10 A Kinetic Study on the Formation of Aromatics During Pyrolysis of Petroleum Hydrocarbons ΤΟΜΟΥΑ SAKAI and DAISUKE NOHARA Dept. of Chemical Reaction Engineering, Nagoya City University, 3-1, Tanabedori, Mizuhoku, Nagoya, 467 Japan TAISEKI KUNUGI
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Dept. of Synthetic Chemistry, Faculty of Engineering, University of Tokyo, 7-1, Hongo, Bunkyoku, Tokyo, 113 Japan F o r t h e p y r o l y s i s o f p a r a f f i n i e h y d r o c a r b o n s a t 700 - 8 0 0 ° C , y i e l d s of o l e f i n s such as e t h y l e n e , p r o p y l e n e , b u t è n e s , b u t a d i e n e and c y c l o o l e f i n s i n c r e a s e d u r i n g t h e i n i t i a l s t a g e o f t h e r e a c t i o n , p a s s t h r o u g h t h e i r maxima, and l a t e r d e c r e a s e ; y i e l d s o f a r o m a t i c s , h y d r o g e n and methane however i n c r e a s e m o n o t o n i c a l l y t h r o u g h o u t t h e reaction course. S a k a i e t a l . (1) r e p o r t e d p r e v i o u s l y t h e r e s u l t o f a k i n e t i c s t u d y on t h e r m a l r e a c t i o n s o f e t h y l e n e , p r o p y l e n e , b u t è n e s , b u t a d i e n e and t h e s e r e s p e c t i v e o l e f i n s w i t h b u t a d i e n e a t the c o n d i t i o n s s i m i l a r to those of p a r a f f i n p y r o l y s i s , d i r e c t i n g t h e i r a t t e n t i o n on t h e r a t e s o f f o r m a t i o n o f c y c l i c compounds. K i n e t i c f e a t u r e s of the t h e r m a l r e a c t i o n s of t h e s e o l e f i n s a r e summarized i n T a b l e I combined w i t h t h e r e s u l t s o b t a i n e d i n l a t e r i n v e s t i g a t i o n s f o r t h e r m a l r e a c t i o n s o f c y c l o o l e f i n s (2) and b e n z e n e (_3). T h e r m a l r e a c t i o n s o f e t h y l e n e (4,_5) r e q u i r e h i g h e r t e m p e r a t u r e s ( 7 5 0 - 800°C) than the o t h e r o l e f i n s . I n i t i a l reaction produ c t s a r e b u t a d i e n e , 1 - b u t e n e , p r o p y l e n e , e t h a n e and a c e t y l e n e . As t h e y i e l d s o f t h e s e i n i t i a l p r o d u c t s d e c r e a s e w i t h i n c r e a s e d r e s i d e n c e t i m e s , c y c l i c compounds s u c h a s c y c l o p e n t e n e , c y e l o p e n t a d i e n e , c y c l o h e x e n e and b e n z e n e a r e p r o d u c e d . In the case of p r o p y l e n e (6,_7), t h e r e a c t i o n p r o c e e d s 2 - 4 t i m e s f a s t e r t h a n t h a t o f e t h y l e n e ; and e t h y l e n e , m e t h a n e , b u t a d i e n e , b u t è n e s , a c e t y l e n e , and m e t h y l c y c l o p e n t e n e a r e t h e m a i n p r o d u c t s d u r i n g t h e i n i t i a l s t e p ; c y c l o p e n t a d i e n e , c y c l o p e n t e n e , b e n z e n e , t o l u e n e and p o l y c y c l i c compounds h i g h e r t h a n o r e q u a l t o n a p h t h a l e n e a r e p r o d u c t s of secondary r e a c t i o n s . A remarkable f a c t f o r the t h e r m a l r e a c t i o n o f p r o p y l e n e i s t h a t t h e y i e l d s o f f i v e membered r i n g compounds a r e l a r g e r t h a n t h o s e i n t h e c a s e o f e t h y l e n e . D i f f e r e n t f e a t u r e s were observed between the t h e r m a l r e a c t i o n o f 1 - b u t e n e and t h o s e o f c i s - and t r a n s - 2 - b u t e n e s a t 640 - 6 8 0 ° C (jL). In the former case, the r e a c t i o n proceeded mainly i n t h r e e w a y s ; t h e s e w e r e p y r o l y s i s t o methane and p r o p y l e n e , dehydrogenat i o n t o b u t a d i e n e , and p y r o l y s i s t o two m o l e s o f e t h y l e n e ; t h e r a t i o of r a t e s f o r these three r e a c t i o n s are 4 : 3 : 1 , respectively. I n t h e l a t t e r c a s e s , t h e m a i n r e a c t i o n was i s o m e r i z a t i o n between 152
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
10.
s AXAI ET AL.
