Subscriber access provided by BUFFALO STATE
Article
Copper/B2pin2-Catalyzed Difluoroalkylation of Methylenecyclopropanes with Bromodifluorinated Acetates and Acetamides: One-pot Synthesis of CF2-Containing Dihydronaphthalene Derivatives Chuang Liu, Yan-Jie Yang, Jun-Ying Dong, Mingdong Zhou, Lei Li, and He Wang J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01106 • Publication Date (Web): 26 Jul 2019 Downloaded from pubs.acs.org on July 27, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Copper/B2pin2-Catalyzed Difluoroalkylation of Methylenecyclopropanes with Bromodifluorinated Acetates and Acetamides: One-pot Synthesis of CF2Containing Dihydronaphthalene Derivatives Chuang Liu, Yan-Jie Yang, Jun-Ying Dong, Ming-Dong Zhou, Lei Li* and He Wang* School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
Abstract: A novel copper/B2pin2-catalyzed difluoroalkylation of methylenecyclopropanes with bromodifluorinated acetates and acetamides via tandem radical process involving ringopening/intramolecular cyclization has been reported. This protocol is not only tolerated to a diverse range of substrates, but also applicable to the synthesis of useful difluoromethylated compounds. Moreover, the reaction could be performed on a gram scale with high yield, which opens up the possibility for practical applications. R1 R
R1 + BrCF2COR2
Cu(I)/B2pin2
CF2COR2
R 80 C 29 examples up to 93% yield One-pot to CF2-containing dihydronaphthalenes via tandem radical process Readily available substrate and broad scope
Introduction Dihydronaphthalene derivatives are useful synthetic building blocks and widely present in various medicines and natural products.1 They have explicitly exhibited fascinating biological activities and used as fluorescent ligands for the estrogen receptor.2 On the other hand, organofluorine compounds play significant roles in pharmaceutical, agrochemical and material sciences.3 Thus, the incorporation of a fluorinated group into dihydronaphthalene derivatives has attracted a lot of attention.4-6 Among them, the remarkable CF3-containing
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 35
dihydronaphthalene derivatives have been synthesized through a copper-catalyzed tandem trifluoromethylation/cyclization of internal alkynes with Togni’s reagent or Umemoto’s reagent (Scheme 1a).5 In contrast, the construction of CF2-containing dihydronaphthalene derivatives has rarely been reported.6 For instance, the Zhang group reported a palladium-catalyzed Hecktype fluoroalkylation reaction of alkenes (Scheme 1b).[6e] Recently, Cheng has made significant advances in the development of visible-light-promoted difuoroalkylation/C-H annulation cascade reaction of cyclopropyl olefins by iridium catalyst (Scheme 1c).[6c] Given that the gemdifluoromethylene group (CF2) can act as a potential bioisostere of hydroxy groups or a carbonyl group, and enhance the acidity of the neighboring group, dipole moments, and conformational changes,7 the development of novel methods with generality and practicality for the construction of CF2-containing dihydronaphthalene derivatives is highly desirable. Fu's and Xiao's works R2
R2 [Cu]
R1
n
X
CF3
R1
[CF3+]
X
(a)
n
Zhang's work R1 + R3F2C X
R R2
[Pd] Xantphos
R1 CF2R3
R
(b)
R2
Cheng's work R +
Ar
R X
[Ir]
R = CF2COR1, CHFCO2Et, CF3 (c) CH2CN, CH(CO2Et)2
LEDs
This work R1 R
R1 2 + BrCF2COR
Cu(I)/B2pin2
CF2COR2 R
Scheme 1. Synthesis of fluorine-containing dihydronaphthalene derivatives. Over the past decades, transition-metal catalyzed radical difluoromethylation has emerged as a powerful strategy for the introduction of gem-difluoro group to organic molecules.8
ACS Paragon Plus Environment
