l l u l o s e and reported f i b e r s having c o n d i t i o n e d and wet t e n a c i t y / e l o n g a t i o n of 3.0 g/d/14% and 1.8 g/d/25% r e s p e c t i v e l y . T h e i r c o a g u l a t i o n and r e g e n e r a t i o n steps d i d not i n v o l v e the use of a c i d s and thus would s i g n i f i c a n t l y reduce part of the p o l l u t i o n l o a d normally a s s o c i ated w i t h rayon p r o d u c t i o n . However, i n i t i a l l a b o r a t o r y attempts to reproduce the r e p o r t e d process gave r i s e to an extremely noxious odor and t h i s could represent s u f f i c i e n t detriment t o o f f s e t other p o s s i b l e advantages. As another p o s s i b l e approach to d i s s o l v i n g c e l l u l o s e , seve r a l i n v e s t i g a t o r s have s t u d i e d the use of S02/amine s o l v e n t s y s tems. E x t e n s i v e work i n t h i s area i s reported by P h i l l i p and h i s coworkers (21) by Yanazaki and Nakao (22) and by Hata and Yokota (23-29). T h e i r e f f o r t s covered a wide range of amines and organic s o l v e n t d i l u e n t s which were both p o l a r and non-polar. 2

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2.

TURBAK E T A L .

Cellulose Solvent Systems

19

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

While i n i t i a l l y i t was thought t h a t some type of complex was being formed w i t h the c e l l u l o s e , i t i s now reasonably establ i s h e d that t h i s treatment r e s u l t s i n the formation of amine s a l t s of the r a t h e r unstable c e l l u l o s e s u l f i t e e s t e r . Again f i l a m e n t s r e p o r t e d l y were spun, but no f i b e r p h y s i c a l p r o p e r t i e s were r e p o r t e d . The use of s u l f i t e e s t e r s f o r p r e p a r i n g rayon i n preference t o the v i s c o s e system would c r i t i c a l l y depend on good recovery of a l l s t a r t i n g m a t e r i a l s , and t h i s may be an area worthy of both chemical and engineering e f f o r t . b) Nitrogenous Intermediates: The use o f u n s t a b l e n i t r o genous i n t e r m e d i a t e s f o r a c h i e v i n g c e l l u l o s e s o l u t i o n i n organic s o l v e n t s i s concentrated mainly i n the area of systems i n v o l v i n g n i t r o g e n oxides. I n i t i a l l y n i t r o g e n oxides were used t o o x i d i z e c e l l u l o s e t o the 6-carboxy d e r i v a t i v e . The o r i g i n a l work o f Kenyon, Y a c k e l , Unruh, Fowler, and McGee i n the 40 s stands as a milestone i n t h i s a r e a . (30-34) More r e c e n t l y , Pavlyuchenko and Ermolenko and coworkers have presented f u r t h e r d e t a i l e d s t u d i e s on the use of N2O4 f o r c e l l u l o s e o x i d a t i o n . (35-39) I n 1947, Fowler e t a l (34) reported t h a t v a r i o u s s o l v e n t s , when used i n c o n j u n c t i o n w i t h N2O4, gave d i f f e r e n t responses t o the a c t i o n of t h i s reagent on c e l l u l o s e and found t h a t many s o l v e n t s a c t u a l l y gave r i s e to s o l u t i o n s o f c e l l u l o s e without h i g h degrees o f o x i d a t i o n o c c u r r i n g . They used over 40 d i f f e r e n t s o l v e n t s where the N2O4 t o s o l v e n t r a t i o s were a t l e a s t 1/1 or h i g h e r and f i n a l l y concluded that the amount of o x i d a t i o n v s . c e l l u l o s e s o l u t i o n was r e l a t e d t o the p o l a r i t y of the s o l v e n t employed. With non-polar s o l v e n t s such as CCI4 e t c . the N2O4 produced mostly o x i d a t i o n w h i l e the more p o l a r s o l v e n t s gave r i s e t o c e l l ulose s o l u t i o n s w i t h g r e a t l y diminished o x i d a t i o n . I f no s o l vents were employed and l a r g e excesses of c o l d l i q u i d N2O4/N2O3 mixtures were used, then c e l l u l o s e d i s s o l v e d w i t h v e r y l i t t l e o x i d a t i o n and could be recovered from such s o l u t i o n s e s s e n t i a l l y c h e m i c a l l y unchanged except f o r a D.P. l o s s . T h i s was f i r s t r e ported by H i a t t and Crane i n 1949 (40) and subsequently s t u d i e d i n great d e t a i l by Chu i n 1970.(41) F o l l o w i n g these c l a s s i c d i s c l o s u r e s by Fowler, other r e searchers began t o examine even more p o l a r s o l v e n t s f o r use w i t h N2O4. Thus, W i l l i a m s (42) s t u d i e d the use o f DMSO/N2O4 as a s o l v e n t system f o r c e l l u l o s e . I t was l a t e r demonstrated r a t h e r c l e a r l y by Hergert and Z o p o l i s (43) t h a t the DMSO/N2O4 system would d i s s o l v e c e l l u l o s e more e f f e c t i v e l y i f t h e r e was a s m a l l amount of water present t o keep the c e l l u l o s e s t r u c t u r e open f o r r e a c t i o n . S u r p r i s i n g l y very l i t t l e more work has been done w i t h the DMSO/N2O4 system up t o the present time. Subsequently, Nakao obtained patent coverage on the use of DMF/N2O4 mixtures t o d i s s o l v e c e l l u l o s e (44,45) and on the a d d i t i o n s o f a wide range o f other polymers i n DMF t o such c e l l u l o s e s o l u t i o n s to produce s p e c i a l types of products. Mahomed (46) 1

