Application of a Theory for Economic Assessment of Corrosion

Sep 25, 1986 - Damage to monuments and carved building stone has been observed and documented, both in this country and more extensively in Europe...
0 downloads 0 Views 2MB Size
29 Application of a Theory for Economic Assessment of Corrosion Damage 1,3

2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

Frederick W. Lipfert and Ronald E. Wyzga 1

Brookhaven National Laboratory, Upton, NY 11973 Electric Power Research Institute, Palo Alto, CA 94303

2

Deterioration of materials in the built environment is one of the considerations with regard to the justification for more stringent controls on anthropogenic pollution sources. There are both economic and aesthetic concerns involved: reduced service life of common construction materials is primarily an economic consideration, while irreversible damage to art objects and historic buildings has a strong emotional context as well. Damage to monuments and carved building stone has been observed and documented, both in this country and more extensively in Europe. Sorting out cause and effect, i.e., separating "natural" weathering from pollution-induced damage involves use of planned experiments to develop damage functions, either in the field or under laboratory conditions. Most of our knowledge of the deterioration of building materials comes from such experiments, which have usually been performed on standard test configurations rather than on actual building components. The current capability for economic assessment of materials damage then depends heavily on the extrapolation of test conditions to the real world. The real world of today's built environment differs from both current and past testing conditions in many important ways. It is the purpose of this paper to explore these differences on a theoretical basis and to consider whether the concomitant uncertainties in the prediction of reduced service lives are tractable and whether important biases are involved. The general problems of forecasting materials damage from both air pollution and acid precipitation have been considered before in previous papers (1-2). This previous work focussed on zinc as a paradigm for all materials at risk, and considered uncertainties in damage functions, variability in atmospheric conditions over space and time, and the general problem of inventorying the materials at risk. An important topic in these previous papers was whether the interaction between SO ambient concentrations and relative humidity (RH) would require the consideration of time scales 2

Current address: 707 Continental Circle, Mountain View, CA 94040

3

0097-6156/86/0318-0411$06.00/ 0 © 1986 American Chemical Society

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

412

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

shorter than a n n u a l a v e r a g e s , i n o r d e r to a c c u r a t e l y predict c o r r o s i o n l o s s e s , s i n c e SC>2 d e p o s i t s more r e a d i l y on wet surfaces (high humidity), Wyzga and L i p f e r t (2) c o n c l u d e d t h a t S0 -RH i n t e r a c t i o n s d i d i n f a c t e x i s t and t h a t they were v a r i a b l e i n magnitude among the l o c a t i o n s c o n s i d e r e d . T h e i r r e s u l t s show t h a t the e r r o r i n c u r r e d i n n e g l e c t i n g these i n t e r a c t i o n s i s g e n e r a l l y l e s s than 10%, and t h e r e f o r e a n n u a l averages are l i k e l y to be a c c e p t a b l e when o t h e r s o u r c e s of u n c e r t a i n t y are c o n s i d e r e d .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

2

The research being performed to support the National Acid Precipitation Assessment Program (NAPAP) has also led to considerable progress w i t h regard to the o t h e r problem a r e a s mentioned above. Damage f u n c t i o n s have been developed by a n a l y z i n g experimental d a t a w h i c h d e l i n e a t e the s e p a r a t e e f f e c t s of dry d e p o s i t i o n of SO2 from those of wet d e p o s i t i o n of a c i d i t y (Η"."), not o n l y f o r m e t a l s (3^ but f o r p a i n t s ( 4 ) and c a l c a r e o u s s t o n e s ( 5 ) . The spatial variability of relative humidity and thus t i m e - o f - w e t n e s s has been a n a l y z e d (6) and p r e d i c t i o n a l g o r i t h m s d e v e l o p e d w h i c h i n c o r p o r a t e urban h e a t i s l a n d e f f e c t s , based on the a r e a l d e n s i t y of b u i l d i n g s . Thus i t i s now p o s s i b l e to p r e d i c t r e l a t i v e humidity s p a t i a l gradients w i t h i n a metropolitan area. Such g r a d i e n t s ( l o w e r h u m i d i t y and thus f r a c t i o n of wet time i n city centers compared t o o u t l y i n g a r e a s ) have the e f f e c t of r e d u c i n g the g r a d i e n t s i n the c o r r o s i o n e f f e c t s of a i r p o l l u t i o n ( p r i m a r i l y SO2)» when a i r c o n c e n t r a t i o n p a t t e r n s are c o n v e r t e d to deposition patterns. B e t t e r methods f o r m a t e r i a l s i n v e n t o r y i n g have been developed based on s t r a t i f i e d random s a m p l i n g (7) and have been c a r r i e d out i n f o u r Northeastern c i t i e s (8). A n a l y s i s of these d a t a , f o r a b o u t 1100 b u i l d i n g s i n t o t a l , has shown p r e d i c t a b l e p a t t e r n s i n m a t e r i a l usage f o r the major b u i l d i n g m a t e r i a l s , and e x t r a p o l a t i o n methods have been developed based on the 1980 Census of Housing and b u i l d ­ i n g counts )· S i n c e the overwhelming number of s t r u c t u r e s i n the U.S. a r e r e s i d e n t i a l , use of a b u i l d i n g count i n v e n t o r y basis i n s u r e s a r e a l i s t i c b a s i s f o r e s t i m a t i n g the t o t a l exposed s u r f a c e a r e a of a l l m a t e r i a l t y p e s , w i t h the p r i n c i p a l r e m a i n i n g u n c e r t a i n ­ t i e s stemming from the p r o b a b i l i t i e s of use of s p e c i f i c m a t e r i a l s , e s p e c i a l l y those used i n s m a l l q u a n t i t i e s such as marble, g a l v a n i z ­ ed s t e e l , or copper. T h i s paper then r e t u r n s to the i s s u e of u s i n g damage f u n c t i o n s t o p r e d i c t reduced s e r v i c e l i v e s of common b u i l d i n g m a t e r i a l s or the p r o b a b i l i t y of i r r e v e r s i b l e damage to c u l t u r a l r e s o u r c e s . The p r i m a r y i s s u e i s the a p p l i c a b i l i t y of the r e s u l t s of c o n t r o l l e d l a b o r a t o r y and f i e l d e x p e r i m e n t s to a c t u a l c o n d i t i o n s i n the r e a l world. The f a c t o r s to be c o n s i d e r e d a r e : • • • •

atmospheric v a r i a b i l i t y e f f e c t s of s c a l e e f f e c t s of c o n f i g u r a t i o n i n t e r a c t i o n s between p o l l u t a n t s and

atmospheric c o n d i t i o n s .