Page 3 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Recently, a series of copper-catalyzed difluoroalkylation reactions have been explored for the construction of C-CF2 bonds.9 The difluoroalkyl (CF2)-radical, a powerful intermediate in organic synthesis, could also be readily generated via copper catalysis, which has been widely employed in addition reactions and cross-coupling reactions. Owing to high ring strain and reactivity, methylenecyclopropanes (MCPs) are a type of interesting building blocks and widely used in organic synthesis.10 In particular, the fluorination of MCPs has been explored extensively to construct useful fluorine-containing scaffolds recently.11 For example, the Shi group reported an elegant copper(I)-catalyzed intramolecular trifluoromethylation of MCPs for the one-pot synthesis of CF3-containing dihydronaphthalene derivatives.5b As part of our interest in C-CF2 bond-forming reactions,12 we herein report a copper/B2pin2-catalyzed difluoroalkylation of MCPs with bromodifluorinated reagents for the synthesis of CF2containing dihydronaphthalene derivatives. Results and Discussion We initiated our investigation on the reaction of MCPs 1a with ethyl bromodifluoroacetate 2a (Table 1). Using CuCl as a catalyst, dtbbpy as ligand, and B2pin2 as the additive, the cascade reaction afforded the desired product 3a in 80% yield using NaHCO3 in 1,4-dioxane at 80 °C (entry 1). Variation of Cu(I) and Cu(II) species indicated that CuBr was superior to the other copper salts (entries 1-6). Other ligands such as 1,10-phenanthroline (1,10-phen), 2,2′bipyridine (bpy), N,N′-dimethylethylenediamine (DMEDA) did not promote this reaction, and afforded 3a in low yield (entries 7-9). After a screening of several parameters (for more details, see SI, Table S1), the reaction proceeded well and gave 3a in 84% yield when CuBr (10 mol %)/dtbbpy (10 mol %) was used in combination with B2pin2 (30 mol %) and NaHCO3 in
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 35
1,4-dioxane at 80 °C for 16 h (entry 2). Control experiments revealed that both the catalyst and an inert atmosphere are crucial for the success of this transformation, and the omission of dtbbpy, B2pin2, or NaHCO3 led to rather poor conversion (entries 10-14). Table 1. Optimization of Reaction Conditionsa
+ BrCF2CO2Et
1a t
catalyst (10 mol %) ligand (10 mol %) B2pin2 (30 mol %) base (2 equiv) solvent (1.0 mL) 80 C, N2, 16 h
2a t
Bu
CF2CO2Et
3aa
Bu NH HN
N
N
N L1
N
N L2
N L3
entry
cat.
ligand
yield (%)b
1
CuCl
L1
80
2
CuBr
L1
84
3
CuI
L1
54
4
CuCl2
L1
74
5
CuBr2
L1
80
6
Cu(OAc)2
L1
64
7
CuBr
L2
32
8
CuBr
L3
27
9
CuBr
L4
19
10c
-
L1
0
11d
CuBr
-
15
12e
CuBr
L1
13
ACS Paragon Plus Environment
L4
Page 5 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
aReaction
13f
CuBr
L1
10
14g
CuBr
L1
0
conditions: 1a (0.2 mmol), 2a (0.4 mmol), B2pin2 (30 mol %), cat. (10 mol %), ligand
(10 mol %), and base (2.0 equiv) in a solvent (1.0 mL) under N2 at 80 °C for 16 h. bIsolated yield. cNo copper catalyst was used. dNo ligand was used. eNo B2Pin2 was used. fNo base was used. gUnder air. With the optimized conditions in hand, the scope and generality of a series of MCPs was then evaluated. As shown in Scheme 2, the tandem cyclization reaction could proceed well to afford corresponding products in moderate to high yields. Diphenylmethylenecyclopropanes bearing different electron-donating and halogen groups at the para-position of the phenyl ring reacted efficiently to give the CF2-containing dihydronaphthalenes 3aa-3af in good yields. Next, MCPs containing one phenyl group have been proved to be suitable for this transformation. Mono-and di-substituted MCPs bearing various functional groups, such as methyl, methoxy, benzyloxy, halogen, and trifluoromethyl groups were viable for this transformation in moderate to good yields (3ga-3sa). Among them, subjection of the substrates 1g, 1k, 1m, and 1r to the standard conditions gave moderate yields. As these substrates represent weak stability at room temperature, we assume the partially decomposition of substrates may occur under 80 °C, which might be responsible for the low yields of products. Furthermore, substrates containing an alkyl group also gave the desired product in 37% and 45% yields (3ta and 3ua), respectively. However, changing the cyclopropyl group to cyclobutyl group (1v) failed to afford the product in the present reaction system. To demonstrate the synthetic practicality of this catalytic system, synthesis of product 3aa on a 5 mmol scale was conducted and a 79% isolated yield was
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 35
achieved.