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

20

S O L V E N T S P U N R A Y O N , MODIFIED C E L L U L O S E FIBERS

d e s c r i b e s the use of cellulose/DMF/N2O4 s o l u t i o n s as c o a t i n g m a t e r i a l s f o r g l a s s f i b e r s t o improve product performance. During t h i s p e r i o d s e v e r a l other workers began to appreciate that very p o l a r s o l v e n t s gave c e l l u l o s e s o l u t i o n s from which c e l l u l o s e could be recovered i n an e s s e n t i a l l y unchanged s t a t e r a t h e r than i n the h i g h l y o x i d i z e d s t a t e p r e v i o u s l y a s s o c i a t e d w i t h N2O4 treatments. A c o n s i d e r a b l e amount of research was p u b l i s h e d t r y i n g to d e f i n e what was o c c u r r i n g when the N2O4 was used w i t h the p o l a r s o l v e n t s . Clermont and Bender and t h e i r a s s o c i a t e s r e p o r t e d s t u d i e s where c e l l u l o s e was d i s s o l v e d i n both c o l d and hot s o l u t i o n s w i t h N2O4/DMF mixtures. (47-49) They found t h a t e s s e n t i a l l y unchanged c e l l u l o s e w i t h no added n i t r o g e n or c a r b o x y l l e v e l s was obtained from c o l d d i s s o l u t i o n , w h i l e waters o l u b l e c e l l u l o s e r e s u l t e d from i n c r e a s e d d i s s o l v i n g temperatures apparently due to the formation of v a r i o u s D.S. c e l l u l o s e n i ­ t r a t e s . They subsequently t r i e d to use t h i s procedure t o d i s ­ s o l v e l i g n o c e l l u l o s e removed from wood chips.(50) In a s e r i e s of a r t i c l e s d a t i n g from 1969-1976, Schweiger ha§ been r e p o r t i n g s t u d i e s aimed at t r y i n g to e l u c i d a t e what was happening i n the DMF/N2O4 treatment of c e l l u l o s e and t r i e d to use such s o l u t i o n s f o r forming other d e r i v a t i v e s . (51-56) He was a b l e to i s o l a t e a product from a p y r i d i n e - m o d i f i e d dope which appeared to be an u n s t a b l e c e l l u l o s e n i t r i t e i n t e r m e d i a t e s i n c e i t could produce a l k y l n i t r i t e s when decomposed by lower m o l e c u l a r weight a l c o h o l s . While t h i s i s not a d i r e c t s t r u c t u r a l proof i t c e r t a i n l y i s s u f f i c i e n t t o s u b s t a n t i a t e h i s proposal t h a t c e l l u l o s e r e a c t s w i t h N2O4 to g i v e c e l l u l o s e n i t r i t e and HNO3 r a t h e r than forming some type of N 2 O 4 / c e l l u l o s e a s s o c i a t i o n complex. The c e l l u l o s e n i t r i t e i s subsequently r a p i d l y decom­ posed by p r o t o n i c s o l v e n t s to regenerate the c e l l u l o s e and g i v e HNO2 along w i t h HNO3 f o r recovery and r e c y c l e . The s t r u c t u r e and r e a c t i o n s of N2O4 i n general have been reviewed by Gray (52) w h i l e the r e a c t i o n s of N 0^ to n i t r a t e and n i t r o s a t e a l c o h o l s and amines are reported by White and Feldman. (58) Pasteka and M i s l o v i c o v a s t u d i e d the e f f e c t s of v a r i o u s d i s ­ s o l v i n g c o n d i t i o n s on the D.P. l o s s of c e l l u l o s e i n the DMF/N2O4 system. (59-61) They noted that the moisture content of the system and even the r a t e of s t i r r i n g caused a drop i n D.P. and t h a t the presence of p y r i d i n e or (ΰ2Η5)βΝ d i d not i n h i b i t such l o s s . W h i l e moisture may w e l l r e l a t e to D.P. l o s s , i t i s d i f ­ f i c u l t to understand how s t i r r i n g r a t e could have such an e f f e c t unless i t was r e f l e c t i n g l o c a l temperature r i s e s t h a t occurred under the c o n d i t i o n s employed f o r s t i r r i n g . I n any case, these i n v e s t i g a t o r s again confirmed no i n c r e a s e i n e i t h e r n i t r o g e n or c a r b o x y l content f o r the regenerated c e l l u l o s e . The N2O4 system has a l s o been i n v e s t i g a t e d by s e v e r a l Russians (62-64) who a c t u a l l y r e p o r t p h y s i c a l p r o p e r t i e s f o r f i b e r s spun from DMF/N2O4 and EtOAc/^O^ systems. These f i b e r s are about 120 d e n i e r and have t e n a c i t i e s of 1.6 g/d w i t h 5-6% 2