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

LIPFERT A N D WYZGA

Application of Economic Assessment Theory

413

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

These f a c t o r s a l l r e l a t e to boundary l a y e r theory and b e h a v i o r , e i t h e r the a t m o s p h e r i c boundary l a y e r w h i c h governs m e t e o r o l o g i c a l b e h a v i o r , o r the boundary l a y e r s on the s u r f a c e s of the o b j e c t s a t r i s k , w h i c h c o n t r o l the d e l i v e r y o f c o r r o s i v e m a t e r i a l s t o those surfaces. We w i l l use boundary l a y e r theory as a t o o l t o t r y to g a i n a more d e t a i l e d u n d e r s t a n d i n g o f a t m o s p h e r i c e f f e c t s on corrosion. We i n t e n d to e x p l o r e the concept o f a damage f u n c t i o n as a t h e o r e t i c a l e x p r e s s i o n i n c o r p o r a t i n g both a t m o s p h e r i c b e h a v i o r and chemic a l r e a c t i o n s on the s u r f a c e , r a t h e r than j u s t an e m p i r i c a l c o r r e l a t i o n of t e s t r e s u l t s . P r e v i o u s c o n s i d e r a t i o n s o f the aerodynamics of gaseous d e p o s i t i o n i n c l u d e L i v i n g s t o n ' s a n a l y s i s as a p p l i e d to stone ( 1 0 ) , w h i c h o u t l i n e d many of the concepts p r e s e n t ed h e r e , and Haynie's a n a l y s i s (11) o f z i n c , which emphasized p o t e n t i a l f l o w e f f e c t s and the s t o i c h i o m e t r y o f the z i n c - s u l f u r reaction. T h i s a n a l y s i s i s intended to be g e n e r a l and to draw on the t h e o r e t i c a l methods t h a t a r e a v a i l a b l e f o r many p r a c t i c a l s i t u a t i o n s , i n o r d e r to examine p o s s i b l e b i a s e s i n c u r r e n t a s s e s s ment methods. The p r i m a r y emphasis i s on ( d r y ) d e p o s i t i o n o f gaseous p o l l u t a n t s ( S 0 2 ) ; some thoughts a r e a l s o g i v e n on c o r r o s i o n due to (wet) a c i d i c p r e c i p i t a t i o n . Boundary L a y e r Concepts The concept o f a "boundary l a y e r " w i t h r e s p e c t to the motion o f a f l u i d o v e r a s o l i d body was f i r s t expressed by P r a n d t l i n 1904 ( 1 2 ) , i n w h i c h he e s t a b l i s h e d t h a t the i n f l u e n c e o f f l u i d f r i c t i o n i s l i m i t e d to a very t h i n l a y e r i n the immediate v i c i n i t y o f the body, o u t s i d e o f w h i c h f l u i d f r i c t i o n may be n e g l e c t e d . Subsequent developments have e s t a b l i s h e d the s i m i l a r i t y between f o r c e d convect i v e heat t r a n s f e r and f l u i d f r i c t i o n , and between mass t r a n s f e r and heat t r a n s f e r . D e p o s i t i o n o f (gaseous) p o l l u t a n t s i s an example o f mass t r a n s f e r , and can be d e s c r i b e d by these same boundary l a y e r c o n c e p t s . The a t m o s p h e r i c ( o r p l a n e t a r y ) boundary l a y e r p r o p e r t i e s p r i m a r i l y r e f l e c t the e f f e c t s o f o b j e c t s on the e a r t h ' s s u r f a c e i n o b s t r u c t i n g the wind f l o w s s e t up by p r e s s u r e g r a d i e n t s and o t h e r m e t e o r o l o g i c a l forces. We must t h e r e f o r e c o n s i d e r n o t o n l y the d e t a i l s o f wind f l o w s around b u i l d i n g s , s t a t u e s , monuments, e t c . , but a l s o e f f e c t s o f these o b j e c t s ( u s u a l l y i n l a r g e a g g l o m e r a t i o n s ) on the a t m o s p h e r i c s t r u c t u r e o f the wind f l o w p e r s e . The Atmospheric Boundary L a y e r . The a t m o s p h e r i c boundary l a y e r can be l o o s e l y d e f i n e d as t h a t p o r t i o n o f the lower atmosphere w h i c h manifests the e f f e c t s o f s u r f a c e f e a t u r e s i n i n f l u e n c i n g wind flow. I t o f t e n extends up to h e i g h t s o f the o r d e r o f 1 km o r t o the h e i g h t o f the m i x i n g l a y e r , above w h i c h the thermal p r o p e r t i e s of the atmosphere may e f f e c t i v e l y i n s u l a t e i t from ground e f f e c t s . The a t m o s p h e r i c boundary l a y e r i s the c a r r i e r f o r p o l l u t a n t s t h a t a f f e c t c o r r o s i o n . There a r e s e v e r a l p r o p e r t i e s o f the a t m o s p h e r i c boundary l a y e r o f c o n c e r n here:

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

414

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

• •



The

the v e l o c i t y d i s t r i b u t i o n w i t h i n the l a y e r the temperature d i s t r i b u t i o n w i t h i n the l a y e r , which w i l l govern the t u r b u l e n c e i n t e n s i t y and hence the d i s p e r s i o n of p o l l u t a n t s as they a r e r e l e a s e d from sources the d i s t r i b u t i o n o f p o l l u t a n t s w i t h i n the l a y e r , which w i l l be a f f e c t e d by t h e i r r e l e a s e h e i g h t s as w e l l as by the above two f a c t o r s .

v e l o c i t y d i s t r i b u t i o n i s o f t e n g i v e n by the r e l a t i o n

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

u/u. =

(Vk)

.n ( z / z + 1)

(1)

0

where u i s the l o c a l v e l o c i t y , u . i s the f r i c t i o n v e l o c i t y g i v e n by N/T/P ( s h e a r s t r e s s / d e n s i t y ) 1/2 ^ ± the von Karman c o n s t a n t , ζ i s the h e i g h t above ground, and z i s the c h a r a c t e r i s t i c roughness h e i g h t o f the s u r f a c e . F o r g r a s s l a n d , z may be of the order o f 1 cm; f o r a suburban neighborhood, perhaps 1 m. Note t h a t z i s determined from v e l o c i t y p r o f i l e measurements and n o t from the p h y s i c a l s i z e of o b j e c t s on the ground. Standard N a t i o n a l Weather S e r v i c e (NWS) wind measurements a r e o f t e n r e f e r e n c e d to a h e i g h t o f 10 m, i n which case the e q u a t i o n above may be used to develop wind speed r a t i o s (u/u @10m), c a n c e l l i n g o u t the u . f a c t o r . The t u r b u ­ l e n c e i n t e n s i t y w i l l be h i g h e s t near the ground, and can be e s t i ­ mated from 9

s

Q

Q

Q

Tu - k/ίη ( z / z +1)

(2)

0

There a r e two r e f e r e n c e h e i g h t s above ground of i n t e r e s t to t h i s a n a l y s i s : f i r s t , the h e i g h t a t which s t a n d a r d c o r r o s i o n t e s t s a r e u s u a l l y made, about 1 m. Secondly, the a p p r o p r i a t e average h e i g h t f o r b u i l d i n g s o r s t r u c t u r e s t o which these t e s t r e s u l t s may be applied: • • •

r e s i d e n t i a l b u i l d i n g s , say fences n o n - r e s i d e n t i a l b u i l d i n g s or s t r u c t u r e s

3 m 0.5-1 m 3-30 m

As an i l l u s t r a t i o n of these wind speed v a r i a t i o n s , T a b l e I p r e s e n t s sample c a l c u l a t i o n s f o r the three c l a s s e s o f s t r u c t u r e s and two (extreme) v a l u e s of z . We see t h a t the u r b a n - r u r a l v a r i a t i o n s a r e the most extreme f o r s m a l l e r o b j e c t s . Note a l s o t h a t i n an urban a r e a w i t h r e g u l a r l y and c l o s e l y spaced b u i l d i n g s , wind flow p a t t e r n s w i l l be h i g h l y i r r e g u l a r , depending on d i r e c t i o n w i t h r e s p e c t t o s t r e e t o r i e n t a t i o n , f o r example ( F i g u r e 1 ) . The d r a m a t i c i n c r e a s e i n t u r b u l e n c e i n t e n s i t y i n urban areas i s a l s o shown. 0

The d i s t r i b u t i o n and d i s p e r s a l o f p o l l u t a n t s w i t h i n the atmospheric boundary l a y e r have been t h o r o u g h l y d i s c u s s e d elsewhere, and w i l l not be e l a b o r a t e d here. Boundary L a y e r s on S t r u c t u r e s . A l l o b j e c t s immersed i n the atmos­ p h e r i c boundary l a y e r p e r t u r b i t s f l o w i n some way. A new boundary