R
R
1
+ BrCF2CO2Et
1
2a
CuBr (10 mol %) dtbbpy (10 mol %) B2pin2 (30 mol %) NaHCO3 (2 equiv) 1,4-dioxane (1.0 mL) 80 oC, N2,16 h
Me
Me
3aa, 84%, 79%c
Cl
Br
MeO
Me 3ha, 62%d 66% (3ha:8ha90:10)e
CF2CO2Et
CF2CO2Et
OBn 3la, 70%d 75% (3la:8la91:9)e
3ka, 46%d 49% (3ka:8ka91:9)e
Br
Me
MeO
CF2CO2Et
CF2CO2Et
CF2CO2Et
CF2CO2Et
CF2CO2Et
3ga, 43%d 47% (3ga:8ga87:13)e
3ja, 72%d 78% (3ja:8ja=92:8)e
CF2CO2Et
F 3da, 66%
F3C
Br
Br 3ma, 44%d 45% (3ma:8ma93:7)e
F
CF2CO2Et
CF2CO2Et
CF2CO2Et
3ia, 61%d 68% (3ia:8ia90:10)e
OMe
CF2CO2Et
3ca, 84%
3fa, 73%
Cl
8
Br
3ea, 86%
R1
R
CF2CO2Et
CF2CO2Et
Br
EtO2CF2C
1
3
3ba, 75%
CF2CO2Et
R
R
CF2CO2Et
CF2CO2Et
Cl
CF2CO2Et
OBn 3oa, 66%d 72% (3oa:8oa92:8)e
OMe 3na, 67% CF2CO2Et
CF2CO2Et
OMe 3pa, 83% CF2CO2Et Me
Br
OBn Cl Cl 3qa, 63%d 3ra, 46%d 67% (3qa:8qa85:15)e 59% (3ra:8ra90:10)e
Me
Br 3sa, 72%d 77% (3sa:8sa93:7)e
3ta, 37%d 40% (3ta:8ta85:15)e
CF2CO2Et n
Pr
3ua, 45%d 48% (3ua:8ua85:15)e
1v, (no reaction)
Scheme 2. Scope of MCPs. aReaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), B2pin2 (30 mol %), CuBr (10 mol %), dtbbpy (10 mol %), and NaHCO3 (2.0 equiv) in a 1,4-dioxane (1.0 mL) under N2 at 80°C for 16 h. bIsolated yield. cReaction was performed with 5 mmol of 1a. d After the reaction, the mixture was treated by AgNO3 (0.08 mmol) in EtOH and refluxed for 10 h to remove byproduct 8. e The ratio product 3/byproduct 8 was determined by the crude 1H NMR and 19F NMR spectroscopy of isolated mixture.
ACS Paragon Plus Environment
Page 7 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Given the importance of the gem-difluoromethylene group, we next turned our attention to the scope of bromodifluoroacetamides (Scheme 3). Various N,N-disubstituted amides, such as diethylamine, pyrrolidine, piperidine, and morpholine, were proven to be viable difluoroalkylation reagent as well, furnishing the CF2-containing dihydronaphthalenes in good yields (3ab-3ae). Comparable yields were obtained for the N-substituted anilines 3ag-3ai, implying that the presence of a free N-H bond in bromodifluoroacetamides has no significant impact on this reaction. CuBr (10 mol %) dtbbpy (10 mol %) B2pin2 (30 mol %)
O +
R2
BrF2C
1a
F F NEt2
3ab, 64% O
F F
F F N
O Ph
O Ph
3ac, 61%
3ad, 84%
F F
N O Ph
H N
F F Ph
O Ph
3ae, 61% F F
3
N
O Ph
O Ph 3ah, 93%
O Ph
3af, 71% F
H N Br
R2
O Ph
NaHCO3 (2 equiv) 1,4-dioxane (1.0 mL) 80 oC, N2,16 h
2
F F
F F
H N Me
3ag, 76%
F H N O Ph
CF3
3ai, 72%
Scheme 3. Scope of bromodifluoroacetamides. aReaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), B2pin2 (30 mol %), CuBr (10 mol %), dtbbpy (10 mol %), and NaHCO3 (2.0 equiv) in a 1,4-dioxane (1.0 mL) under N2 at 80°C for 16 h. bIsolated yield. The product 3aa could be reduced with NaBH4 in anhydrous THF to yield compound 4aa (Scheme 4, eq 1). NBS-promoted oxidation of product 3aa in EtOH led to the formation of
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 35
CF2-containing naphthalene 5aa in 65% yield (Scheme 4, 2). Considering the valuable CF2H moiety,13 removal of the ester moiety was achieved to provide difluoromethylated compound 7aa in 53% yield (Scheme 4, eq 3). To gain some insight into the catalytic mechanism, radical trapping experiments were then carried out. The standard reaction was found to be completely suppressed by radical inhibitors 2,2,6,6,-tetramethyl-1-piperidinyloxy (TEMPO) and 1,1diphenylalkene, suggested that a radical process might be involved in this reaction. (Scheme 4, eq 4). CF2CO2Et Ph
CF2CH2OH NaBH4
3aa
4aa, 85% CF2CO2Et Ph
CF2CO2Et NBS EtOH, rt, 2 h
3aa
5aa, 65%
Ph 3aa
Ph 1a
(2)
Ph
CF2CO2Et
Ph
(1)
Ph
EtOH, rt, 2 h
CF2H
CF2CO2H 1M K2CO3 MeOH, rt, 2 h
Ph
CsF NMP, N2, 170 C, 3 h