Formation of Aromatics
153
c i s - and t r a n s - 2 - b u t e n e , and t h e s e l e c t i v i t i e s o f o t h e r r e a c t i o n s t h a n t h e i s o m e r i z a t i o n w e r e s u p r e s s e d t o l e s s t h a n 10%. C y c l i z a t i o n p r o c e e d e d i n n e a r l y 100% s e l e c t i v i t y i n t h e c a s e of t h e r m a l r e a c t i o n of b u t a d i e n e ( 1 ) , y i e l d i n g 4 - v i n y l c y c l o h e x e n e (VCH) f o r t h e f i r s t s t e p and e t h y l e n e , c y c l o h e x e n e , c y c l o h e x a d i e n e , and b e n z e n e i n t h e s e c o n d a r y s t e p s . Similar highly select i v e c y c l i z a t i o n s were observed f o r t h e r e a c t i o n s between b u t a d i e n e and e t h y l e n e , p r o p y l e n e , 1 - b u t e n e , c i s - 2 - b u t e n e , t r a n s - 2 b u t e n e o r i s o b u t y l e n e ( 1 ) , y i e l d i n g c y c l o h e x e n e (HCH), 4 - m e t h y l c y c l o h e x e n e (MCH), 4 - e t h y l c y c l o h e x e n e , c i s - 4 , 5 - d i m e t h y l c y c l o hexene, t r a n s - 4 , 5 - d i m e t h y l c y c l o h e x e n e or 4 , 4 - d i m e t h y l c y c l o h e x e n e , respectively. B a s e d on t h e a b o v e i n f o r m a t i o n , i t c a n be s a i d t h a t b u t a d i e n e p l a y s an i m p o r t a n t r o l e i n the f o r m a t i o n of c y c l i c compounds i n p y r o l y s i s c o n d i t i o n s . N e x t , i n o r d e r t o l e a r n more a b o u t t h e r a t e s o f d e h y d r o g e n a t i o n of c y c l o h e x e n e s r e s u l t i n g from D i e l s - A l d e r r e a c t i o n s between b u t a d i e n e and o l e f i n s , VCH, HCH and MCH w e r e e a t l i e t ? s u b j e c t e d t o t h e r m a l r e a c t i o n s a t 5 3 0 - 665°C ( 2 ) . The m a i n r e a c t i o n s i n t h e s e c a s e s w e r e r e v e r s e D i e l s - A l d e r r e a c t i o n s and d e h y d r o g e n a t i o n s . DeKydrogenations which are r e l a t e d to the productions of c y c l o h e x a d i e n e and b e n z e n e h o m o l o g u e s w e r e 1 : 10 i n s e l e c t i v i t y a s c o m p a r e d t o t h a t o f t h e r e v e r s e D i e l s - A l d e r r e a c t i o n . An i n t e r e s t i n g o b s e r v a t i o n r e l a t e d t o c y c l i c compound f o r m a t i o n i s t h a t , i n t h e c a s e o f MCH p y r o l y s i s , c y c l o h e x a d i e n e and c y c l o p e n t e n e a r e f o r m e d a t a l m o s t t h e same r a t e s as b u t a d i e n e a n d p r o p y l e n e . So t h a t , i n t h i s c a s e , a b o u t 60% o f MCH i s e m p l o y e d i n t h e f o r m a t i o n o f c y c l i c compounds. T h e r m a l r e a c t i o n o f b e n z e n e (3) p r o c e e d e d a t 800 - 8 5 0 ° C p r o d u c i n g b i p h e n y l and h y d r o g e n . B e n z e n e was t h e most r e f r a c t o r y m a t e r i a l of the f e e d s t o c k s employed i n t h e s e e x p e r i m e n t s . The a d d i t i o n o f 3 - 4 wt% o f n a p h t h a l e n e t o b e n z e n e d i d n o t g r e a t l y a f f e c t the r e a c t i o n k i n e t i c s or product s e l e c t i v i t y . However, when e t h y l b e n z e n e was a d d e d i n t h e same s m a l l amount, f e a t u r e s o f the r e a c t i o n were q u i t e changed. No w h i t e c r y s t a l l i n e p r o d u c t was o b t a i n e d , and i n s t e a d a t a r r y m a t t e r c o v e r e d t h e i n s i d e o f t h e reactor. B a s e d on t h e k i n e t i c d a t a o b t a i n e d a b o v e , a t e n t a t i v e c a l c u l a t i o n was e a r l i e r p e r f o r m e d t o d e t e r m i n e w h e t h e r o r n o t t h e r a t e o f c y c l i c compound f o r m a t i o n i n a c t u a l p y r o l y s i s r e a c t i o n s c a n b e a c c o u n t e d f o r through the D i e l s - A l d e r r e a c t i o n s between b u t a d i e n e and o l e f i n s . The a c t u a l r a t e o f c y c l i c compound f o r m a t i o n was much g r e a t e r t h a n t h e r a t e c a l c u l a t e d f r o m t h e c o n c e n t r a t i o n s o f b u t a d i e n e and o l e f i n s i n t h e a c t u a l p y r o l y s i s c o n d i t i o n s . A l l y l r a d i c a l s were t e s t e d as m a t e r i a l s o r s u b s t a n c e s t h a t cause c y c l i z a t i o n w i t h o l e f i n s . 1 , 5 - H e x a d i e n e ( d i a l l y l ) and d i a l l y l o x a l a t e (DAO) w e r e u s e d a s t h e s o u r c e m a t e r i a l s f o r a l l y l radicals. T h e s e compounds w e r e s u b j e c t e d t o t h e t h e r m a l r e a c t i o n i n the presence of e t h y l e n e , w h i c h r e s u l t e d i n a r a p i d f o r m a t i o n o f f i v e - m e m b e r e d c y c l i c compounds. The r o l e o f a l l y l r a d i c a l f o r t h e f o r m a t i o n o f a r o m a t i c s i n p y r o l y s i s r e a c t i o n i s however s t i l l
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
154
INDUSTRIAL AND LABORATORY PYROLYSES Table I. Reactant
A Summary of Rate Data on Thermal
Temperature (°C)
Product
primary
OC
700 - 850
C4H , 1-C4H , C H ,
C=C-C
700 - 850
C
C=C-C-C
640 - 680
6
3
8
C H2, C H , H 2
2
H
2
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
640 - 680
4
8
2
2
3
6
6640 40
-- 6680 80
550 - 750
550
- 750
OC-OC + OC
510
- 590
o c - o c + oc-c
510
- 590
o c - o c + c=c-c-c
510
- 590
O C - O C + C-OC-C
(cis-)
510
- 590
O C - O C + C-OC-C
(tr-)
510
- 590
510
- 590
530
- 585
C C—C*C Ι" e
cr
Q
(Q)
558855 -- 666655
σ
575
- 650
CH4, H
2
, Q ,
0'©
2
H
6
CH4, H O , ( 0 ) ,
,
2
O.C/.jgj', C H 2
C H
8
2
4
6
cis-C4H , C4H6, cis-C4H8, CH , C H
C H4
8
3
2
6
cr 0 σ cr α
ί J "
ΟΌ'^'
C
CH , C H , H 4
3
6
a σ
or
C H 4
C2H C H 4 ,, 2
6
CC HH 44
4
0 Q C Hσ,0 ®-, C H , 3
C H
6
4
C H
66
3
6
6
CH , 4
2
700
- 850
6
8
4
4
OC-OC + OC-OC
4
6
6
3
C - O C - C (tr-)
C
fy> C H , CH4, H CH4, C H , C4H , C H , 2-C4H 's trans-C H , €4%, CH4, C H 2
C-OC-C (cis-)
6
ΰ Η ,
,
4
6
secondary
4
Pyrene, CH4 H , 2
C H 2
4
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
2
2
H
4
,
10.