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2.

TURBAK E T A L .

Cellulose Solvent Systems

21

e l o n g a t i o n s . Obviously more d e f i n i t i o n of the ^ O ^ o r g a n i c s o l vent system i s needed t o determine i t s p o t e n t i a l as a s o l v e n t based rayon process to s u b s t i t u t e f o r v i s c o s e and t h i s work w i l l be r e p o r t e d l a t e r i n t h i s symposium.

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

f

c. Carbon Intermediates: The use of non-hetero atom-cont a i n i n g m o i e t i e s to make c e l l u l o s e i n t e r m e d i a t e s o f t r a n s i e n t s t a b i l i t y has r e c e i v e d r e l a t i v e l y l i t t l e a t t e n t i o n i n s p i t e of the f a c t that such d e r i v a t i v e s might u l t i m a t e l y o f f e r the b e s t prospects f o r n o n - p o l l u t i n g systems. C e l l u l o s e carbonate has been prepared and r e p o r t e d . However, i t e v i d e n t l y i s so uns t a b l e as to have e s s e n t i a l l y no u t i l i t y as an i n t e r m e d i a t e . A l s o , as prepared from phosgene, i t would f a c e other i n d u s t r i a l problems. C e l l u l o s e formate i s w e l l known and has been reported as being r a p i d l y prepared by the a c t i o n o f 95% f o r m i c a c i d on c e l l u l o s e . The cleavage of c e l l u l o s e formate by hot steam a l s o r e presents an i n t e r e s t i n g approach f o r "dry s p i n n i n g " t h i s d e r i v a t i v e . While f o r m i c a c i d would not be considered a " m a t e r i a l o f c h o i c e " under most circumstances f o r i n d u s t r i a l use, i t i s c e r t a i n l y no worse than "hydrazine" i n most s a f e t y and h e a l t h cons i d e r a t i o n s and t h i s approach, o r one s i m i l a r t o i t , w i l l undoubtedly see f u r t h e r e f f o r t i n the f u t u r e . R e c e n t l y , N i c h o l s o n and D.C. Johnson reported on t h e i r work on d i s s o l v i n g c e l l u l o s e i n mixtures o f DMSO w i t h paraformaldehyde. (65) I n i t i a l i n d i c a t i o n s are that a c e l l u l o s e m e t h y l o l compound i s formed which i s s t a b l e under the e l e v a t e d temperatures of s o l u t i o n p r e p a r a t i o n and i s subsequently s t a b l e f o r days under storage i n open a i r at room temperature. The extreme s p e c i f i c i t y of t h i s combination of reagents i s p a r t i c u l a r l y n o t a b l e . For example, Seymour and E.L. Johnson (66,67) noted t h a t n e i t h e r DMF, DMAc, acetone, HMPA, nitromethane, a c r y l o n i t r i l e , a c e t o n i t r i l e , nor s u l f o l a n e can be s u b s t i t u t e d f o r the DMSO. Thus DMSO and o n l y DMSO has been found to be e f f e c t i v e t o date f o r a c h i e v i n g c e l l u l o s e s o l u t i o n s w i t h formaldehyde. This extreme s p e c i f i c i t y may w e l l r e l a t e i n some way t o the f a c t t h a t DMSO i t s e l f breaks down i n t o DMS and paraformaldehyde on h e a t i n g (68) or may poss i b l y be i n t e r a c t i n g t o s t a b i l i z e the proposed c e l l u l o s e m e t h y l o l i n t e r m e d i a t e whereas no other reagent i s e v i d e n t l y a b l e t o do so. I t should be f u r t h e r noted that w h i l e o n l y one mole of paraformaldehyde i s r e q u i r e d to h o l d one mole of the c e l l u l o s e i n s o l u t i o n , l a r g e molar excesses of 5/1 (CH20)x/cellulose must be employed i n i t i a l l y f o r d i s s o l u t i o n to occur. Thus t h i s system which appears t o i n i t i a l l y o f f e r an easy route t o c e l l u l o s e s o l u t i o n s , may o f f e r c o n s i d e r a b l e d i f f i c u l t y commercially from the aspects o f s p i n n i n g , recovery and r e c y c l e . F u r t h e r data from t h i s work are to be presented l a t e r i n t h i s symposium.