6aa, 94% CuBr (10 mol %) dtbpy (10 mol %) B2pin2 (30 mol %) BrCF2CO2Et NaHCO3 (2 equiv) 1,4-dioxane (1.0 mL) 80 oC, N2,16 h 2a
Ph
(3)
7aa, 53%
3aa TEMPO: 0% 1,1-diphenylethylene: 0%
N O
(4)
CF2CO2Et detected by GCMS
Scheme 4. Derivatives (derivatization) of CF2-containing dihydronaphthalenes and mechanistic studies On the basis of our experimental results and the previous mechanistic investigations,[5b, 9b] a plausible mechanism is suggested starting from LCuIX complex A (Scheme 5). The CuI-Bpin species B is generated between A and B2pin2 in the presence of NaHCO3. Subsequently, a single electron transfer (SET) from species B to bromodifluorinated reagent 2 gives the intermediate
ACS Paragon Plus Environment
Page 9 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
C and a CF2COR2 radical D. Addition of radical D to MCPs 1 with a ring-opening process delivers radical intermediate E, which undergoes intramolecular radical cyclization to generate intermediate F. The intermediate F could be oxidized by intermediate D, followed by proton abstraction to afford the product 3 in the presence of base.
BrCF2COR2 2
CF2COR2 C
R1
R 1
NaHCO3
CF2COR2
X Bpin L CuII Bpin R Br D
L CuI Bpin
LCuX B2pin2
A
B H CF2COR2
E
base
R1
R
R1
CF2COR2
3
R1
R F
Scheme 5. Postulated Mechanism. In summary, we have described a copper/B2pin2-catalyzed system to construct CF2containing dihydronaphthalenes from easily available MCPs and bromodifluorinated reagents. This catalytic system tolerates a broad scope of substrates with good reaction efficiency. The products were successfully applied in the synthesis of a series of useful difluoromethylated compounds. This protocol also holds promise for application in drug chemistry. Experimental Section General Information. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. 1H, 13C and 19F NMR spectra were recorded using CDCl3 or DMSO-d6 as a solvent on a 400 MHz spectrometer at 298 K. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in 1H and
ACS Paragon Plus Environment
13C
NMR
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
spectroscopy. HRMS data were obtained via ESI mode with a TOF mass analyzer. All solvents were obtained from commercial sources and were used as received. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE). Synthesis of MCPs 1. Method 1: KOtBu (2.53 g, 22.5 mmol) was added at room temperature in three portions (7.5 mmol each) to a stirred suspension of 3-bromopropyltriphenylphosphonium bromide (4.64 g, 10 mmol) in dry THF (45 mL). After the solution was stirred at room temperature for 30 min. The orange solution was then refluxed for 2 h before aryl ketones (10 mmol) was added and stirring was continued at 65 °C for overnight. The reaction mixture was quenched by brine (20 mL) at room temperature, the aqueous layer was extracted with hexane (3 × 10 mL). The combined organic layers were washed with brine (4 × 10 mL), dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography over silica gel with PE / EA to afford the corresponding product 1. Method 2: To a suspension of 0.85 g of NaH (53% suspension in mineral oil) in 20 ml 1,2dimethoxyethane, 3-bromopropyltriphenylphosphonium bromide (4.64 g, 10 mmol) was added at room temp under N2, and then two drops of EtOH were added. This mixture was stirred for 6 h at 60-70 °C. Aryl ketones (10 mmol) was added and the mixture was stirred at 70 ℃ for an additional 5 h. The mixture was poured into ice-water and extracted with hexane. The hexane extract was dried and concentrated. The crude reaction mixture was purified by flash column chromatography over silica gel with PE / EA to afford the corresponding product 1. MCPs 15b,14 and bromodifluoroamides 29f,15 were synthesized according to the literatures.