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

LIPFERT AND

WYZGA

Application of Economic Assessment Theory

415

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

l a y e r i s formed on each s t r u c t u r e by t h i s f l o w , and the c h a r a c t e r i s t i c s of t h i s boundary l a y e r govern the t r a n s f e r of momentum, h e a t , and mass from the atmosphere to the s t r u c t u r e (and v i c e v e r s a ) . One of the i m p o r t a n t c h a r a c t e r i s t i c s i s the p h y s i c a l s c a l e of the o b j e c t or s t r u c t u r e b e i n g c o n s i d e r e d , as w e l l as i t s shape and s u r f a c e roughness ( t e x t u r e ) . T h i s i s t r u e not o n l y f o r i s o l a t e d o b j e c t s but f o r a g g l o m e r a t i o n s ( c i t i e s , f o r e s t s ) , which may i n t u r n have a l a r g e i n f l u e n c e on the s c a l e of a t m o s p h e r i c t u r b u l e n c e as w e l l as i t s magnitude. A w e l l developed theory ( 1 2 ) i s a v a i l a b l e to d e a l w i t h s i m p l e s i t u a t i o n s : f l o w a l o n g a f l a t p l a t e , around a c y l i n d e r or s p h e r e , o v e r an a i r f o i l , e t c . B l u n t o b j e c t s such as b u i l d i n g s are g e n e r a l l y handled e m p i r i c a l l y . F i g u r e 2 d e p i c t s the perturbations c r e a t e d by boundary l a y e r f l o w s whose s u r f a c e c h a r a c t e r i s t i c s d i f f e r from those of the u n p e r t u r b e d atmosphere nearby or upstream: Momentum: the r e q u i r e m e n t of zero f l o w v e l o c i t y a t the s u r f a c e c r e a t e s a shear s t r e s s or drag on the o b j e c t due to s k i n f r i c t i o n ( C ^ ) ; Heat t r a n s f e r : i f the s u r f a c e temperature from the stream temperature, heat w i l l f l o w ;

differs

Mass t r a n s f e r : i f the c o n c e n t r a t i o n of some component of the f l o w d i f f e r s a t the s u r f a c e , e i t h e r because of i n j e c t i o n i n t o the boundary l a y e r or because of removal from the s t r e a m , mass w i l l f l o w . An analogy (due to R e y n o l d s ) has been p o s t u l a t e d r e l a t i n g these three f l u x terms, which has been v e r i f i e d by numerous c l a s s i c a l experiments, u s u a l l y under c o n d i t i o n s w h i c h a r e mathematically t r a c t a b l e . Our i n t e r e s t s here are w i t h removal from the a i r stream of p o l l u t a n t s , which i n t u r n r e a c t w i t h the s u r f a c e and cause c o r r o s i o n . T h i s process i s r e f e r r e d to as dry d e p o s i t i o n , a l t h o u g h the presence of a l i q u i d (water) f i l m on the s u r f a c e i s e s s e n t i a l f o r r a p i d removal of s o l u b l e gases such as SO2. The presence of such a f i l m c o u l d r e q u i r e a t w o - l a y e r a n a l y s i s i n c l u d i n g phase changes, which i s beyond the scope of t h i s p r e l i m i n a r y i n q u i r y . R e y n o l d s ' a n a l o g y a l l o w s e s t i m a t e s to be made of SO2 d e p o s i t i o n v e l o c i t y (V^) based on heat t r a n s f e r or s k i n f r i c t i o n t e s t s ( o r t h e o r y ) , of w h i c h the l i t e r a t u r e abounds. I n so d o i n g , one must r e a l i z e t h a t such a c a l c u l a t i o n d e a l s only w i t h the d e l i v e r y of p o l l u t a n t to the s u r f a c e , through d i f f u s i o n . I f we assume t h a t the c o n c e n t r a t i o n i s zero a t the s u r f a c e ( p e r f e c t a b s o r p t i o n ) , we have t a c i t l y assumed t h a t the p h y s i c a l c h e m i s t r y i s not l i m i t i n g , w h i c h w i l l o n l y be the case w i t h r e a c t i v e m a t e r i a l s such as z i n c or calcareous stones. For l e s s r e a c t i v e m a t e r i a l s , the s u r f a c e conc e n t r a t i o n i n the p o l l u t a n t p r o f i l e may not be z e r o , l e a d i n g to an i n t e r a c t i o n between p h y s i c a l and c h e m i c a l p r o c e s s e s . Such a s i t u a t i o n may occur i f the pH i n the l i q u i d f i l m drops too low to p e r m i t a d d i t i o n a l SO2 d i s s o l u t i o n , as g i v e n by Henry's law. B u f f e r i n g of the f i l m w i t h c o r r o s i o n products can prevent t h i s from

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

416

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

Skin f r i c t i o n shear s t r e s s :

Heat t r a n s f e r :

Mass t r a n s f e r : F i g u r e 2. Boundary l a y e r p r o f i l e s on a f l a t p l a t a l i g n e d w i t h the a i r stream.

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

LIPFERT AND

WYZGA

Application of Economic Assessment Theory

417

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

happening ( a t modest SO2 gas c o n c e n t r a t i o n s ) . T h i s c o u l d a l s o be the case f o r m a t e r i a l s such as copper or aluminum which tend to b u i l d - u p p r o t e c t i v e s u r f a c e l a y e r s o v e r time. However, those m a t e r i a l s of most i n t e r e s t are i n f a c t the s e n s i t i v e ones w h i c h e i t h e r do not b u i l d up a p r o t e c t i v e l a y e r or whose c o r r o s i o n p r o d u c t s are r e a d i l y s o l u b l e a t the pH v a l u e s encountered i n precipitation. However, we s h o u l d always e x p e c t the d e p o s i t i o n v e l o c i t y d e r i v e d from boundary l a y e r theory to be somewhat l a r g e r than observed i n p r a c t i c e ( n e g l e c t i n g measurement e r r o r s ) . Since the p h y s i c a l c h e m i s t r y l i m i t a t i o n s should be independent of s i z e and shape of the o b j e c t i n q u e s t i o n , we may use boundary l a y e r c a l c u l a t i o n s to i n d i c a t e the r e l a t i v e c h a r a c t e r i s t i c s of d i f f e r e n t s i t u a t i o n s . Boundary l a y e r p r o p e r t i e s ( g o v e r n i n g mass t r a n s f e r c o e f f i c i e n t s , f o r example) are m o s t l y s t r o n g l y i n f l u e n c e d by the t r a n s i t i o n from l a m i n a r to t u r b u l e n t flow ( F i g u r e 3 ) . On a f l a t p l a t e a t low t u r b u l e n c e , such t r a n s i t i o n o c c u r s n a t u r a l l y a t R e y n o l d s numbers between 3.5 χ 1 0 and 1 0 (12). For a i r flow a t 20°C and 5 m/s, t h i s corresponds to p l a t e l e n g t h s between 1.1 and 3.1 m. Freestream t u r b u l e n c e and roughness of the s u r f a c e can reduce these v a l u e s under c e r t a i n c o n d i t i o n s . These two parameters can a l s o a l t e r heat t r a n s f e r and s k i n f r i c t i o n and thus mass t r a n s f e r ( a c c o r d i n g to R e y n o l d s ' a n a l o g y ) . However, a c c o r d i n g to s t a b i l i t y theory ( 1 2 ) , a t Reynolds numbers below about 6x10^ ( a b o u t 3 cm. i n l e n g t h under the c o n d i t i o n s a b o v e ) , t r a n s i t i o n to t u r b u l e n t f l o w cannot b e g i n , s i n c e t u r b u l e n c e d i s t u r b a n c e s i n the boundary l a y e r w i l l d i e out. 1

5

6

Atmospheric t u r b u l e n c e near the e a r t h ' s s u r f a c e i s g e n e r a l l y much h i g h e r ( T a b l e I ) than found i n most wind t u n n e l s (up to about 2 % ) . U n f o r t u n a t e l y , very few heat or mass t r a n s f e r t e s t s have been performed under n a t u r a l outdoor c o n d i t i o n s . S u r f a c e roughnesses of p r a c t i c a l s t r u c t u r e s of i n t e r e s t may a l s o d e v i a t e from l a b o r a t o r y c o n d i t i o n s , a l t h o u g h boundary l a y e r theory may be used to compute c r i t i c a l roughness s i z e s and maximum p e r m i s s i b l e roughnesses, below

Table I. Average Wind V e l o c i t i e s and T u r b u l e n c e I n t e n s i t i e s f o r R u r a l and Urban C o n d i t i o n s Uoo = 5 m/s (measured a t 10 m) L o c a l Wind V e l o c i t y (m/s)

z Residence Fence Large B u i l d i n g

Q

Rural = 1cm. 4.15 3.15 5.45

z

Urban « lm. Q

2.9 1.15 6.15

L o c a l Turbulence Intensity(%)

z

Rural « 1cm. Q

7.0 9.2 5.3

z

Urban = lm. 0

29.0 71.0 13.6

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

418

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

w h i c h the s u r f a c e i s s a i d to be " h y d r a u l i c a l l y smooth." T a b l e I I p r e s e n t s some of these v a l u e s f o r s u r f a c e s of i n t e r e s t f o r con­ s t r u c t i o n m a t e r i a l s s e n s i t i v e to a t m o s p h e r i c c o r r o s i o n or a t t a c k . Note t h a t s i n c e such a t t a c k may enhance s u r f a c e roughness, i t may a c t u a l l y a c c e l e r a t e the p r o c e s s of c o r r o s i o n .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

Table I I . A.

