11 Stereochemistry of Heterogeneous Asymmetric Catalytic Hydrogenation KAORU HARADA
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
University of Tsukuba, Department of Chemistry, Ibaraki 305, Japan
In this paper, the stereochemistry of heterogeneous catalytic hydrogenation of C=N- and C=O double bonds of the derivatives of α-keto acids, keto alco hols and diketones is described. The steric course could be explained by the chelation hypothesis. In 1961, H i s k e y e t a l . ( 1 ) r e p o r t e d t h e s u c c e s s f u l asymmetric s y n t h e s e s o f α-amïho a c i d s . They demons t r a t e d t h e s y n t h e s i s o f amino a c i d s i n 45-70% e n a n t i o m e r i c p u r i t y by c a t a l y t i c hydrogénation o f t h e S c h i f f bases p r e p a r e d from α-keto a c i d s and o p t i c a l l y a c t i v e α-methylbenzylamine f o l l o w e d by h y d r o g e n o l y s i s (Scheme 1 ) . When (S)-amine was used, (S)-α-amino a c i d r e s u l t e d . This i s a highly stereoselective reaction. However, the a u t h o r s d i d n o t d i s c u s s t h e s t e r i c c o u r s e o f t h e asymmetric hydrogénation p r o c e s s . Scheme 1 R-C-COOH " Ν C H -CH-CH (S) 6
5
3
n
R-CH-COOH L NH
H 2
Pd/C ' C H - C H - C H 6
5
3
n
Pd
(S) R-CH-COOH I
H 2
(OH)'
2
L a t e r M i t s u i e t al.(2) r e p o r t e d t h e asymmetric s y n t h e s e s o f p h e n y l g l y c i n e by t h e H i s k e y t y p e r e a c t i o n and p r o p o s e d a s t e r i c c o u r s e f o r t h e asymmetric s y n t h e s i s as shown i n Scheme 2. I f i t i s a p p l i c a b l e t o a l l o f t h e H i s k e y t y p e r e a c t i o n s , t h e f o l l o w i n g may be e x p e c t e d : (a) an i n c r e a s e i n o p t i c a l y i e l d upon s u b s t i t u t i o n o f α-methylbenzylamine by α-ethylbenzylamine and (b) a comparable o p t i c a l y i e l d upon s u b s t i t u t i o n o f α-methylbenzylamine by a - ( 1 - n a p h t h y 1 ) e t h y l a m i n e . 0097-6156/82/0185-0169$05.00/0 © 1982 American Chemical Society
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
ASYMMETRIC
170
REACTIONS
A N D PROCESSES
IN
CHEMISTRY
Scheme 2 C,H 6 5
COOH /
C
X
CH
3
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
N
0
.
(S) C
C.H . COOH 6 5 / C H I NH ^
N
C if Ν
;C
H
C.H,. COOH 6 5 / C H II 2 Ν >^(S)
H
C
6 5
H
6 5
C H
3
9 2 r
H
C
H
6 5
C H
COOH I Η,Ν-j-H
3
In o r d e r t o examine t h e s t e r i c c o u r s e proposed by M i t s u i e t a l . , we have performed asymmetric s y n t h e s e s o f a l a n i n e , α-aminobutyric a c i d , p h e n y l g l y c i n e , p h e n y l a l a n i n e and g l u t a m i c a c i d from t h e c o r r e s p o n d i n g a-keto a c i d s u s i n g (S) -α-methylbenzylamine [Me (-) ] , (S) - a ethylbenzylamine [ E t ( - ) ] and ( R ) - a - ( 1 - n a p h t h y l ) e t h y l amine [Naph(-)] as t h e c h i r a l a d j u v a n t . The r e s u l t s a r e shown i n T a b l e 1(3^,4). The r e s u l t s i n d i c a t e t h a t a) t h e o p t i c a l p u r i t y o f amino a c i d s o b t a i n e d w i t h α-methylbenzylamine i s always h i g h e r than when α-ethylbenzylamine i s used, b) t h e o p t i c a l p u r i t y o f t h e amino a c i d s d e c r e a s e s s t e a d i l y as t h e b u l k o f t h e a l k y l group o f t h e α-keto a c i d s i n c r e a s e s , and c) t h e o p t i c a l p u r i t y i n c r e a s e s when ( R ) a-(1-naphthyl)ethylamine i s used(£) . These f i n d i n g s show c l e a r l y t h a t t h e s t e r i c c o u r s e proposed p r e v i o u s l y does n o t e x p l a i n any o f t h e e x p e r imental r e s u l t s . Based on m o l e c u l a r models we p r o posed a d i f f e r e n t s t e r i c c o u r s e c o n s i s t e n t w i t h t h e experiments. S t r u c t u r e I (Scheme 3) r e p r e s e n t s a con f o r m a t i o n o f t h e s u b s t r a t e which s a t i s f i e s a l l o f t h e Table I
Asymmetric S y n t h e s i s o f Amino A c i d s
α-Keto a c i d R-CO-COOH R= C H
2
C
5
H
6 5
C H
C
H
2" 6 5
(CH ) COOH 2
2
Solvent:EtOH
Amino
acid
Optical purity(%)
Alanine Alanine Alanine
67 52 83
Butyrine Butyrine
44 33
Me (-) E t (-)
(S) (S) (R) (S) (S)
Me (-) E t (-)
(S) P h e n y l g l y c i n e (S) P h e n y l g l y c i n e
30 24
Me (-) E t (-)
(S) P h e n y l a l a n i n e (S.) P h e n y l a l a n i n e
14 10
Me (-) E t (-)
(S) G l u t a m i c (S.) G l u t a m i c
12 6
Me (-) E t (-) Naph(+)
3
C H
Optically a c t i v e amine
acid acid
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
HARADA
11.