ACS Paragon Plus Environment
Page 10 of 35
Page 11 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
MCPs 1a, 1b, 1c, 1d, 1e;14f 1f, 1t;14a 1g, 1l, 1n;5b 1h, 1i, 1j, 1p, 1m, 1s, 1v;14c 1k,14b 1o,14e 1r;14d and 2a, 2b, 2c, 2d, 2e;15 2f, 2g, 2h9f were reported in previous literatures, MCPs 1q, 1u and bromodifluoroamide 2i were reported for the first time and their physical data and spectroscopic were presented as follow: 2-(Benzyloxy)-4-bromo-1-(cyclopropylidenemethyl)benzene (1q). White solid; m.p. 88-89 °C; yield: 376.8 mg (60%); 1H NMR (400 MHz, CDCl3) δ 7.65-7.63 (m, 1H), 7.47-7.44 (m, 2H), 7.43-7.38 (m, 2H), 7.37-7.26 (m, 1H), 7.13-7.07 (m, 3H), 5.07 (s, 2H), 1.38-1.34 (m, 2H), 1.171.12 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 155.0, 135.8, 127.9, 127.4, 126.9, 126.7, 125.8, 124.4, 123.3, 119.9, 115.0, 110.7, 69.8, 3.2, 0.0. HRMS (ESI) m/z: [M+Na]+ Calcd for C17H15BrONa+ 337.0198, found 337.0191. (1-Cyclopropylidenebutyl)benzene (1u). Yellow oil; yield: 244.2 mg (71%); 1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.0 Hz, 2H), 7.34-7.30 (m, 2H), 7.22-7.18 (m, 1H), 2.65-2.61 (m, 2H), 1.62-1.52 (m, 2H), 1.40-1.36 (m, 2H), 1.15-1.11 (m, 2H), 0.93-0.89 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 139.0, 126.9, 125.9, 125.1, 124.7, 119.4, 34.7, 20.5, 12.8, 3.6, 0.0. HRMS (ESI) m/z: [M+Na]+ Calcd for C13H16Na+ 195.1144, found 195.1136. 2-Bromo-2,2-difluoro-N-(4-(trifluoromethyl)phenyl)acetamide (2i). White solid; m.p. 142-143 °C; yield: 412.3 mg (65%); 1H NMR (400 MHz, CDCl3) δ 7.99 (br, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 157.7 (t, J = 27.7 Hz), 138.3, 128.2 (q, J = 32.8 Hz), 126.7 (q, J = 3.8 Hz), 123.7 (q, J = 270.2 Hz), 120.3, 111.1 (t, J = 314.8 Hz). HRMS (ESI) m/z: [M+Na]+ calcd for C9H5BrF5NONa+ 339.9367, found 339.9358. Synthesis of CF2-containing dihydronaphthalenes 3. MCPs (1, 0.2 mmol), ethyl bromodifluoroacetate (2a, 0.4 mmol), B2pin2 (30 mol %), CuBr (10 mol %), dtbbpy (10 mol %),
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
and NaHCO3 (2 equiv) was added in 1,4-dioxane (1 mL), and stirred under N2 in an oil bath heated at 80°C for 16 h. After the reaction, 1,4-dioxane was removed under reduced pressure, EtOH (1 mL) was then added, followed by addition of AgNO3 (0.4 mmol). The mixture was further stirred under reflux for 10 h. Purification was finally performed by flash column chromatography on silica gel using EtOAc and petroleum ether to give the desired product 3. Note: When using MCPs containing only a phenyl group as the substrate, a difluoroalkylsubstituted homoallylic halide by-product 8 was observed. Since product 3 and by-product 8 represent the same Rf in chromatography, the reaction mixture was further treated with AgNO3 to convert by-product 8 to the corresponding difluoroalkyl-substituted homoallylic nitrates and difluoroalkyl-substituted homoallylic ethers. (For more details please see below the characterization of 9ja and 10ja). Following this procedure, a gram-scale synthesis of 3aa