SAKAi ET AL.
155
Formation of Aromatics
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Reactions of O l e f i n s , Cycloolefins and Benzene ( > mol, sec)
log k
ml
Reaction order
500
600
1.5
-
1.5
1 0
Ε
(kcal/mol)
log^gA (ml, mol, sec)
700
800
-
0.59
1.63
49.6
11.73
-
-
0.86
2.19
63.2
15.06
1.0
-
-1.88
-0.30
61.3
13.47
1.0
-
-0.51
0.95
56.5
13.64
1.0
-
-0.50
0.97
57.2
13.82
24.8
10.41
28.8
10.68
29.7
10.40
52.7
15.67
54.7
15.97
30.6
10.80
45.8
14.06
60.6
15.05
4.84
5.36
2.0
3.40
4.20
2.0
2.54
3.47
2.0
2.00
2.96
2.0
0.77
2.48
2.0
0.50
2.27
2.0
2.14
3.14
2.0
1.11
2.59
1.0
-2.09
-0.12
1.0
-3.09
-1.52
-
48.4
10.60
1.0
-3.57
-1.44
_
65.7
15.01
1.0
-4.02
-2.25
11.50
1.0
-3.41
-1.31
64.9
14.94
1.0
-3.67
-1.69
-
54.9
1.0
-3.94
-1.92
1.0
-3.52
-1.92
-
-
1.0(?)
-
-2.96
-1.80
61.1
13.61
62.4
13.70
49.55
10.49
55.0
9.40
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
156
INDUSTRIAL AND LABORATORY PYROLYSES
o b s c u r e b e c a u s e t h e c y c l i z e d compounds p r o d u c e d f r o m a l l y l r a d i c a l and o l e f i n s w e r e e x c l u s i v e l y f i v e - m e m b e r e d r i n g compounds d u r i n g t h e i n i t i a l s t a g e o f the r e a c t i o n ( 8 ) . However, i n c o m b i n a t i o n w i t h the i s o m e r i z a t i o n r e a c t i o n s of s u b s t i t u t e d cyclopentenes which are expected to proceed e a s i l y at p y r o l y s i s c o n d i t i o n s , i t i s l i k e l y that a l l y l r a d i c a l s are important intermediates causing the a r o m a t i z a t i o n of o l e f i n s .
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Experimental S e v e r a l methods a r e known f o r t h e g e n e r a t i o n o f a l l y l r a d i c a l . James and T r o u g h t o n (9) commented on t h e p h o t o l y s e s o f d i c y c l o p r o p y l k e t o n e , p r o p y l e n e , 1 - b u t e n e , and c y c l o p r o p a n e and r a d i o l y s i s of d i a l l y l k e t o n e . M c D o w e l l and S i f n i a d e s (10) and James and Kambanis (11) o b t a i n e d t h e a l l y l r a d i c a l f r o m p h o t o l y s e s o f c r o t o n a l d e h y d e and d i a l l y l o x a l a t e a t l o w t e m p e r a t u r e s , r e s p e c t i v e l y . A l - S a d e r and C r a w f o r d (12) o b t a i n e d a l l y l r a d i c a l s by t h e r m o l y s i s of 3 , 3 - a z o - 1 - p r o p e n e . Some o f t h e a b o v e m a t e r i a l s may however h a v e s e v e r a l d i s a d v a n t a g e s s u c h as p r e l i m i n a r y i s o m e r i z a t i o n o f r e a c t a n t s , c o n c o m i t a n t g e n e r a t i o n o f o t h e r r e a c t i v e s p e c i e s , comp l e x i t y o f t h e s u c c e s s i v e and c o m p e t i n g r e a c t i o n s , and d i f f i c u l t y i n raw m a t e r i a l p r e p a r a t i o n s . At r a t h e r e l e v a t e d temperatures, i t i s thought t h a t d i a l l y l produces a l l y l r a d i c a l s s o l e l y d u r i n g the very i n i t i a l stage of the p y r o l y s i s . DAO was employed as t h e s o u r c e m a t e r i a l f o r a l l y l r a d i c a l s f o r r e a c t i o n s t o be i n v e s t i gated a t lower temperatures. The p u r i t y o f d i a l l y l s a m p l e was more t h a n 9 9 . 4 wt% by gas chromatographic a n a l y s i s a f t e r d i s t i l l a t i o n w i t h a spinning-band r e c t i f i c a t i o n c o l u m n o f 60 s t a g e s . The m a i n i m p u r i t y was 1 - h e x e n e . DAO was s y n t h e s i z e d and d i s t i l l e d a c c o r d i n g t o a method r e p o r t e d i n t h e l i t e r a t u r e ( 1 3 ) . P o l y m e r i z a t i o n g r a d e e t h y l e n e was u s e d w i t h o u t p u r i f i c a t i o n s . I m p u r i t i e s i n the e t h y l e n e sample were methane and e t h a n e i n 0 . 0 1 and 0 . 