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

22

S O L V E N T SPUN R A Y O N , MODIFIED C E L L U L O S E

FIBERS

Throughout t h i s review, an attempt has been made t o h i g h ­ l i g h t the need f o r a low investment c o s t , n o n - p o l l u t i n g s o l v e n t system f o r c e l l u l o s e t o s u b s t i t u t e f o r the v i s c o s e process. None o f the systems known t o date meet the necessary requirements f o r commercial e x p l o i t a t i o n . However, as has always been the case, whenever a need l i k e t h i s e x i s t s some outstanding s c i ­ e n t i s t s w i l l develop methods t o produce the d e s i r e d r e s u l t s - and t h i s case w i l l be no e x c e p t i o n . The c e l l u l o s e chemists are equal to the c h a l l e n g e and the rewards f o r success w i l l be l a r g e .

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

Warwicker, J.O., J e f f r i e s , R . , Colbran, R.L., and Robinson, R . N . , Shirley Inst., Pamphlet No. 93 (1966), Manchester, England. Warwicker, J.O., High Polymers, V o l . V , Part IV, Wiley­ -Interscience, N . Y . , 1971. Jayme, G . , High Polymers, V o l . V, Part IV, Wiley-Interscience, N . Y . , 1971. Phillip, B . , Schleicher, H., and Wagenknecht, W., Cellulose Chem. Tech., 9, 265-82 (1975). Phillip, B. Schleicher, H., and Wagenknecht, W., C.A. 83 165567s; Chem. Vlakno 25 (10-22) 1975. Polyola, L., and Aarnikowa, P.L., Kem.-Kemi 2, (1) 27-9 (1975). Brandrup, J. and Immergut, E . H . , Polymer Handbook, 2nd ed. V-101, John Wiley & Sons, N . Y . 1975. Spurlin, H.M., High Polymers Vol. V, Part III, Wiley-Inter­ science, N . Y . (1955). B u r r e l l , H., O f f i c i a l Digest (726-758) 1 9 5 5 . Barton, A.F., Chem. Reviews, 75, No. 6, (731-753) 1975. Williams, H . E . , J. Soc. Chem. Ind., 40, 221T, 1921. Hess, K. and Trogus, C., Z. Phys. Chem., B14, 387 (1931). L i t t , M . , Cell. D i v . Preprints, ACS Mtg., N.Y. 1976. Segal, L., High Polymers, V o l . V, Part IV, Wiley-Intersci­ ence, N.Y. 1971. P h i l l i p , B . , and Schleicher, H., C . A . , 74, 127361b (1971). Koura, Α., Schleicher, H., and Phillip, B . , Faserforsch. T e x t i l t e c h . 23, (3) 128-33 1972; C . A . , 77, 50396u 1972. Graenacher, C., and Sallmann, U.S. 2,179,181 (1939). Johnson, D . L . , U.S. 3,508,941 (1970); B . P . 1,144,048 (1969). Petrov, V . G . , C.A. 63, 10161g, 1965. Kimura, T . , Yamamura, T . , Kawai, Α., and Nagai, S., Japan Patent 69 02,592. P h i l l i p , B., Schleicher, H., and Laskowski, I., Faserforsch Textiltech., 23, 60-65, (1972). Yamazaki, S., and Nakao, O., C . A . , 81, 154860q (1974). Kata, Κ., and Yokota, K . , C.A. 66, 47464g (1967).

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2.

TURBAK

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59.

ET

AL.