Heterogeneous
Asymmetric
Catalytic
Hydrogénation
Scheme 3 H R (S) ι \ I
C
H
R I
0
6 5
HN
( I )
C
0
0
H
2
^(S)
2
Scheme 4
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
H
R
C
C C
H
6 5
N
^
CH
0
y° (Pd)'n
H
(ID
-C
3
R
Ρ
C
C
V "(Pdfn
(III
—
c o n d i t i o n s r e q u i r e d by the e x p e r i m e n t a l f i n d i n g s (_3) · The s t r u c t u r e I might be c o n s i d e r e d t o form a sub s t r a t e - c a t a l y s t complex as shown i n s t r u c t u r e I I (Scheme 4 ) . A m o l e c u l a r model o f s t r u c t u r e I I f i t s v e r y w e l l on the s u r f a c e o f the p a l l a d i u m c a t a l y s t . The p l a n e c o m p r i s i n g the S c h i f f base o f the α-keto a c i d i s assumed t o be p e r p e n d i c u l a r t o the p a l l a d i u m s u r f a c e , w i t h the p h e n y l group l y i n g on the p a l l a d i u m s u r f a c e as shown i n s t r u c t u r e I I . I f the p h e n y l group was p l a c e d as shown i n s t r u c t u r e I I I (Scheme 4 ) , the a l k y l group o f the asymmetric m o i e t y and t h a t o f the k e t o a c i d would i n t e r f e r e w i t h each o t h e r , and the s t r u c t u r e I I I would be u n s t a b l e . Thus we assume (A) the sub s t r a t e i n i t i a l l y i n t e r a c t s w i t h the c a t a l y s t , t o form a s u b s t r a t e - c a t a l y s t complex as shown i n s t r u c t u r e I I b e f o r e the c a t a l y t i c hydrogénation t a k e s p l a c e , and t h e n (B) the s t r u c t u r e I I i s adsorbed on the c a t a l y s t from the l e s s b u l k y s i d e o f the m o l e c u l e , and c a t a l y t i c hydrogénation t a k e s p l a c e . We have c a l l e d t h i s hydrogénation p r o c e s s "the c h e l a t i o n h y p o t h e s i s " ( 3 ) / and f u r t h e r s t u d i e s were u n d e r t a k e n t o t e s t t h i s hypothesis. T a b l e I I shows s o l v e n t e f f e c t s i n t h e asymmetric s y n t h e s i s o f a l a n i n e from p y r u v i c a c i d and ( S ) - a methylbenzylamine(A). The o p t i c a l p u r i t y o f a l a n i n e decreases with i n c r e a s i n g p o l a r i t y of the s o l v e n t . In the c a s e o f t h e asymmetric s y n t h e s i s o f g l u t a m i c a c i d from α-keto-glutaric a c i d and (S)-α-methylbenzylamine, the c o n f i g u r a t i o n o f t h e r e s u l t i n g g l u t a m i c a c i d was a c t u a l l y i n v e r t e d by the use o f p o l a r s o l v e n t s . The s u b s t r a t e appears t o i n t e r a c t w i t h the c a t a l y s t more s t r o n g l y i n a l e s s p o l a r t h a n i n a more p o l a r s o l v e n t . Thus, the p o p u l a t i o n o f the c h e l a t e d s u b s t r a t e i s
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
ASYMMETRIC
172 Table
II
A N D PROCESSES
S o l v e n t E f f e c t i n t h e Asymmetric of Alanine
Solvent
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
REACTIONS
Yield(%)
CHEMISTRY
Synthesis
Optical purity(%)
Hexane
75
75
AcOEt
49
60
DMFA
47
50
i-PrOH
56
46
MeOH
61
38
MeOH:H 0(l:2) 2
75
35
MeOH:H 0(l:4)
76
29
2
IN