were conducted in a 75 ml pressure resistant tube sealed using 5 mmol 1a and 10 mmol 2a with other chemicals scale-up proportionally base 1a, and stirred under N2 in an oil bath heated at 80°C for 16 h. Afterwards, the reaction mixture was evaporated to remove the solvent, followed by adding brine (20 mL) and ethyl acetate (15 mL) to the resulting slurry mixture. The organic layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 30 mL). The combined organic layers ware further dried over anhydrous sodium sulphate (Na2SO4), filtered over a sintered funnel and evaporated to dryness. The crude product was finally purified by flash chromatography over silica gel with PE / EA = 200:1 to afford the corresponding product 3aa (1.3 g, yield: 79%). Ethyl 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)acetate (3aa). Yellow oil; yield:
ACS Paragon Plus Environment
Page 12 of 35
Page 13 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
54.8 mg (84%); 1H NMR (400 MHz, CDCl3) δ 7.33-7.28 (m, 3H), 7.12-7.11 (m, 2H), 7.10-7.07 (m, 2H), 6.99-6.94 (m, 1H), 6.53 (d, J = 7.6 Hz, 1H), 3.87 (q, J = 7.2 Hz, 2H), 2.89 (t, J = 8.0 Hz, 2H), 2.58 (t, J = 8.0 Hz, 2H), 1.13 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.8 (t, J = 34.2 Hz), 141.2 (t, J = 6.9 Hz), 136.4, 136.1, 135.4, 130.3 (t, J = 2.1 Hz), 128.5, 128.2 (d, J = 23.3 Hz), 127.9, 127.8, 127.3 127.2, 126.5, 113.7 (t, J = 247.3Hz), 62.7, 27.9, 22.2 (t, J = 5.0 Hz), 13.7. 19F NMR (377 MHz, CDCl3) δ -96.3. HRMS (ESI) m/z: [M+Na]+ calcd for C20H18F2O2Na+ 351.1167, found 351.1162. Ethyl 2,2-Difluoro-2-[6-methyl-1-(p-tolyl)-3,4-dihydronaphthalen-2-yl]acetate (3ba). Yellow oil; yield: 53.6 mg (75%); 1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 8.0, 2H), 7.04-7.01 (m, 3H), 6.84 (d, J = 8.0 Hz, 1H), 6.51 (d, J = 7.6 Hz, 1H), 3.93 (q, J = 7.2 Hz, 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.62 (t, J = 8.0 Hz, 2H), 2.39 (s, 3H), 2.30 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.88 (t, J = 34.3 Hz), 141.2 (t, J = 7.2 Hz), 138.5, 137.4, 136.1, 133.5, 133.0, 130.1 (t, J = 2.0 Hz), 128.5, 128.1, 127.2, 127.1 (t, J = 23.5 Hz), 127.0, 113.9 (t, J = 246.9 Hz), 62.6, 27.9, 22.2 (t, J = 5.0 Hz), 21.3, 21.2, 13.7. 19F NMR (377 MHz, CDCl3) δ -95.9. HRMS (ESI) m/z: [M+Na]+ calcd for C22H22F2O2Na+ 379.1480, found 379.1488. Ethyl
2,2-Difluoro-2-(6-methoxy-1-(4-methoxyphenyl)-3,4-dihydronaphthalen-2-yl)acetate
(3ca). Yellow solid; m.p. 40-41 °C; yield: 65.0 mg (84%); 1H NMR (400 MHz, CDCl3) δ 7.087.05 (m, 2H), 6.92-6.88 (m, 2H), 6.74 (t, J = 1.6 Hz, 1H), 6.56 (d, J = 1.6 Hz, 2H), 3.93 (q, J = 7.2 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.96 (t, J = 8.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.9 (t, J = 34.5 Hz), 159.7, 159.2, 140.8 (t, J = 7.1 Hz), 138.2, 131.6 (d, J = 2.1 Hz), 128.7 (m), 125.8 (t, J = 23.6 Hz), 114.0 (t, J = 245.9 Hz), 113.3, 113.2, 111.1, 62.6, 55.3, 55.2, 28.4, 22.0 (t, J = 5.0 Hz), 13.7. 19F NMR