0 7 m o l %, r e s p e c t i v e l y . Nitrogen f r o m a c y l i n d e r was d e o x y g e n a t e d by p a s s i n g i t t h r o u g h a r e d u c e d c o p p e r g a u z e a t 250°C f o l l o w e d by d r y i n g i n a s i l i c a g e l column. A c o n v e n t i o n a l f l o w - t y p e r e a c t i o n s y s t e m was u s e d f o r r e a c tions at atmospheric pressure. The l i q u i d s a m p l e was v a p o r i z e d a t 0 ° C w i t h t h e a i d o f n i t r o g e n and e t h y l e n e f l o w s , and t h e r e s u l t i n g mixtures then entered the r e a c t o r . The r e a c t o r was a n a n n u l a r q u a r t z c y l i n d e r o f 200 mm l e n g t h and 1 0 . 6 mm i . d . , e q u i p p e d c o a x i a l l y w i t h a t h e r m o w e l l o f 7 . 2 mm o . d . The r e a c t o r was p o s i t i o n e d i n a n e l e c t r i c a l l y h e a t e d b r a s s b l o c k o f 180 mm l e n g t h , 18 mm i . d . , and 55 mm o . d . The t e m p e r a t u r e p r o f i l e o f t h e r e a c t o r was m e a s u r e d f o r e a c h r u n , and t h e r e s i d e n c e t i m e s o f t h e r e a c t a n t s w e r e d e t e r m i n e d by t h e method o f Hougen and Watson ( 1 4 ) . I n l e t and o u t l e t g a s e s w e r e a n a l y z e d by u s e o f f l a m e - i o n - d e t e c t o r gas c h r o m a t o g r a p h s e q u i p p e d w i t h 50 m c a p i l l a r y c o l u m n s c o a t e d w i t h s q u a l a n e and d i - n - b u t y l m a l e a t e a t 50 and 0 ° C , r e s p e c t i v e l y . 1
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
10.
SAKAi
ET AL.
Formation of Aromatics
157
R e s u l t s and D i s c u s s i o n
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
In the p r e s e n t i n v e s t i g a t i o n , the thermal r e a c t i o n s of d i a l l y l o r DAO i n e x c e s s n i t r o g e n o r e t h y l e n e w e r e c o n d u c t e d i n a flow system. Information concerning the r e a c t i o n s of the a l l y l r a d i c a l w i t h o l e f i n s were o b t a i n e d , e s p e c i a l l y t h e r e a c t i o n s r e s u l t i n g i n t h e f o r m a t i o n o f C 5 c y c l i c compounds. The d e t a i l e d product d i s t r i b u t i o n s are given for v a r i e d conversion l e v e l s . The p r i m a r y and s e c o n d a r y p r o d u c t s a r e c l e a r l y s e p a r a t e d . A r e a c t i o n scheme i s p r o p o s e d t o e x p l a i n q u a l i t a t i v e l y t h e f o r m a t i o n o f p r i mary and s e c o n d a r y p r o d u c t s . T h e r m a l R e a c t i o n o f D i a l l y l . O v e r a l l mass b a l a n c e s f o r t h e p y r o l y s i s experiments of d i a l l y l i n excess n i t r o g e n g e n e r a l l y were w i t h i n 9 6 - 99 %. I t was c o n f i r m e d t h a t t h e e f f e c t o f t h e q u a r t z s u r f a c e o n t h e r e a c t i o n was n e g l i g i b l e u n d e r t h e p r e s e n t c o n d i tions. The c o n v e r s i o n o f t h e r e a c t a n t h a s b e e n d e f i n e d a s t h e r a t i o o f t h e sum o f t h e p e a k a r e a s o f p r o d u c t s t o t h a t o f a l l p e a k a r e a s o f t h e gas c h r o m a t o g r a m . T y p i c a l k i n e t i c r e s u l t s are l i s t e d i n Table I I , i n which the p r o d u c t d i s t r i b u t i o n s a r e p r e s e n t e d as the weight per cent of the i n d i v i d u a l p r o d u c t s i n t h e t o t a l p r o d u c t s e x c l u d i n g C 1 2 and h i g h e r compounds. A k i n e t i c m o d e l b a s e d on t h e 3 / 2 - o r d e r f i t s t h e e x p e r i m e n t a l results. From A r r h e n i u s p l o t s , t h e o v e r a l l r e a c t i o n r a t e c o n s t a n t was o b t a i n e d as k = 1 0 1 3 . 5 e x p ( - 4 4 , 5 0 0 / R T ) m l l / 2 m o l " / s e c " . The e x a m i n a t i o n o f t h e p r o d u c t d i s t r i b u t i o n v s . r e s i d e n c e t i m e c u r v e s a t f o u r t e m p e r a t u r e l e v e l s r e v e a l e d t h a t t h e same mechanism a p p l i e d f o r t h e r e a c t i o n w i t h i n t h e p r e s e n t e x p e r i m e n t a l c o n d i t i o n s , so t h a t , i n F i g u r e 1, the p r o d u c t d i s t r i b u t i o n v s . c o n v e r s i o n curves were a d o p t e d . From F i g u r e 1 , i t i s c l e a r t h a t t h e p r i m a r y p r o d u c t s o f t h e thermal r e a c t i o n of d i a l l y l are e t h y l e n e , propylene, 1-butene, b