l a r g e r i n t h e l e s s p o l a r s o l v e n t than i n t h e more p o l a r one. The u n c h e l a t e d s p e c i e s , which has a s t a b l e conf o r m a t i o n IV (Scheme 5 ) i n s o l u t i o n , c o u l d be adsorbed on t h e l e s s b u l k y f r o n t -C=N- f a c e o f t h e m o l e c u l e (Scheme 5 ) r e s u l t i n g i n an a l a n i n e d e r i v a t i v e which has the c o n f i g u r a t i o n o p p o s i t e t o t h a t o b t a i n e d from t h e chelated species. Asymmetric c a t a l y t i c hydrogénation o f t h e S c h i f f base p r e p a r e d from e t h y l p y r u v a t e and an o p t i c a l l y a c t i v e amine i n d i f f e r e n t s o l v e n t s was c a r r i e d o u t and supports the c h e l a t i o n hypothesis. F i g u r e 1 shows s o l v e n t e f f e c t s i n t h e s y n t h e s i s o f a l a n i n e and a a m i n o b u t y r i c a c i d (5^) . When (£) - b e n z y l i c amine was used as t h e asymmetric m o i e t y , t h e o p t i c a l p u r i t y o f t h e r e s u l t i n g amino a c i d i n c r e a s e d w i t h a d e c r e a s e i n s o l vent p o l a r i t y ( £ , 7 J · temperature e f f e c t was a l s o o b s e r v e d , and t h e o p t i c a l p u r i t y o f t h e amino a c i d s i n c r e a s e d upon l o w e r i n g t h e r e a c t i o n t e m p e r a t u r e ( £ , 9 ^ A
10 ) . The c h e l a t i o n h y p o t h e s i s c o u l d a l s o be a p p l i e d t o the c a t a l y t i c hydrogénation o f α-keto a c i d amides c a r r i e d o u t i n i t i a l l y by H i s k e y e t a l . , who e x p l a i n e d the s t e r i c c o u r s e assuming i n t e r m e d i a t e s t r u c t u r e V ( 1 1 ) (Scheme 6 ) . Scheme 5 H 1
C H> 6
5
R \ N
%
Ο polar solvent
c
^0 (Pd)n—
(S) amino a c i d
less polar solvent
υ R'^ C H 6 5
R £ N
,0 0~
(IV)
(R) amino a c i d
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
HARADA
11.
Figure
Heterogeneous
Asymmetric
Catalytic
Hydrogénation
173
S o l v e n t E f f e c t i n t h e Asymmetric S y n t h e s i s o f Amino A c i d s from E t h y l P y r u v a t e ( 5 )
1
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
Amine (R)-(+) - a - M e t h y l b e n z y l (SM-) -a-Methylbenzyl (RM+) - a - E t h y l b e n z y l (R)-(+) -1- (a-Naphthyl) ethyl (S)-(-) - a - M e t h y l b e n z y l (S)-(-) - a - M e t h y l b e n z y l (a)-(e), Alanine ( f ) , a-Aminobutyric acid
Product
Catalyst:
(a)-(d) , P d ( 0 H ) / C (e) (f) , Pd/C 9
z
Dielectric of Solvent
Constant
Scheme 6 R-N CH
34Ο
Η
R-N
\
*C/
NH
„„f
NH
i C 3
0
J Η CH3
(V)
Pd/C
-o-cCH
/
CHo
N 2
/ \
•c
COOH /
c-..„ 0
CH^
3
The change i n c o n f i g u r a t i o n o f t h e r e s u l t i n g amino a c i d w i t h t h e use o f d i f f e r e n t asymmetric m o i e t i e s i s a l s o e x p l a i n e d by the c h e l a t i o n h y p o t h e s i s ( 1 2 ) (Scheme 7 ) . I n t h e s e q u e l , we w i l l d i s c u s s a g e n e r a l i z a t i o n o f the c h e l a t i o n h y p o t h e s i s as i t a p p l i e s t o r e a c t i o n s o t h e r t h a n hydrogénation o f S c h i f f bases o f α-keto a c