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(377 MHz, CDCl3) δ -95.2. HRMS (ESI) m/z: [M+Na]+ calcd for C22H22F2O4Na+ 411.1378, found 411.1367. Ethyl 2,2-Difluoro-2-(6-fluoro-1-(4-fluorophenyl)-3,4-dihydronaphthalen-2-yl)acetate (3da). Yellow oil; yield: 48.4 mg (66%); 1H NMR (400 MHz, CDCl3) δ 7.14-7.06 (m, 4H), 6.91 (dd, J = 8.8, 2.4 Hz, 1H), 6.73 (td, J = 8.4, 2.8 Hz, 1H), 6.54 (dd, J = 8.4, 5.6 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 2.98 (t, J = 8.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.8 (t, J = 34.4 Hz), 162.6 (d, J = 248.2 Hz), 162.4 (d, J = 246.0 Hz), 139.5 (d, J = 7.0 Hz), 138.8 (d, J = 8.1 Hz), 132.2 (d, J = 3.6 Hz), 131.9 (dt, J = 8.1, 2.2 Hz), 131.5 (d, J = 3.4 Hz), 129.0 (d, J = 8.7 Hz), 127.9 (td, J = 23.4, 2.4 Hz), 115.1 (d, J = 21.5 Hz), 114.5 (d, J = 21.8 Hz), 113.6 (t, J = 248.0 Hz), 113.1 (d, J = 21.3 Hz), 62.8, 27.9 (d, J = 1.7 Hz), 22.1 (t, J = 5.0 Hz), 13.8. 19F NMR (377 MHz, CDCl3) δ -96.5, -112.6, -113.7. HRMS (ESI) m/z: [M+Na]+ calcd for C20H16F4O2Na+ 387.0979, found 387.0984. Ethyl 2-(6-chloro-1-(4-chlorophenyl)-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ea). Yellow oil; yield: 68.4 mg (86%); 1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 2.4 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 7.01 (dd, J = 8.4, 2.4 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.62 (t, J = 8.0 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.6 (t, J = 34.3 Hz), 139.3 (t, J = 6.5 Hz), 137.9, 134.6, 134.4, 134.1, 133.5, 131.4 (t, J = 2.2 Hz), 128.9 (t, J = 23.1 Hz), 128.4, 128.3, 127.4, 126.6, 113.5 (t, J = 248.8 Hz), 63.0, 27.6, 22.2 (t, J = 4.9 Hz), 13.8. 19F NMR (377 MHz, CDCl3) δ -97.0. HRMS (ESI) m/z: [M+Na]+ calcd for C20H16Cl2F2O2+Na+ 419.0388, found 419.0381. Ethyl 2-(6-bromo-1-(4-bromophenyl)-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate (3fa). White solid; m.p. 116-117 °C; yield: 71.3 mg (73%); 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J
ACS Paragon Plus Environment
Page 14 of 35
Page 15 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
= 8.0 Hz, 2H), 7.35 (d, J = 2.0 Hz, 1H), 7.17 (dd, J = 8.4, 2.0 Hz, 1H), 7.04-7.01 (m, 2H), 6.456.42 (m, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.61 (t, J = 8.0 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.6 (t, J = 34.3 Hz), 139.3 (t, J = 6.4 Hz), 138.1, 135.1, 133.9, 131.7, 131.3, 130.3, 129.6, 129.0 (t, J = 23.0 Hz), 128.6, 122.8, 122.3, 113.5 (t, J = 249.1 Hz), 63.0, 27.5, 22.3 (t, J = 4.9 Hz), 13.8. 19F NMR (377 MHz, CDCl3) δ 97.1. HRMS (ESI) m/z: [M+Na]+ calcd for C20H16Br2F2O2Na+) 506.9377, found 506.9369. Ethyl 2-(3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ga). Yellow oil; yield: 21.9 mg (43%); 1H NMR (400 MHz, CDCl3) δ 7.24-7.17 (m, 2H), 7.15-7.12 (m, 2H), 6.87 (s, 1H), 4.34 (q, J = 7.2 Hz, 2H), 2.88 (t, J = 8.0 Hz, 2H), 2.47-2.42 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.8 (t, J = 35.2 Hz), 135.5, 131.9, 130.5 (t, J = 23.6 Hz), 128.9, 128.7 (t, J = 9.1 Hz), 127.7, 127.6, 126.8, 113.7 (t, J = 248.3 Hz), 63.0, 27.4, 21.3 (t, J = 2.8 Hz), 14.0.