S u r f a c e Roughness Data

T y p i c a l b u i l d i n g m a t e r i a l s u r f a c e roughness Smooth stone Paint Galvanized s t e e l Weathered stone Corrugated s i d i n g Carved stone

0.005 0.1 0.15 1.0 25 150

(mm)

0.01

B.

A d m i s s i b l e roughness, below which s u r f a c e i s " h y d r a u l i c a l l y smooth": 0.33mm

C.

Roughness s i z e c r e a t i n g t r a n s i t i o n from l a m i n a r (u^=5 m/s): 3mm

turbulent

Note t h a t the s u r f a c e roughnesses a s s o c i a t e d w i t h smooth s t o n e , g a l v a n i z e d s t e e l , and p a i n t e d s u r f a c e s are " h y d r a u l i c a l l y smooth", t h a t i s they s h o u l d have no s u b s t a n t i a l e f f e c t s on boundary p r o f i l e s and hence d e p o s i t i o n v e l o c i t y . Between 0.33 and 3mm, t r a n s i t i o n from l a m i n a r to t u r b u l e n t f l o w may o c c u r , depending on the Reynolds number.

Reynolds Analogy f o r Heat and Mass T r a n s f e r . For a f l a t p l a t e , t o t a l f r i c t i o n a l drag = b T (x)dx where b = w i d t h of the p l a t e , ί = l e n g t h of the p l a t e , and the t o t a l heat t r a n s f e r r e d Q - b/ « q(x)dx. Q

o

I f Ρ ( P r a n d t l number) =

« 1

(3)

k

then JL dy

Define

= X

u

°o

7

( 4 )

8y

too-tw

the N u s s e l t number Ν =

kit^-O

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

Application of Economic Assessment Theory

LIPFERT A N D WYZGA

then

N

x

= 1/2 R C f

1

forΡ = 1

x

f o r Ρ φ 1, and

N = 1/2 NJJ = 1/2

419

3

x

N/P R e C f . ( l o c a l heat t r a n s f e r ) N/P Re$Cf ( t o t a l heat t r a n s f e r ) . x

3

Note: r e l a t i o n s h i p s e x i s t f o r both l a m i n a r and t u r b u l e n t f l o w d e f i n i n g the s k i n f r i c t i o n c o e f f i c i e n t Cf a s a f u n c t i o n o f Reynolds number ( R e ) . For mass t r a n s f e r , the Schmidt number ( S c ) r e p l a c e s the P r a n d t l number, d e f i n e d as S = γ / D , where D i s the mass ( m o l e c u l a r ) diffusion coefficient. F o r SO2 d i f f u s i n g i n a i r , S - 1.18. A mass t r a n s f e r c o e f f i c i e n t i s d e f i n e d as c

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

c

J

k 2/3 = (—) S

(5)

c

where k i s the r a t i o between mass f l u x (m) and c o n c e n t r a t i o n g r a d i e n t (8C/9y). k i s thus seen to be d e f i n e d i d e n t i c a l l y to the "deposition velocity" V used i n a t m o s p h e r i c s c i e n c e p a r l a n c e . However, note t h a t i t i s n o t expected to be a c o n s t a n t , but d i r e c t ­ l y p r o p o r t i o n a l t o the f r e e stream ( f o r a t m o s p h e r i c boundary layers, local) velocity. A c c o r d i n g to Reynolds a n a l o g y , j for mass t r a n s f e r i s n u m e r i c a l l y e q u i v a l e n t to the S t a n t o n number ( S t ) i n heat t r a n s f e r : d

D

2/3 - StP ;

j

Nu St -

D

(6) RePr

Thus, S t -

1 - C , and j 2 D f

Simplifying, V / d

U o o

-

1 2

V - _

2/3

d

S

c

"oo

1 2 / 3 » - Cf P r 2

P r 2/3 C (_)

(8)

f

SQ

F o r S 0 i n a i r , V^/u^ = 0.36 C f , p r o v i d i n g a means d e p o s i t i o n v e l o c i t i e s from boundary l a y e r theory o r r e s u l t s from f i r s t p r i n c i p l e s . 2

(7)

to e s t i m a t e experimental

A p p l i c a t i o n o f Boundary L a y e r Theory t o C o r r o s i o n T e s t i n g Chamber T e s t s . Edney and h i s coworkers (14) have conducted some i n t e r e s t i n g t e s t s u s i n g a r e c t a n g u l a r f l o w channel through w h i c h v a r i o u s h u m i d i f i e d p o l l u t e d a i r m i x t u r e s a r e passed, w i t h c o r r o s i o n t e s t samples mounted on the s i d e w a l l s and equipped w i t h a c h i l l i n g system t o induce c o n d e n s a t i o n and hence a b s o r p t i o n o f SO2 on the t e s t samples. T h e i r t e s t c o n d i t i o n s a r e about 3 m/s a i r f l o w through a d u c t 13 χ 13 cm. i n c r o s s - s e c t i o n . There i s a s m a l l e r d u c t s e c t i o n upstream. A c c o r d i n g to p i p e flow r e s u l t s , the f l o w s h o u l d be t u r b u l e n t under these c o n d i t i o n s b u t n o t f u l l y deve-

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

420

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

l o p e d . T u r b u l e n t flow over a f l a t p l a t e i s p r o b a b l y an a p p r o p r i a t e model f o r t h i s s i t u a t i o n . The f i r s t sample i n l i n e a l o n g the w a l l s h o u l d see a Reynolds number of about 2.7 χ 1 0 ; the l a s t one, about 3.2 χ 1 0 . A t the l a s t s t a t i o n , Cf s h o u l d be about 0.0056, and thus the d e p o s i t i o n v e l o c i t y should be 0.63 cm/sec. The e a r l i e r s t a t i o n s should have higher values. Edney e t a l . r e p o r t a measured V v a l u e o f 0.9 cm/sec ( 1 4 ) . T h i s h i g h e r v a l u e c o u l d e i t h e r be a r e s u l t of i n c r e a s e d t u r b u l e n c e i n t h i s p a r t i c u l a r f l o w system or the e f f e c t s of lower Reynolds numbers a t the more upstream t e s t p o s i t i o n s . In any e v e n t , t h i s comparison i n d i c a t e s t h a t , under these c o n d i t i o n s , the f l u x of SO2 to the s u r f a c e appears to be c o n t r o l l e d by the " a t m o s p h e r i c " r e s i s t a n c e , and i s a p p a r e n t l y not l i m i t e d by uptake on the s u r f a c e . 4

5

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

d

Outdoor T e s t s . One s t a n d a r d p r o t o c o l f o r atmospheric c o r r o s i o n t e s t i n g i s to mount s m a l l r e c t a n g u l a r p l a t e s (1.6 χ 2.4 cm) on a t e s t rack a t about 30° from h o r i z o n t a l , about 3 f e e t o f f the ground, u s u a l l y f a c i n g s o u t h ( F i g u r e 4 ) . The t e s t p l a t e s a r e h e l d o f f the rack by p o r c e l a i n i n s u l a t o r s , and a l t h o u g h s t r i c t l y speak­ i n g a new boundary l a y e r s h o u l d form on each p l a t e , there may be some p o s i t i o n a l d i f f e r e n c e s i n c o r r o s i o n r a t e due to t u r b u l e n c e c r e a t e d by the p l a t e s f i r s t encountered by the wind f l o w . For a c l a s s i c a l l a m i n a r f l o w s i t u a t i o n ,

C

=

f

1.328 , >/

R

e

(9)

. - 1

2

and thus V / u = .478 R e ^ / T a k i n g the average p l a t e dimension a t 2 y i e l d s Vrf/u^ « 0.00244. For u « 5 m/s, d

0 0

w

cm., V - 1.22 d

cm/sec.