i d s w i t h c h i r a l amines. The c a t a l y t i c hydrogénation o f p y r u v i c a c i d amide r e s u l t e d i n the f o r m a t i o n o f l a c t a m i d e i n h i g h o p t i c a l p u r i t y (75-99% d i a s t e r e o m e r i c excess)(13). T h i s might be e x p l a i n e d by the c h e l a t e c o n f o r m a t i o n o f the s u b s t r a t e - c a t a l y s t complex shown i n Scheme 8. The c a t a l y t i c hydrogénation o f o p t i c a l l y a c t i v e b e n z o i n oxime r e s u l t e d i n t h e s t e r e o s e l e c t i v e f o r m a t i o n of o p t i c a l l y a c t i v e erythro diphenylethanolamine in
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
ASYMMETRIC
174
REACTIONS
Scheme 7 ?3 /? .COOiBu
CH
C
,
C
/~ \/\-CH
Bzl-N^ ,NH \ * 'n~"
— H
3
A N D PROCESSES
C
N - f "
Η
N
λ
Ν
(pdi
3
2
3
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
Z
2
H
t
N
H
2
CH (R)64%ee 3
Scheme 8 CH\ _ • 0 R I (§)
2N
H
H
H
3
5
c
2
n
Ο
H
CH Ο ,C H ÇOOH 2 \ c _ ' /-icSoiBu H I — «g V \ — - 3 (S)41%ee
5
C 0 0 l B u H
C
COOH
A - C H 3 —
H
CH Ο CH >- f c^B 1-/ > \ — (Pd) —
CHEMISTRY
Ο COOiBu
3
2
IN
3
CHo
2
^Ο R, (,„ S) x
.NH \ H / (S) V \ H (Pd),η 75 - 99%(§-S) high optical and diastereomeric purity(14) (Scheme 9). Benzil monoxime was similarly hydrogenated using a palladium catalyst to form erythro diphenylethanolamine (15). If the conformation of the substrate in the reaction is planar, as expected from steric and elec tric considerations, the resulting hydrogénation product should be the threo isomer(16) (Scheme 10). In Scheme 9 C H^ 6
E
χ
#
6
( § )
C *5
/
\
6
2
H
/N-OH
(Pd) n
H 0
Ç H
6
""/~\ H 0
P d / C
5
Ρα/C'
6
5
5
H-C-OH (S) erythro H-C-NH (R) 85 - 90 % (S-R) I 2
65 H
Scheme 10 Ç H 6
5
HO-C-H + I H-C-NH CH racemic threo isomer 2
6
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
5
HARADA
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
11.
Heterogeneous
Asymmetric
Catalytic
Hydrogénation
175
f a c t , however, the r e s u l t i n g d i p h e n y l e t h a n o l a m i n e was found t o be p r e d o m i n a n t l y the e r y t h r o form. S i m i l a r r e s u l t s have been r e p o r t e d i n the s y n t h e s i s o f t h r e o n i n e , p h e n y l s e r i n e and ephedrine(17-21) (Scheme 11). I n 1953 Chang and Hartung p r o p o s e d a mechanism f o r the hydrogénation o f d i k e t o n e monoxime which e x p l a i n s the f o r m a t i o n o f a s i n g l e racemic m o d i f i c a t i o n ( e r y t h r o form) by the f o r m a t i o n o f a r i g i d r i n g - l i k e s t r u c t u r e w i t h the c a t a l y s t (22) . The e x p l a n a t i o n c o u l d be r e g a r d e d as a c h e l a t i o n h y p o t h e s i s p r e c e d i n g t h e present generalized c h e l a t i o n hypothesis i n c a t a l y t i c hydrogénation. R e c e n t l y , s u p p o r t f o r the c h e l a t i o n h y p o t h e s i s was o b t a i n e d by examining the i n f r a r e d d i c h r o i s m o f t h e s u b s t r a t e a d s o r b e d on a m e t a l s u r f a c e u s i n g t h e h i g h s e n s i t i v i t y r e f l