u t a d i e n e , 1 - p e n t e n e , c y c l o p e n t e n e , c y c l o p e n t a d i e n e , and 1 , 3 , 5 h e x a t r i e n e , and t h e s e c o n d a r y p r o d u c t s a r e 1 , 3 - c y c l o h e x a d i e n e and benzene. T r a c e amounts o f m e t h a n e , p r o p a n e , and 1 , 4 - p e n t a d i e n e were a l s o f o u n d i n some e x p e r i m e n t s . No h y d r o g e n was d e t e c t e d by a n i t r o g e n c a r r i e r gas c h r o m a t o g r a p h w i t h MS 5A c o l u m n . The f o r m a t i o n o f C12 compounds was n o t i c e d a t l o w t e m p e r a t u r e s . A small amount o f l i q u i d p r o d u c t was f o u n d i n t h e s e p a r a t o r t u b e a f t e r 50 o r more e x p e r i m e n t a l r u n s . The a v e r a g e m o l e c u l a r w e i g h t o f t h e l i q u i d p r o d u c t was 428 b a s e d on t h e method o f H i l l ( 1 5 ) . By e x t r a p o l a t i n g t h e c u r v e s i n F i g u r e 1 t o z e r o c o n v e r s i o n , the molar r a t i o s of formation of i n d i v i d u a l products at the i n i t i a l s t a g e of the r e a c t i o n were approximated as l i s t e d i n Table I I I , i n w h i c h t h e amount o f e t h y l e n e was t a k e n a s u n i t y . From T a b l e I I I and F i g u r e 1, t h e r a d i c a l c h a i n mechanism o f t h e t h e r m a l r e a c t i o n o f d i a l l y l i s p r o p o s e d as f o l l o w s . 1
Initiation:
1.
c=c-c~c-c=e
(i)
2
2 c=c-o
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
1
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976. 94.58
The r e m a i n d e r c o n s i s t s o f s e v e r a l m i n o r p r o d u c t s s u c h a s m e t h a n e , propane, 1,4-pentadiene, e t c .
94.58
4.31
17.55
0.00
8.02
2.40
2.80
9.76
b)
excluded.
91.04
2.77
12.92
3.16
8.33
3.25
3.63
9.27
8.24
F o r m a t i o n o f C^2 and h i g h e r compounds i s
94.09
0.42
6.62
9.85
9.10
12.96
8.45
32.92
8.58
6.44
0.140
620
Diallyl
a)
b
Total >
13.59
1,3,5-Hexatriene
0.00
6.73
Cyclopentadiene
Benzene
-
Cyclopentene
6.62
3.43
5.51
1-Pentene
1,3-Cyclohexadiene
4.76
11.93
Butadiene
7.67
9.94
1-Butene
32.14
30.97
Propylene
31.12
9.29
7.12
2.07
0.386
580
of
8.16
0.437
0.314
540
Ethylene
P r o d u c t d i s t r i b u t i o n ) , wt %
0.075
C o n v e r s i o n , wt %
500
E x p e r i m e n t a l D a t a on P y r o l y s i s
0.273
3
Typical
Residence time, sec
T e m p e r a t u r e , °C
T a b l e II.
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
Figure 1. Product distribution vs. conversion for pyrolysis of diallyl
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
ΟΙ
h-»
CO
δ"
ι
ο
ο
>
S
Ο
160
INDUSTRIAL AND LABORATORY PYROLYSES
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Propagation:
(ID
2.
C=C-C-
+
I
C=C-C
3.
c=c-c-
+
I
e=c-e-c-c-e-c-c=c
(III)
c=c-c-c-c-c-c-c=c
(IV)
+
C=C-C-C-C=C
4.
III
5.
III
Û*
+ c=c-c=c
6.
III
Ο
+ c=e-e-c-
7.
III
Ô
+ c=c-c-c
8.
IV
9.
Cr +
I
+
I
10. 11.
o*
c=c-c-c-cc=c-c-
+ c=c +
c=c-c-c-c-c
£5
+ c=c-c-c-c-c-
Ο
+
13.
ό c=c-c- c - o
c=c-c-
14.
c=c-c- c-c- +
c=c-c-c-c
15.
c=c-c- c-
C= C - C - C
12.
16. 17.
+
II
H>
+ c=c + +
II II
C=C-C=C-C=C
+
Η·
c=c-c= c-c=c
18. 19.
H-
20.
Η·
c
+ 1
C=C-C-C-C-C
+
I
C=C-C-C-C-C-
c=c-c- c-c-c
C=C-C-
22.
c=c-c- c-c-c-
C=C-C-C-
II
2H-
+
21.
23.
+ c=c-c=c
+
η 1
+
C=C-C +
C=C
Ρ·
Termination : 24.
H-
25.
H-
26. 27.
+ + 2R+
RH PH RR PR
28.
PP 2PThe i n i t i a t i o n r e a c t i o n i s assumed t o b e t h e d e c o m p o s i t i o n o f d i a l l y l i n t o two a l l y l r a d i c a l s . L o s s i n g e t a l . ( 1 6 ) , R u z i c k a and B r y c e (17) and A k e r s and T h r o s s e l l (18) a l s o s u g g e s t e d t h e same i n i t i a t i o n r e a c t i o n . An a l l y l r a d i c a l g e n e r a t e d by r e a c t i o n 1 a b s t r a c t s hydrogen from the parent molecule to produce propylene as i n r e a c t i o n 2 . E x i s t e n c e of the 1 , 5 - h e x a d i e n y l r a d i c a l ( I I ) i s s u p p o r t e d b y R u z i c k a and B r y c e (17) a n d James and T r o u g h t o n ( 9 ) .
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
10.
SAKAi
ET AL.