E x p e r i m e n t a l t e s t s i n the outdoor atmosphere (16) ( s i m u l a t e d s o l a r c o l l e c t o r s ) found s u b s t a n t i a l l y h i g h e r heat t r a n s f e r c o e f f i c i e n t s than p r e d i c t e d by l a m i n a r theory or than measured i n a wind t u n n e l , presumably because of the h i g h e r t u r b u l e n c e l e v e l s encountered. The r e l a t i o n s h i p was a p p r o x i m a t e l y JD

2.0

St «

= Pr2/3

V

d

- 3.7

, or V / d

U o o

- 0.00736.

For

U i m p l y i n g no chemic a l surface resistance. However, i n the case of outdoor t e s t s , t h i s c o n c l u s i o n i s c o n d i t i o n a l on the d e p o s i t i o n v e l o c i t y . A p p l i c a t i o n of Boundary L a y e r Theory to B u i l d i n g s The assessment q u e s t i o n of c o n c e r n here i s the a p p l i c a t i o n of these t e s t r e s u l t s to r e a l b u i l d i n g s . Use of damage f u n c t i o n s such as developed by L i p f e r t e t a l . (3) o r Haynie (4_) i m p l i e s a d i r e c t 1:1 correspondence r e g a r d l e s s of s i z e or c o n f i g u r a t i o n , i n a d d i t i o n to the a s s u m p t i o n t h a t the time-of-wetness (presence of l i q u i d f i l m ) w i l l be u n a f f e c t e d by s i z e , shape, or s u r f a c e o r i e n t a t i o n . R e c t a n g u l a r Shapes. The f l o w around a b u i l d i n g i s h i g h l y dependent on i t s s i t u a t i o n w i t h r e s p e c t to n e i g h b o r i n g b u i l d i n g s . An i s o l a t ed b u i l d i n g p r e s e n t s a b l u n t o b s t a c l e to the wind: the f r o n t f a c e w i l l see s t a g n a t i o n p o i n t f l o w , w h i c h w i l l s e p a r a t e around the f r o n t c o r n e r s and r e a t t a c h a t the back c o r n e r s . The r e a r f a c e w i l l be i n a c a v i t y zone ( F i g u r e 1 ) . Flow around the b u i l d i n g a t a 45° a n g l e w i l l be l e s s c h a o t i c . S i n c e d u r i n g the course of a y e a r , a i l of these s i t u a t i o n s may be expected a l o n g each of the b u i l d i n g f a c a d e s , one might t r y to deduce some s o r t of average c o n d i t i o n s . However, s u r f a c e maintenance a c t i o n s may be t r i g g e r e d by the w o r s t case l o c a t i o n , such as a c o r n e r . In c o n t r a s t , b u i l d i n g s a l i g n e d s u f f i c i e n t l y close together along s t r e e t s w i l l a c t as a q u a s i - c o n t i n u o u s f l a t p l a t e , and indeed may c h a n n e l the wind flow i n t h i s way and cause l o c a l i n c r e a s e s i n wind speed. The t r a i l i n g and l e a d i n g edges of the b l o c k would tend to see somewhat d i f f e r e n t boundary l a y e r c o n d i t i o n s ; p e r s i s t e n t wind d i r e c t i o n would be an i m p o r t a n t c o n s i d e r a t i o n . We were u n a b l e t o f i n d i n the l i t e r a t u r e any t e s t data of b l u n t b u i l d i n g - l i k e shapes a t s u f f i c i e n t l y h i g h Reynolds numbers to s i m u l a t e r e a l b u i l d i n g s . We d i d f i n d t e s t s of s m a l l square p r i s m s i n a wind t u n n e l (low t u r b u l e n c e ) , (17) and outdoor t e s t s w i t h

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

LIPFERT A N D WYZGA

423

Application of Economic Assessment Theory

n a t u r a l t u r b u l e n c e f o r s m a l l spheres ( 1 8 ) . Comparison of these two s e t s of t e s t s may be u s e f u l . The t e s t s on p r i s m s were c a r r i e d out a t v a r i o u s f l o w a n g l e s a t Reynolds numbers up to 5.6 χ 1 0 . In contrast, real buildings would have Reynolds numbers g r e a t e r than 10^· The h i g h e s t l o c a l heat t r a n s f e r (and by a n a l o g y , mass t r a n s f e r ) occured a t the r e a r c o r n e r s . The average heat t r a n s f e r was g i v e n by: 4

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

Nu

m

= 0.27 R e

By a n a l o g y ,

V / d

0 , 5 9

, o r S t - 0.375 R e "

Ρ 2/3 = St — = 0.27 R e c 0

U o o

0 , 4 1

(11)

4 1

(12)

2 / 3

S

F o r the t e s t s , R e I f extended 0.00048.

4

m a x

was 5.6 χ 1 0 , y i e l d i n g V ^ u ^ - 0.00405.

to a f u l l - s c a l e

building,

6

V

say Re = 5 χ 1 0 , ( j / U o o

55

However, t h i s somewhat low average v a l u e s h o u l d be tempered by the r e a l i z a t i o n t h a t l o c a l f r e e stream v e l o c i t i e s may be h i g h e r , and t h a t the "hot s p o t s " w i l l be h i g h e r by about 70-90%. Rounded Shapes. The t e s t s of spheres outdoors y i e l d e d average heat t r a n s f e r v a l u e s up to 2.2 times h i g h e r than i n a wind t u n n e l . T h i s may be due to movement of the f l o w s e p a r a t i o n p o i n t around the s p h e r e , which would n o t be a p p r o p r i a t e f o r a l e s s rounded b u i l d i n g ­ l i k e shape. The heat t r a n s f e r enhancement was most pronounced near the ground, and c o r r e l a t e d w i t h t u r b u l e n c e i n t e n s i t y . The d a t a a t h i g h t u r b u l e n c e may be r e p r e s e n t e d by: 0.54 Nu

m

- 0.8 Re

(13)

or about 70% h i g h e r than the average square p r i s m heat t r a n s f e r . S i m i l a r r e s u l t s a r e g i v e n by S c h l i c t i n g (12) f o r the heat t r a n s f e r to a c i r c u l a r c y l i n d e r i n c r o s s - f l o w a t v a r y i n g degrees of t u r b u ­ l e n c e . A t the h i g h e s t t u r b u l e n c e v a l u e , 0.659 Nu

m

- 0.187 Re

(14)

w h i c h would i n d i c a t e a f a c t o r of 4.8 r e d u c t i o n i n V^/u^ f o r 2 o r d e r s of magnitude change i n Reynolds number. T h i s would y i e l d a f u l l s c a l e b u i l d i n g e s t i m a t e of V^/u^ = 0.0006, or 0.30 cm./sec. for = 5 m/s. However, as mentioned above, u ^ might w e l l be s u b s t a n t i a l l y h i g h e r i n such a s i t u a t i o n . F l a t P l a t e Model. M o d e l l e d as a smooth f l a t p l a t e f o r , s a y , R e = 1 0 , the average s k i n f r i c t i o n c o e f f i c e n t would be 0.003, and 2

1

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

424

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

thus V^/uoo = 0.00108· T u r b u l e n c e c r e a t e d by window r e c e s s e s , breaks i n the w a l l s , e t c . , might i n c r e a s e t h i s v a l u e . For example, f l o w i n a very rough pipe becomes independent of Reynolds number, but the heat t r a n s f e r enhancement e f f e c t s of f r e e stream t u r b u l e n c e a r e c o n s i d e r a b l y l e s s a l o n g a f l a t p l a t e than f o r f l o w s around c y l i n d e r s , e t c . , where f l o w s e p a r a t i o n p l a y s a r o l e . P e d i s i u s et a l . (19) showed a heat t r a n s f e r enhancement on a f l a t p l a t e of about 20% f o r a t u r b u l e n c e i n t e n s i t y of about 15%. D r i z i u s et a l . (20) showed a heat t r a n s f e r enhancement of about a f a c t o r of 2 f o r roughness elements of 1.4 mm and R e up to about 3 χ 10^. Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

x

For a p l a t e w i t h r e g u l a r l y spaced r i b s ( s i m m i l a r to c o r r u g a t i o n ) , V e s k i and Kruus (21) found l o c a l heat t r a n s f e r enhancement to be g r e a t e s t on the p r o j e c t i o n s , g i v e n by the formula Nu - 0.03