e c t i o n method(23-26). I n t h e s e i n v e s t i g a t i o n s the o r i e n t a t i o n o f the s u b s t r a t e on the m e t a l s u r f a c e i s j u s t as assumed by the c h e l a t i o n h y p o t h e s i s . I t was found t h a t the OH, C=0, NH~, =NOH groups i n t e r a c t w i t h the m e t a l s u r f a c e and the s u b s t r a t e s s t a n d on the c a t a l y s t s u r f a c e v e r t i c a l l y . The o b s e r v a t i o n o f the i n f r a r e d d i c h r o i s m i s c o n s i d e r e d t o be a d i r e c t p h y s i c a l e v i d e n c e f o r the c h e l a t i o n h y p o t h e s i s (Scheme 12). Scheme 11 C*H 6 5 rt
C
CH
H
, 6 5 •C
COOEt /
3
HO-N
•c w
C//
w
6
6
N-OH
,0 M
C H
n
65
C »5
M
M
CH
5
CH-
3
F^COOEt
->c—c'
C H5
.COOEt -C \ NH-Ac
6
H
HO
/
\
0
N-CH,
NH-Ac M
M
M Scheme 12 C
H 6
5 S
CH, CH
OH
2
H-^C-C
7
,0
H.V,•C—C J +/ H N^
\ .0'
3
HO
7
\ (Ni) C Hc "COOEt fi
(Ni), CH-
C—c
C—C
// 0
OEt
% ,ΝΟΗ *(Pd)'
//
% ,0
HON^ N
(Pdf'-
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by RUTGERS UNIV on March 8, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch011
176
ASYMMETRIC REACTIONS AND PROCESSES IN CHEMISTRY
Literature Cited 1. Hiskey,R.G.; Northrop,R.C. J. Am. Chem. Soc. 1961, 83, 4798. 2. Kanai,A.; Mitsui,S. J. Chem. Soc. Jpn. (Pure Chem. Sec.) 1966, 89, 183. 3. Harada,K.; Matsumoto,K. J. Org. Chem. 1967, 32, 1794. 4. Harada,K.; Matsumoto,K. J. Org. Chem. 1968, 33, 4467. 5. Harada,K.; Yoshida,T. B u l l . Chem. Soc. Jpn. 1970, 43, 921. 6. Harada,K.; Kataoka,Y. Tetrahedron Lett. 1978, 2103. 7. Harada,K.; Tamura,M. B u l l . Chem. Soc. Jpn. 1979, 52, 1227. 8. Harada,K.; Yoshida,T. J. Chem. Soc. Chem. Commun. 1970, 1071. 9. Harada,K.; Yoshida,T. J. Org. Chem. 1972, 37, 4366. 10. Harada,K.; Kataoka,Y. Chem. Lett. 1978, 791. 11. Hiskey,R.G.; Northrop,R.C. J. Am. Chem. Soc. 1965, 87, 1753. 12. Harada,K.; Matsumoto,K. B u l l . Chem. Soc. Jpn. 1971, 44, 1068. 13. Harada,Κ.; Munegumi,Τ.; Nomoto,S. Tetrahedron Lett. 1981, 22, 111. 14. Harada,Κ.; Shiono,S.; Nomoto,S. unpublished result. 15. Ishimaru,T. J. Chem. Soc. Jpn. (Pure Chem. Sec.) 1960, 81, 643. 16. Harada,K. In "The Chemistry of the Carbon-nitrogen Double Bond"; Patai,S., E d . ; Interscience Publishers: London, 1970; pp 255-298. 17. Albertson,N.F.; T u l l a r , B . F . ; King,J.A. J. Am. Chem. Soc. 1948, 70, 1150. 18. Pfister,K.; Robinson,C.A.; Schabica,A.C.; Tishler, M. J. Am. Chem. Soc. 1948, 70, 2297. 19. Pfister,K.; Robinson,C.A.; Schabica,A.C.; Tishler, M. J. Am. Chem. Soc. 1949, 71, 1101. 20. Bolhofer,W.A. J. Am. Chem. Soc. 1952, 74, 5459. 21. Freudenberg,K.; S c h ö f f e l , E . ; Braun,E. J. Am. Chem. Soc. 1932, 54, 234. 22. Chang,Y.; Hartung,W.H. J. Am. Chem. Soc. 1953, 75, 89. 23. Hatta,A.; Suëtaka,W. B u l l . Chem. Soc. Jpn. 1975, 48, 2428. 24. Hatta,A.; Moriya,Y.; Suëtaka,W. B u l l . Chem. Soc. Jpn. 1975, 48, 3441. 25. Osawa,M.; Hatta,A.; Harada,K.; Suëtaka,W. B u l l . Chem. Soc. Jpn. 1976, 49, 1512. 26. Suëtaka,W.; Harada,Κ. unpublished result. RECEIVEDJanuary 4, 1982.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.