Formation of Aromatics
161
Another r e a c t i o n of a l l y l r a d i c a l Table I I I . Molar R a t i o of i s an a d d i t i o n t o t h e p a r e n t m o l e P r o d u c t s a t Zero Conver c u l e , i . e . , r e a c t i o n 3 , to form s i o n R e l a t i v e to Ethylene I I I , w h i c h undergo hydrogen s h i f t on P y r o l y s i s o f D i a l l y l to produce IV, i . e . , r e a c t i o n 4. 1 The a p p r e c i a b l e amount o f C5 Ethylene compounds ( 1 - p e n t e n e , c y c l o p e n 2.22 Propylene t e n e , and c y c l o p e n t a d i e n e ) o b t a i n e d 0.46 1-Butene as p r i m a r y p r o d u c t s l e a d s t o t h e 0.54 Butadiene p o s t u l a t i o n of s e v e r a l r e a c t i o n s of 1-Pentene 0.20 C9 r a d i c a l s d e s i g n a t e d a s I I I o r 0.22 Cyclopentene Cyclopentadiene 0.36 IV. They a r e r e a c t i o n s 5 - 8 . Radi c a l s produced i n these r e a c t i o n s 0.37 1,3,5-Hexatriene undergo e i t h e r u n i m o l e c u l a r s c i s 1,3-Cyclohexadiene 0 s i o n or bimolecular r e a c t i o n with 0 Benzene I to form 1-pentene, c y c l o p e n t a d i e n e , and o t h e r p r i m a r y p r o d u c t s as shown i n r e a c t i o n s 9 - 1 5 . T h e s e schemes a r e p a r t l y i n l i n e w i t h t h e one o f R u z i c k a and B r y c e ( 1 7 ) . D i s a g r e e m e n t s e x i s t i n t h a t (a) n e i t h e r m e t h y l c y c l o p e n t e n e n o r h y d r o g e n was d e t e c t e d , (b) f o r m a t i o n o f methane was n e g l i g i b l y s m a l l , and ( c ) a l l C5 com pounds w e r e o b t a i n e d a s p r i m a r y p r o d u c t s i n t h e p r e s e n t s t u d y a s compared t o f i n d i n g s o f R u z i c k a and B r y c e . Among t h e 0$ compounds p r o d u c e d , o n l y 1 , 3 , 5 - h e x a t r i e n e i s t h e primary product. R e a c t i o n 16 i s p r o p o s e d f o r i t s f o r m a t i o n . James and T r o u g h t o n (9^) o b t a i n e d e t h y l e n e and 1 , 3 , 5 - h e x a t r i e n e as t h e p r i m a r y p r o d u c t s i n t h e i r s t u d y on t h e r e a c t i o n o f d i a l l y l w i t h t h e e t h y l r a d i c a l a t 134 - 1 7 5 ° C . Furthermore, they o b t a i n e d 1 , 3 - c y c l o h e x a d i e n e as a s u c c e s s i v e p r o d u c t . R e c e n t l y O r c h a r d and T h r u s h (19) r e p o r t e d t h e t h e r m a l i s o m e r i z a t i o n o f 1 , 3 , 5 - h e x a t r i e n e t o 1 , 3 - c y c l o h e x a d i e n e a t c a . 400°C and t h e c o n s e c u t i v e f o r m a t i o n o f benzene a t c a . 550°C. In the present work, 1,3-cyclohexadiene ( r e a c t i o n 17) and b e n z e n e ( r e a c t i o n 18) w e r e o b t a i n e d a s t h e secondary p r o d u c t s . The h y d r o g e n atom p r o d u c e d i n r e a c t i o n s 1 2 , 16 and 18 i s c o n s i d e r e d t o r e a c t w i t h t h e p a r e n t m o l e c u l e i n two ways a s shown i n r e a c t i o n s 19 and 2 0 . T h e s e r a d i c a l s decompose t o p r o d u c e t h e a l l y l r a d i c a l and p r o p y l e n e i n r e a c t i o n 21 and t h e b u t e n y l r a d i c a l and e t h y l e n e i n r e a c t i o n 2 2 . R e a c t i o n 23 i s p r o p o s e d b e c a u s e C12 i h i g h e r compounds w e r e n o t i c e d i n the p r o d u c t s . Ρ· r e p r e s e n t s s u c h o l i g o m e r s . The t e r m i n a t i o n r e a c t i o n s a r e d e s c r i b e d by r e a c t i o n s 2 4 - 2 8 ; R« r e p r e sents a l l r a d i c a l species. The f a c t t h a t no c y c l o h e x e n e was d e t e c t e d i n t h e p r e s e n t e x periments suggests that the r a t e of c y c l i z a t i o n through D i e l s A l d e r r e a c t i o n b e t w e e n formed b u t a d i e n e and o l e f i n s i s s m a l l e r t h a n t h e r a t e o f c y c l i z a t i o n c a u s e d by t h e r e a c t i o n o f a l l y l r a d i c a l w i t h o l e f i n s at these temperatures. a n
-(V-r-—A—r
5 Conversion x,
°
C4H6
%
10
Product distribution OS. decomposition of DAO in excess ethylene
l i n e s obtained i n such r e l a t i o n s h i p correspond to the r a t e s of formation of the r e s p e c t i v e p r o d u c t s . The c o n c e n t r a t i o n s o f a l l y l r a d i c a l i n t h e p r e s e n t e x p e r i ments w e r e e s t i m a t e d by means o f t h e r a t e e q u a t i o n b e l o w . A second-order r a t e constant kg f o r recombination of a l l y l r a d i c a l t o d i a l l y l was a p p r o x i m a t e d t o be 5 . 0 x 1 0 ^ 1 / m o l - s e c by e x t r a p o l a t i o n f r o m t h e v a l u e r e p o r t e d by G o l d e n e t a l . ( 2 2 ) . The r a t e o f d i a l l y l f o r m a t i o n was o b t a i n e d f r o m t h e l i n e a r r e l a t i o n s h i p b e t w e e n t h e c o n c e n t r a t i o n o f d i a l l y l and t h e r e s i d e n c e t i m e a s mentioned above. This r a t e i s s u b s t i t u t e d i n the f o l l o w i n g equat i o n i n order to c a l c u l a t e the a l l y l r a d i c a l c o n c e n t r a t i o n . d[diallyl]/dt
=
k
0
[allyl-]
2
The c o n c e n t r a t i o n o f e t h y l e n e and t h e c a l c u l a t e d c o n c e n t r a t i o n o f a l l y l r a d i c a l w e r e employed i n t h e r e a c t i o n mechanism p o s t u l a t e d i n the preceeding s e c t i o n to estimate the o v e r a l l r a t e constants of the r e a c t i o n s of a l l y l r a d i c a l w i t h e t h y l e n e to produce both c y c l o p e n t e n e and 1 - p e n t e n e . Experimental r a t e s of formations of c y c l o p e n t e n e and 1 - p e n t e n e w e r e o f c o u r s e a l s o u s e d i n t h e s e c a l culations . E x p e r i m e n t a l e v i d e n c e i n d i c a t e s a d i s t i n c t d i f f e r e n c e between t h e r a t e o f f o r m a t i o n o f c y c l o p e n t e n e and t h a t o f 1 - p e n t e n e . Over-
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
174
INDUSTRIAL AND LABORATORY PYROLYSES
_ 8 Ο CD CO
.