0

Re '

8

(15)

w h i c h was a l s o the formula f o r the average heat t r a n s f e r f o r the c l o s e s t r i b s p a c i n g . F o r R e = 1 0 , t h i s g i v e s V / u = 0.00096, i n good agreement w i t h the p r e c e e d i n g . 7

x

d

o c

F o r a 5 m/s f l o w , then, we might e x p e c t SO2 d e p o s i t i o n v e l o c i t i e s of about 0.56 - 0.9 cm./sec. on a rough or c o r r u g a t e d b u i l d i n g w i t h e x t e r n a l f r e e s t r e a m t u r b u l e n c e , but o n l y about 0.56 cm./sec. on a smooth b u i l d i n g . Note t h a t these v a l u e s are c o n s i d e r a b l y lower than o b t a i n e d from outdoor c o r r o s i o n t e s t s on s m a l l p l a t e s ( d i s c u s ­ sed above). A p p l i c a t i o n of Boundary L a y e r Theory to (Fences, Towers, F l a g p o l e s , e t c . )

Non-Buildings

We have seen how heat t r a n s f e r and thus dry d e p o s i t i o n of SO2 i s reduced on l a r g e s u r f a c e s , due to the b u i l d u p of boundary l a y e r t h i c k n e s s (which reduces the l o c a l g r a d i e n t s ) . However, there are e c o n o m i c a l l y i m p o r t a n t s t r u c t u r a l o b j e c t s composed of many elements of s m a l l dimension which show the o p p o s i t e e f f e c t . These i n c l u d e fence w i r e and f i t t i n g s , towers made of s t r u c t u r a l shapes ( p i p e , angle i r o n , e t c . ) , f l a g p o l e s , columns and the l i k e . Haynie (11) c o n s i d e r e d d i f f e r e n t damage f u n c t i o n s f o r d i f f e r e n t structural elements such as t h e s e , but o n l y from the s t a n d p o i n t of t h e i r e f f e c t on the p o t e n t i a l f l o w i n the a t m o s p h e r i c boundary l a y e r . The i n f l u e n c e of shape and s i z e a c t i n a d d i t i o n to these e f f e c t s , and c o u l d a l s o change the v e l o c i t y c o e f f i c i e n t s developed by Haynie (11), which were f o r t u r b u l e n t f l o w . Fence w i r e , f o r example, as shown below, i s more l i k e l y to have a l a m i n a r boundary l a y e r . We w i l l c o n s i d e r f l o w a t r i g h t a n g l e s to an i n f i n i t e circular c y l i n d e r , w i t h v a r y i n g d i a m e t e r s , as shown i n T a b l e I I I . A dramat­ i c i n c r e a s e i n d e p o s i t i o n v e l o c i t y i s shown f o r s m a l l d i a m e t e r objects. T h i s would a l s o a p p l y to i s o l a t e d p o r t i o n s of a s t a t u e , f o r example. Schlicting cylinders;

(12) shows data on roughness e f f e c t s on circular f o r Re below about 2500, there i s no e f f e c t . For D

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

Application of Economic Assessment Theory

LIPFERT A N D WYZGA

425

Table I I I . Deposition V e l o c i t i e s to C i r c u l a r Cylinders (smooth s u r f a c e , low t u r b u l e n c e ) ( u ^ = 4 . 5 m/s)

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

Diameter (m) Fence Wire 0.001 Fence P o s t 0.025 Flag Pole 0.100 S t r u c t u r a l S t e e l 0.300 Stone Column 1. S t o r a g e Tank 10.

Re

301 7520 3 χ 10 9 χ 10 3 χ 10 3 χ 10

Average V (cm/sec)

N

"m

D

4

4

5

6

9 45 100 220 700 4830

Peak V (cm/sec)

d

d

13.3 2.7 1.49 1.09 1.04 0.72

-4.5 -2.5 ~1.9 -1.8

smooth c y l i n d e r s a t low t u r b u l e n c e , there i s v i r t u a l l y no R e y n o l d s number e f f e c t ( o r drag) between R e = 1000 and R e = 2 χ 1 0 . For l a r g e c y l i n d e r s , w i t h t u r b u l e n t boundary l a y e r s over most o f t h e i r s u r f a c e , roughness e f f e c t s s h o u l d be s i m i l a r to those on a f l a t plate. 5

D

D

D i s c u s s i o n o f Boundary C a l c u l a t i o n s and R e s u l t s Where data f o r SO2 d e p o s i t i o n t o z i n c a r e a v a i l a b l e , good agreement i s shown w i t h the boundary l a y e r c a l c u l a t i o n s ( T a b l e I V ) . U n f o r ­ t u n a t e l y , experimental data a r e n o t d i r e c t l y a v a i l a b l e f o r o t h e r s i t u a t i o n s , so i n f e r e n c e s must be made by comparing the c a l c u l a ­ t i o n s f o r s i m i l a r flow s i t u a t i o n s .

T a b l e IV. Summary o f D e p o s i t i o n V e l o c i t y Data (cm/sec) Calculated

Measured

Flat Plates Chamber T e s t s Outdoor T e s t Racks< ) Large B u i l d i n g s ) c

( c

Circular

a

0.9< ) 1.55-1.75( > b

Cylinders

Fence w i r e Posts--columns S t o r a g e Tanks Blunt

0.63 1.2-3.7 0.5-0.9

13.3 1.0 - 2.7 0.72

Shapes c

(Entire Buildings)( ) (a) Edney e t a l . (14)

0.30 (b) L i p f e r t e t a l .

(2)

(c)

Uoo

=

5 m/s

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

426

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

L a r g e r s t r u c t u r e s have lower c a l c u l a t e d d e p o s i t i o n v e l o c i t i e s as a r e s u l t of t h e i r l a r g e r Reynolds numbers. T h i s e f f e c t w i l l be p a r t i a l l y c o u n t e r e d by h i g h e r f r e e - s t r e a m v e l o c i t i e s f o r t a l l e r structures. B l u n t o b j e c t s w i l l tend to have lower average d e p o s i t i o n as a r e s u l t of t h e i r zones of s e p a r a t e d f l o w . T h i s may not p e r t a i n to l o c a l "hot s p o t s " , however.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

Perhaps the most c r i t i c a l s i t u a t i o n w i l l o c c u r f o r stone o b j e c t s i n the 0.3-1 m. d i a m e t e r range, which c o u l d i n c l u d e e i t h e r s t a t u e s or columns. A roughened s u r f a c e due to w e a t h e r i n g w i l l i n c r e a s e d e p o s i t i o n and hence enhance f u r t h e r s u r f a c e e r o s i o n . O v e r l a i d on a l l of these r e s u l t s i s the t a c i t assumption t h a t the s u r f a c e o f f e r s no c h e m i c a l r e s i s t a n c e . T h i s appears to be v a l i d f o r z i n c w i t h a water f i l m on the s u r f a c e ; i t i s l e s s c l e a r f o r s t o n e , f o r example, f o r w h i c h the m o i s t u r e may be trapped below the s u r f a c e i n the pores of the stone. The model i s not v a l i d f o r e s s e n t i a l l y i n e r t surfaces. I n the event the s u r f a c e does o f f e r c h e m i c a l r e s i s t a n c e by v i r t u e of s l o w e r r e a c t i o n r a t e s , r e s i s t a n c e to a c i d a t t a c k , e t c . , the gas c o n c e n t r a t i o n w i l l not be zero a t the s u r f a c e and the dry d e p o s i t i o n r a t e w i l l be reduced a c c o r d i n g l y . Thus s t r u c t u r e s made or c o a t e d w i t h such m a t e r i a l s w i l l show a d i f f e r e n t r e l a t i o n s h i p between c a l c u l a t e d d e p o s i t i o n v e l o c i t i e s , as p r e s e n t e d h e r e , and the a c t u a l o p e r a t i o n a l v a l u e s , which may be governed more by the m a t e r i a l p r o p e r t i e s and l e s s by aerodynamic r e s i s t a n c e . This would be an i m p o r t a n t p r o p e r t y to e s t a b l i s h , by t e s t i n g over a range of aerodynamic c o n d i t i o n s . I n t e r a c t i o n s Among P o l l u t a n t s and A t m o s p h e r i c Parameters Boundary l a y e r theory can only be used c o e f f i c e n t s when i t i s r e a s o n a b l e to uptake a t the s u r f a c e . The presence of the v i a b i l i t y of t h i s a s s u m p t i o n , and assumption appears v a l i d can be used to wet d e p o s i t i o n .