Cellulose Solvent Systems

23

Hata, K. and Yokota, K., C.A. 70, 69191a, (1969). Hata, K. and Yokota, K., C.A. 70, 69192b, (1969). Hata, K. and Yokota, K., U.S. 3,424,702 (1969). Hata, K. and Yokota, K., C.A., 72, 33464u (1970). Hata, K. and Yokota, K., C.A., 74, 14323x (1971). Hata, K. and Yokota, K., C.A., 75, 153094g (1971). Kenyon, W. and Y a c k e l , E., U.S. 2,448,892. Y a c k e l , E.C. and Kenyon, W., J.A.C.S. 64, 121 (1942). Unruh, C.C. and Kenyon, W., J.A.C.S. 64, 127 (1942). McGee, P., Fowler, W.F., et al, J.A.C.S. 69, 355 (1947). Fowler, W., Unruh, C., McGee, P. and Kenyon, W., J.A.C.S. 69, 1636 (1947). Pavlyuchenko, M. and Ermolenko, I., C.A. 1739d (1956) I z v e s t . Akad. Nauk. SSSR 20, No. 5 546-51 (1956). Ermolenko, I. and Pavlyuchenko, M. C.A. 15051d (1958) Zhur. Obshchei Khim., 28, 722-8 (1958). Pavlyuchenko, M. et al C.A. 20187g (1960) Zhur. Priklad. Khim. 33, 1385-91 (1960). Kuznetsova, Z.I. et al, I z v e s t . Akad. Nauk., SSSR, No. 3, 557-59 (1965). Pavlyuchenko, M. et al, C.A. 83, 166024z (1975), Zhur., Priklad. Khim. 48, 1822-5 (1975). H i a t t , G.D. and Crane, C.L. U.S. 2,473,473 (1949). Chü, N.J., Pulp and Paper I n s t . of Canada. Report #42, 1970. W i l l i a m s , H.D., U.S. 3,236,669 (1966). H e r g e r t , H.L. and Z o p o l i s , P., Fr. P a t . 1,469,890, C.A. 68 41234b (1968). Nakao, O., et al, Canadian P a t e n t 876,148 (1971). Nakao, O., et al, U.S. 3,669,916. Mahomed, R.S., B.P. 1,309,234 (1973). Clermont, L.P., Canadian P a t e n t 899,559 (1969). Clermont, L.P. and Bender, F., J. P o l y . Sci., 10 (6), 1665-77 A-1 (1972). Venkateswaran, A. and Clermont, P., J. A p p l . P o l y .Sci.,18, 133-42 (1974). Bender, F., et al, U.S. 3,715,268 (1973). Schweiger, R.G., Chem. & I n d . 296, (1969). Schweiger, R.G., German Patent 2,120,964 (1971). Schweiger, R.G., U.S. 3,702,843 (1972). Schweiger, R.G., TAPPI. 7th D i s s o l v i n g Pulp Conf., A t l a n t a (1973). Schweiger, R.G., TAPPI. 57 #1, 86-90, 1974. Schweiger, R.G., J. Org. Chem., 41, (1) 90-93 (1976). Gray, P., Chemical Reviews, 1069, (1955). White, E.H. and Feldman, W.R., J.A.C.S. 79, 5832-33 (1957). P a s t e k a , M. and M i s l o v i c o v a , D., C e l l u l o s e Chem. & Tech., 8, 107-114 (1974).

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

24 60. 61. 62. 63. 64. 65.

Downloaded by UNIV OF BATH on June 30, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0058.ch002

66. 67. 68.

S O L V E N T SPUN

R A Y O N , MODIFIED C E L L U L O S E

FIBERS

I b i d , 481-486 (1974). ibid, 9, 325-330 (1975). Grinshpan., O., et al, Daklod, Akad. Nauk, B e l l o r o s s , SSSR, 18, (9) 828-31 (1974). Grinshpan, D., K a p u t s k i i , F.N., et al, B e l l o r o s s , Gos. Univ., Minsk., SSSR.; C.A. 194931 (1975). Bashmakov, I.A. et al, Vestsi Akad Nauk, Gos U n i v . B e l l o r o s s SSSR, (4) 29-32 (1973) C.A. 28636u (1973). N i c h o l s o n , M. and Johnson, D.C., TAPPI, 8th D i s s o l v i n g Pulp Conf., Syracuse, N.Y. 1975. Seymour, R.B. and Johnson, E.L., Organic Coatings and Plastics P r e p r i n t s , ACS Mtg. San F r a n c i s c o 665-73 (1976). Seymour, R.B. and Johnson, E.L., Polymer P r e p r i n t s , 17, #2, 382-383 (1976) (ACS, San F r a n c i s c o Mtg.). Lowe, O.G., J. Org. Chem. 41 (11) 2061-64 (1976).

Turbak; Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives ACS Symposium Series; American Chemical Society: Washington, DC, 1977.