0
•
1.30
1.35
1.40
(1/T)X10*
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
Figure 9. Arrhenius plots for the overall reaction of allyl radical with ethylene to cyclopentene and 1-pentene formation
Figure 10.
Energy diagram related to reaction of allyl radical with ethylene
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
10. SAKAI ET AL.
Formation of Aromatics
c=c-e-* + c = c «
30
175
JlrQ--^ »
£ ) +H.
c=c-c-c-e-*
-30
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
+ C=C
C=C-C-C-C + C=0
a l l r e a c t i o n r a t e c o n s t a n t s f o r the f o r m a t i o n s of c y c l o p e n t e n e and 1 - p e n t e n e s h o u l d be d i f f e r e n t i n t h e same manner. Moreover, the t e m p e r a t u r e d e p e n d e n c i e s o f t h e s e two o v e r a l l r a t e c o n s t a n t s a r e i l l u s t r a t e d i n F i g u r e 9 ; the o v e r a l l a c t i v a t i o n energy f o r the f o r m a t i o n o f c y c l o p e n t e n e and t h a t o f 1 - p e n t e n e w e r e f o u n d t o be 1 1 . 5 and 1 6 . 7 k c a l / m o l e , r e s p e c t i v e l y . The d i f f e r e n c e o f t h e s e two a c t i v a t i o n e n e r g i e s , i . e . , 5 k c a l / m o l e , c o r r e s p o n d s t o 4 k c a l / mole o b t a i n e d i n F i g u r e 5 f o r the r e a c t i o n of d i a l l y l i n e x c e s s ethylene. R e f e r r i n g t o t h e r e a c t i o n mechanism p o s t u l a t e d a b o v e , i t c a n be s a i d t h a t t h e r a t e - d e t e r m i n i n g s t e p o f t h e o v e r a l l r e a c t i o n i s not the a d d i t i o n r e a c t i o n of a l l y l r a d i c a l s to ethylene. Above a l l , t h e i m p o r t a n t f a c t i s t h a t a c t i v a t i o n e n e r g i e s o f 1 1 . 5 and 1 6 . 7 k c a l / m o l e w e r e needed f o r r e a c t i o n s t e p 33 o r 35 a n d t h a t of 34, r e s p e c t i v e l y . From t h e h e a t c o n t e n t o f s t a b l e a l l y l r a d i c a l (38 k c a l / m o l e ) and e t h y l e n e ( 1 2 . 5 k c a l / m o l e ) , t h e e n e r g y content of the r e a c t i o n i n t e r m e d i a t e which i s converted to c y c l o p e n t e n e and 1 - p e n t e n e i s n o t s m a l l e r t h a n 62 - 67 k c a l / m o l e . This h i g h energy content of the i n t e r m e d i a t e s t r o n g l y supports the p r e d i c t i o n of a hot 4 - p e n t e n y l r a d i c a l i n the p r e s e n t s t u d y . Step 33 p r o c e e d s r e a d i l y i n t h e c a s e o f h o t 4 - p e n t e n y l r a d i c a l a s s t a t e d i n t h e p r e c e e d i n g s e c t i o n . The same s i t u a t i o n e x i s t s f o r s t e p 34 b e c a u s e t h e h e a t c o n t e n t o f v i n y l r a d i c a l i s a s h i g h as 67 - 69 k c a l / m o l e ( 3 2 ) . T h u s , t h e e x i s t e n c e o f t h e h o t 4 - p e n t e n y l r a d i c a l was r e c o n f i r m e d d u r i n g t h e r e a c t i o n o f an a l l y l r a d i c a l with ethylene. F i g u r e 10 i l l u s t r a t e s t h e h e a t c o n t e n t s o f k e y r a d i c a l s s u c h as r e p o r t e d i n t h e l i t e r a t u r e ( 2 3 , 2 6 , 2 8 , 3 3 ) . A c t i v a t i o n energies obtained i n the present i n v e s t i g a t i o n f o r r e a c t i o n s s t a r t i n g from a l l y l r a d i c a l p l u s e t h y l e n e t o c y c l o p e n t e n e and 1 - p e n t e n e f o r m a t i o n f i t the diagram c o n s i s t e n t l y . This f i g u r e strongly supports t h e c o n c l u s i o n s t h a t i t i s i m p o s s i b l e t o p r o d u c e any l i n e a r ( c y c l i z e d ) C5 r a d i c a l s f r o m s t a b l e c y c l o p e n t y l ( 4 - p e n t e n y l ) r a d i c a l s , and t h a t , i n t h e c a s e o f t h e r e a c t i o n o f a n a l l y l r a d i c a l w i t h e t h y l e n e , i t i s p o s s i b l e t o p r o d u c e b o t h c y c l i z e d and l i n e a r C5 compounds a t t h e same t i m e .