to e s t i m a t e dry assume complete other p o l l u t a n t s the cases f o r h y p o t h e s i z e the

deposition and r a p i d can a f f e c t w h i c h the e f f e c t s of

The s o l u b i l i t y of SO2 i n water i s s t r o n g l y dependent on i t s pH, becoming l i m i t e d below pH = 4 . The presence of o t h e r p o l l u t a n t s can be i m p o r t a n t as they a f f e c t the pH of the l i q u i d l a y e r on the s u r f a c e , which may a l s o be b u f f e r e d by c o r r o s i o n p r o d u c t s per se. N i t r i c a c i d d e p o s i t s q u i t e r e a d i l y , f o r example, and c o u l d lower the pH and thus i n h i b i t SO2 uptake. On the o t h e r hand, many atmosp h e r i c p a r t i c u l a t e s are b a s i c , and the l i m i t e d l i t e r a t u r e on dew c h e m i s t r y (Cadle and G o b l i c k i ) ( 2 2 ) does not i n d i c a t e a c i d i c dew c o m p o s i t i o n , ( i t s h o u l d be noted t h a t these data were a l l taken i n low SO2 e n v i r o n m e n t s ) . The a p p a r e n t r a p i d uptake of ( d r y ) S 0 on wet z i n c s u r f a c e s w i t h s t o c h i o m e t r i c removal of z i n c seems to i n d i c a t e r a p i d r e a c t i o n s . T h i s i s i m p o r t a n t i n c o n s i d e r i n g a damage f u n c t i o n due to wet d e p o s i t i o n of a c i d i t y (H+). I f the damage f u n c t i o n employs t o t a l H+ d e p o s i t i o n ( s a y , the a n n u a l sum) as the " d r i v e r , " then the 2

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

29.

LIPFERT AND WYZGA

Application of Economic Assessment Theory

427

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

i m p l i c i t assumption has been made t h a t a l l o f t h i s p r e c i p i t a t i o n borne a c i d i t y i s a b l e t o r e a c t w i t h the s u r f a c e b e f o r e i t runs off. O b v i o u s l y the n a t u r e o f both the p r e c i p i t a t i o n event and the s i z e and shape o f the s u r f a c e w i l l modify the v a l i d i t y o f t h i s assumption. F u r t h e r c o n t r o l l e d experiments a r e badly needed. We have shown the importance of l o c a l f r e e stream v e l o c i t y ( u ^ ) i n controlling deposition velocity. There may be a r e l a t i o n s h i p between Uoo and t i m e - o f - w e t n e s s , e i t h e r through v a r i a t i o n s i n synopt i c c o n d i t i o n s o r through heat t r a n s f e r and e v a p o r a t i o n . Such an i n t e r a c t i o n c o u l d modify the e s t i m a t i o n o f an e f f e c t i v e a n n u a l average SO2 d e p o s i t i o n r a t e . As mentioned above, one must a l s o a c c o u n t f o r s u r f a c e o r i e n t a t i o n i n p r e d i c t i n g time-of-wetness. Economic Assessment R a m i f i c a t i o n s Economic assessments have u s u a l l y been based on a common damage f u n c t i o n f o r a l l s t r u c t u r a l elements, a c c o r d i n g to the m a t e r i a l . T a b l e IV i n d i c a t e s t h a t l o s s r a t e s to f e n c i n g may be u n d e r e s t i m a t e d and l o s s e s f o r l a r g e b u i l d i n g s w i l l be o v e r e s t i m a t e d , i f damage f u n c t i o n s based on s m a l l p l a t e t e s t s a r e used. S i n c e the l a r g e r s t r u c t u r e s c a r r y l a r g e r d o l l a r l o s s e s as a r u l e , t h i s may r e s u l t i n an o v e r p r e d i c t i o n b i a s t o the assessment. The r o l e of f e n c i n g i n the economic assessment may be p a r t i c u l a r l y i m p o r t a n t , e s p e c i a l l y s i n c e i t tends to be r e p l a c e d than p a i n t e d as a maintenance a c t i o n . A c c o r d i n g to boundary l a y e r t h e o r y , the e f f e c t s of s u r f a c e roughness and i r r e g u l a r i t i e s , i n c l u d i n g f o r example carved d e c o r a t i o n s , can c r e a t e l o c a l i n c r e a s e s i n d e p o s i t i o n v e l o c i t y , o r " h o t s p o t s . " T h i s i s an i m p o r t a n t c o n s i d e r a t i o n f o r a s s e s s i n g p o t e n t i a l damage to c u l t u r a l r e s o u r c e s , s i n c e the f i n e d e t a i l s of such o b j e c t s t h a t make them c u l t u r a l l y i n t e r e s t i n g may be s u b j e c t to much h i g h e r l o s s rates. I n a d d i t i o n , the f i n e l y d e t a i l e d p o r t i o n s of a c a r v i n g may have a h i g h e r s u r f a c e - t o - v o l u m e r a t i o , s u b j e c t i n g the p i e c e to a h i g h e r l i k e l i h o o d o f m e c h a n i c a l f a i l u r e f o r a g i v e n amount o f surface recession. In a l l cases, l o c a l wind c o n d i t i o n s s h o u l d be accounted f o r , e s p e c i a l l y s i n c e SO2 c o n c e n t r a t i o n s can be c o r r e l a t e d w i t h wind speed (J^). The c o r r e l a t i o n can be e i t h e r p o s i t i v e o r n e g a t i v e ; p o s i t i v e f o r areas dominated by p o i n t sources and n e g a t i v e when dominated by a r e a s o u r c e s . T h i s , of c o u r s e , c o u l d l e a d to b i a s e s i n e i t h e r d i r e c t i o n i f such c o r r e l a t i o n s a r e n e g l e c t e d . We have seen how c o n s i d e r a t i o n of t h e o r e t i c a l d e p o s i t i o n v e l o c i t i e s has i d e n t i f i e d p o t e n t i a l b i a s e s i n economic assessments. An a d d i t i o n a l c o n s i d e r a t i o n i s the r e l a t i v e u n c e r t a i n t i e s i n the determina t i o n of t h e o r e t i c a l vs. experimental d e p o s i t i o n v e l o c i t i e s . The heat t r a n s f e r data on which the t h e o r e t i c a l d e p o s i t i o n v e l o c i t i e s a r e based a r e g e n e r a l l y very p r e c i s e , w i t h i n a few p e r c e n t . In c o n t r a s t , the damage f u n c t i o n s developed by L i p f e r t e t a l . ( 3 ) f o r metals from e x t a n t c o r r o s i o n t e s t data a r e o n l y capable of p r e d i c t i n g c o r r o s i o n l o s s e s a t a g i v e n time and p l a c e w i t h i n a f a c t o r o f two, a l t h o u g h the i n d i v i d u a l r e g r e s s i o n c o e f f i c i e n t s a r e much b e t t e r than t h a t . Most of the u n c e r t a i n t y i n the e x p e r i m e n t a l approach i s f e l t t o be i n t e s t s i t e c h a r a c t e r i z a t i o n r a t h e r than

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

428

M A T E R I A L S D E G R A D A T I O N C A U S E D BY A C I D RAIN

e r r o r s i n the d e t e r m i n a t i o n of c o r r o s i o n r a t e s per se. Thus i n c l u d i n g the d e t a i l e d aerodynamic c o n d i t i o n s a t each s i t e would v e r y l i k e l y reduce the o v e r a l l u n c e r t a i n t i e s i n p r e d i c t i n g c o r r o ­ s i o n damage.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