Abstract A summary of rate data is given for the systematic study of the formation of cyclic compounds during thermal reactions of olefins or of olefins with butadiene. As a next step in order to investigate cyclization at pyrolysis conditions, the reactions of allyl radicals with olefins were studied kinetically. 1,5-Hexadiene (diallyl) and diallyl oxalate (DAO) were employed as source
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
176
INDUSTRIAL AND LABORATORY PYROLYSES
materials for allyl radical generation. Thermal reactions of pure d i a l l y l and of d i a l l y l or DAO i n the presence of excess ethylene were conducted at 430 - 700°C to obtain cyclopentene and other olefins. The rate of cyclopentene formation was relatively large, but C cyclic compounds were not found in appreciable amounts. The reaction mechanism is discussed kinetically for the formation of cyclopentene from an allyl radical and ethylene. 6
Literature Cited
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
(1)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Sakai, T., Soma, Κ., Sasaki, Y., Tominaga, H., Kunugi, T., "Advances i n Chemistry Series, No.97, Refining Petroleum for Chemicals", p.68, American Chemical Society, Washing ton, D.C., 1970. Sakai, T., Nakatani, T., Takahashi, Ν . , Kunugi, T., Ind. Eng. Chem., Fundam., (1972) 11, 529. Sakai, T., Wada, S., Kunugi, T., Ind. Eng. Chem., Process Design & Develop., (1971) 10, 305. Kunugi, T., Sakai, T., Soma, Κ., Sasaki, Υ . , Ind. Eng. Chem., Fundam., (1969) 8, 374. Kunugi, T., Sakai, T., Soma, Κ., Sasaki, Υ . , Kogyo Kagaku Zasshi, (1968) 71, 689. Kunugi, T., Sakai, T., Soma, Κ., Sasaki, Υ . , Ind. Eng. Chem., Fundam., (1970) 9, 314. Kunugi, T., Soma, Κ., Sakai, T., Ind. Eng. Chem., Fundam., (1970) 9, 319. Nohara, D., Sakai, T., Ind. Eng. Chem., Prod. Res. Develop., (1973) 12, 322. James, D.G.L., Troughton, G.E., Trans. Faraday Soc., (1966) 62, 145. McDowell, C.A., Sifniades, S., J. Am. Chem. Soc., (1962) 84, 4606. James, D.G.L., Kambanis, S.M., Trans. Faraday Soc., (1969) 65, 1350. Al-Sader, B . H . , Crawford, R.J., Can. J. Chem., (1970) 48, 2745. Vinokurov, D.M., Zabedenii, M . B . , Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol., (1963) 6, 83. Hougen, D.A., Watson, K.M., "Chemical Process Principles", p.884, J . Wiley, New York, 1943. H i l l , A . V . , Proc. Roy. Soc., Ser. A, (1930) 1279. Lossing, F.P., Ingold, K.N., Henderson, I . H . S . , J. Chem. Phys., (1954) 22, 621. Ruzicka, D.J., Bryce, W.A., Can. J. Chem., (1960) 38, 827. Akers, R.J., Throssell, J.J., Trans. Faraday Soc., (1967) 63, 124. Orchard, S.W., Thrush, B.A., J. Chem. Soc., Chem. Commun., (1973) (1) 14. Doering, W. von Ε., Gilbert, J.C., Tetrahedron, (1966) 22, Suppl. 7, 397, footnote 36.
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
10. SAKAI ET AL. (21) (22) (23) (24) (25)
Downloaded by CORNELL UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0032.ch010
(26) (27) (28) (29) (30) (31) (32) (33)
Formation of Aromatics
177
Homer, J.B., Lossing, F.P., Can. J. Chem., (1966) 44, 2211. Golden, D.M., Gac, N . A . , Benson, S.W., J. Am. Chem. Soc., (1969) 91, 2136. Gordon, A.S., Can. J. Chem., (1965) 43, 570. Palmer, T.F., Lossing F.P., Can. J. Chem., (1965) 43, 565. Shibatani, H., Kinoshita, H., Nippon Kagaku Kaishi, (1973) 336. Walsh, R., Int. J. Chem. Kinetics, (1970) 2, 71. Watkins, K.W., Olsen, D.K., J. Phys. Chem., (1972) 76, 1089. Stein, S.E., Rabinovitch, B.S., J. Phys. Chem., (1975) 79, 191. Rice, F.O., Murphy, M.T., J. Am. Chem. Soc., (1942) 64, 896. Vanas, D.W., Walters, W.D., J. Am. Chem. Soc., (1948) 70, 4035. Mackay, G . I . , March, R.E., Can. J. Chem., (1970) 48, 913. Benson, S.W., "Thermochemical Kinetics", pp.214-215, J. Wiley, New York, 1968. Gunning, H.Ε., Stock, R.L., Can. J. Chem., (1964) 42, 357.
Albright and Crynes; Industrial and Laboratory Pyrolyses ACS Symposium Series; American Chemical Society: Washington, DC, 1976.