C o n c l u d i n g Remarks T h i s a n a l y s i s has shown t h a t there are p i t f a l l s i n a p p l y i n g c o r r o ­ s i o n r a t e data from s m a l l t e s t p l a t e s to o b j e c t s t h a t are g r e a t l y d i f f e r e n t i n s i z e . To be s u r e , the o r i g i n a l ASTM p r o t o c o l f o r such t e s t s was never i n t e n d e d f o r t h i s purpose. We have used boundary l a y e r theory to t r y to q u a n t i f y the e x t e n t of p o s s i b l e biases ( f a c t o r s of 3 or more) and to suggest remedies through experiments under c o n t r o l l e d aerodynamic c o n d i t i o n s . I n some c a s e s , a p p r o p r i ­ a t e theory and e x p e r i m e n t a l data have been l a c k i n g . These p o s s i b l e b i a s e s and u n c e r t a i n t i e s a l s o suggest t h a t b u i l d i n g component s e r v i c e l i f e p r e d i c t i o n s made i n the c o u r s e of p e r f o r m i n g economic assessments s h o u l d be c o r r o b o r a t e d a g a i n s t r e a l w o r l d e x p e r i e n c e . Acknowledgments T h i s r e s e a r c h was p a r t i a l l y supported by the U.S. Department of Energy under c o n t r a c t DE-AC02-76CH00016. Members of NAPAP Task Group G and my c o l l e a g u e s a t Brookhaven have p r o v i d e d valuable i n p u t and c o n s u l t a t i o n . The m a n u s c r i p t was prepared by Donna Cange and L i z S e u b e r t .

Nomenclature Used

Cf

C o e f f i c i e n t of s k i n f r i c t i o n

2

D/l—_

P u oo

o

L C

P D g JD k

Nu Pr Re S

c St Τ Tu LI oo v

d q Ύ μ X

S p e c i f i c heat a t c o n s t a n t p r e s s u r e D i f f u s i o n c o e f f i c i e n t , drag, diameter A c c e l e r a t i o n due to g r a v i t y Mass f l u x parameter Thermal c o n d u c t i v i t y , mass t r a n s f e r parameter, Karman c o n s t a n t P l a t e length N u s s e l t number - q i / K i ^ - T ^ ) ; Nu , average over surface P r a n d t l number = y g C / k Reynolds number = u χ/γ Schmidt number = γ/pD S t a n t o n number « Nu/RePr « Cf/2 Temperature T u r b u l e n c e i n t e n s i t y ( f r a c t i o n or p e r c e n t ) U n d i s t u r b e d f r e e stream v e l o c i t y D e p o s i t i o n v e l o c i t y (cm/sec) Heat f l u x Kinematic v i s c o s i t y Dynamic v i s c o s i t y streamwise c o o r d i n a t e . m

p

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Von

the

29.

LIPFERT

y ζ Ρ

AND WYZGA

Application of Economic Assessment Theory

429

width or height above surface coordinate height above the earth's surface air stream density

Literature

Cited

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

1. Wyzga, R. E.; Lipfert, F. W. "Forecasting Materials Damage"; Presented at Eighth ASA Symposium on Statistics, Law, and the Environment: Washington, D.C., 1984. 2. Wyzga, R. E.; Lipfert, F. W. "Forecasting Materials Damage From Air Pollution"; Presented at the 78th Annual Meeting of the Air Pollution Control Association: Detroit, Michigan, 1985. 3. Lipfert, F. W.; Benarie, M.; Daum, M. "Derivation of Metallic Corrosion Damage Functions for Use in Environmental Assessments"; Brookhaven National Laboratory, Upton, NY 11973, 1985. 4. Haynie, F. H. "Atmospheric Damage to Paints", EPA Environmental Research Brief, EPA/600/M-85/019, June 1985. 5. Reddy, M.; Sherwood, S.; Doe, B. "Limestone and Marble Dissolution by Acid Rain"; to be sumitted to Proc. 5th Int. Cong. on Deterioration and Conservation of Stone, Lausanne, Switzerland, Sept. 1985. 6. Lipfert, F. W.; Cohen, S.; Dupuis, L. R.; Peters, J. "Predictor Equations for Relative Humidity from Relevant Environmental Factors"; Brookhaven National Laboratory, Upton, NY 11973, 1985. 7. Rosenfield, G. H. 1984. "Spatial Sample Design for Building Materials Inventory for Use With an Acid Rain Damage Survey"; U.S. Geological Survey, Reston, VA. in Schmitt R. R.; Smolin, H. J., Eds.; "The Changing Role of Computers in Public Agencies"; Presented at the Ann. Conf. of Urban and Regional Information Systems Assoc., Seattle, WA, 1984 8. Merry, C. J. and LaPotin, P. J. "A Description of the New Haven, Connecticut Building Material Data Base"; Report prepared for the U.S. Environmental Protection Agency, 1985. U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory. 9. Lipfert, F. W.; Daum, M. L.; Cohen, S. "Methods for Estimating Surface Area Distributions of Common Building Materials"; Brookhaven National Laboratory, Upton, NY 11973, 1985. 10.

Livingston, R. Α.; Baer, N. S. "Mechanisms of Air Pollution-Induced Damage to Stone"; Presented at the VIth World Congress on Air Quality, May 1983, Paris, France.

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 24, 2018 | https://pubs.acs.org Publication Date: September 25, 1986 | doi: 10.1021/bk-1986-0318.ch029

430

MATERIALS

DEGRADATION

CAUSED

BY ACID RAIN

11.

Haynie, F. H. "Theoretical Air Pollution and Climate Effects on Materials Confirmed by Zinc Corrosion Data"; Durability of Building Materials and Components, ASTM STP No. 691, Sereda, P. J.; Litvan, G. G., Eds.; American Society for Testing and Materials: 1980, pp. 157-175.

12.

Schlichting, H. Boundary Layer Theory; McGraw-Hill Book Company, Inc., 1960.

Fourth

13.

Binder, R. C. Inc., 1953.

Prentice-Hall,

14.

Edney, E. O.; Stiles, D. C.; Spence, J. W.; Haynie, F. H.; Wilson, W. E. "Laboratory Investigations of the Impact of Dry Deposition of SO and Wet Deposition of Acidic Species on the Atmospheric Corrosion of Galvanized Steel"; Atmospheric Environment, (in press).

Fluid

Mechanics; Second Ed.,

Ed.,

2

15.

Flinn, D. R.; Cramer, S. D.; Carter, J. P.; Spence, J. W. "Field Exposure Study for Determining the Effects of Acid Deposition on the Corrosion and Deterioration of Materials: Description of Program and Preliminary Results." Durability of Building Materials 3, pp. 147-175, 1985.

16.

Test, F. L.; Lessmann, R. C.; Johary, A. "Heat Transfer During Wind Flow Over Rectangular Bodies in the Natural Environment"; J. Heat Transfer, 103, 262-267, 1981.

17.

Igarashi, T. "Heat Transfer from a Square Prism to an Air Stream"; Int. J. Heat Mass Transfer, 28, No. 1, 175-181, 1985.

18.

Kowalski, G. J.; Mitchell, J. W. "Heat Transfer from Spheres in the Naturally Turbulent, Outdoor Environment"; J. Heat Transfer, p. 649-653, 1976.

19.

Pedisius, Α. Α.; Kazimekas, P.-V. Α.; Slanciauskas, A. A. "Heat Transfer from a Plate to a High-Turbulence Air Flow"; Heat Transfer-Soviet Research, 11, No. 5, 1979.

20.

Drizius, M. R.; Bartkus, S.I.; Slanciauskas, Α. Α.; Zukauskas, A. A. "Drag and Heat Transfer on a Rough Plate at Various Pr Numbers"; Heat Transfer-Soviet Research, 10, No. 3, 1978.

21.

Veski, A. Yu.; Kruus, R. A. "Local Heat Transfer from Plates with Regular Macroroughness (Ribbed Plates)"; Heat Transfer-Soviet Research, 9, No. 4, 1977.

22.

Cadle, S. H.; Groblicki, P. J. The Composition of Dew in an Urban Area; in "The Meteorology of Acid Deposition"; APCA Specialty Conference, Hartford, CT, 1983. Edited by P.J. Samson, pp. 17-29.

RECEIVED

January 2, 1986

Baboian; Materials Degradation Caused by Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1986.