19F
NMR (377 MHz, CDCl3) δ -107.3. HRMS (ESI) m/z: [M+Na]+ calcd for
C14H14F2O2Na+ 275.0854, found 275.0861. Ethyl 2,2-Difluoro-2-(6-methyl-3,4-dihydronaphthalen-2-yl)acetate (3ha). Yellow oil; yield: 33.0 mg (62%); 1H NMR (400 MHz, CDCl3) δ 7.03 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.97 (s, 1H), 6.84 (s, 1H), 4.34 (q, J = 7.2 Hz, 2H), 2.83 (t, J = 8.0 Hz, 2H), 2.44-2.40 (m, 2H), 2.33 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.9 (t, J = 35.3 Hz), 139.0, 135.5, 129.35 (t, J = 23.7 Hz), 129.2, 128.6 (t, J = 8.9 Hz), 128.5, 127.7, 127.4, 113.8 (t, J = 248.1 Hz), 63.0, 27.5, 21.4, 21.3 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -107.0. HRMS (ESI) m/z: [M+Na]+ calcd for C15H16F2O2Na+ 289.1011, found 289.1018. Ethyl 2-(6-chloro-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ia). Yellow oil; yield: 35.0 mg (61%); 1H NMR (400 MHz, CDCl3) δ 7.17 (dd, J = 8.0, 2.0 Hz, 1H), 7.14 (s, 1H), 7.06
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(d, J = 8.0 Hz, 1H), 6.83 (s, 1H), 4.35 (q, J = 7.2 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.46-2.41 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.7 (t, J = 35.0 Hz), 137.3, 134.3, 130.9 (t, J = 23.6 Hz), 130.4, 128.8, 127.8, 127.6 (t, J = 9.1 Hz), 126.9, 113.5 (t, J = 248.7 Hz), 63.1, 27.3, 21.0 (t, J = 2.8 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -107.3. HRMS (ESI) m/z: [M+Na]+ calcd for C14H13ClF2O2Na+ 309.0464, found 309.0469. Ethyl 2-(6-bromo-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ja). Yellow oil; yield: 47.5 mg (72%); 1H NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 8.0, 2.0 Hz, 1H), 7.30 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.82 (s, 1H), 4.35 (q, J = 7.2 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.45-2.40 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.6 (t, J = 35.0 Hz), 137.5, 131.1 (t, J = 23.7 Hz), 130.8, 130.6, 129.9, 129.0, 127.7 (t, J = 9.1 Hz), 122.5, 113.4 (t, J = 248.7 Hz), 63.1, 27.2, 21.0 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -107.4. HRMS (ESI) m/z: [M+Na]+ calcd for C14H13BrF2O2Na+ 352.9959, found 352.9963. Ethyl 2,2-Difluoro-2-(6-(trifluoromethyl)-3,4-dihydronaphthalen-2-yl)acetate (3ka). Yellow oil; yield: 29.4 mg (46%); 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 2.93 (t, J = 8.0 Hz, 2H), 2.512.46 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.48 (t, J = 34.6 Hz), 136.1, 135.1, 133.3 (t, J = 23.5 Hz), 130.5 (q, J = 32.1 Hz), 127.7, 127.4 (t, J = 9.0 Hz), 124.3 (q, J = 3.8 Hz), 124.0 (q, J = 270.5 Hz), 123.8 (q, J = 4.0 Hz), 113.3 (t, J = 248.9 Hz), 63.2, 27.2, 21.1 (t, J = 2.8 Hz), 13.9. 19F NMR (377 MHz, CDCl3) δ -62.7, -107.4. HRMS (ESI) m/z: [M+Na]+ calcd for C15H13F5O2Na+) 343.0728, found 343.0736. Ethyl 2-(8-(benzyloxy)-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3la). Yellow oil; yield: 50.2 mg (70%); 1H NMR (400 MHz, CDCl3) δ 7.43-7.36 (m, 4H), 7.35-7.30 (m, 2H),
ACS Paragon Plus Environment
Page 16 of 35
Page 17 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
7.15 (t, J = 8.0 Hz, 1H), 6.78 (t, J = 7.6 Hz, 2H), 5.08 (s, 2H), 4.32 (q, J = 7.2 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.45-2.41 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 164.0 (t, J = 34.8 Hz), 155.0, 137.3, 136.9, 129.6, 129.3 (t, J = 23.6 Hz), 128.6, 128.0, 127.3, 123.2 (t, J = 9.4 Hz), 121.1, 120.3, 114.0 (t, J = 247.5 Hz), 110.4, 70.3, 63.0, 27.8, 20.8 (t, J = 2.8 Hz), 13.9. 19F NMR (377 MHz, CDCl3) δ -106.4. HRMS (ESI) m/z: [M+Na]+ calcd for C21H20F2O3Na+ 381.1273, found 381.1272. Ethyl 2-(8-bromo-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ma). Yellow oil; yield: 29.1 mg (44%); 1H NMR (400 MHz, CDCl3) δ 7.42 (dd, J = 7.6, 1.6 Hz, 1H), 7.26-7.25 (m, 1H), 7.10-7.03 (m, 2H), 4.37 (q, J = 7.2 Hz, 2H), 2.87 (t, J = 8.0 Hz, 2H), 2.45-2.41 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 163.6 (t, J = 34.8 Hz), 138.14, 132.8 (t, J = 23.8 Hz), 131.2, 131.1, 129.8, 127.3 (t, J = 9.3 Hz), 126.8, 123.5, 113.5 (t, J = 248.5 Hz), 63.2, 28.3, 21.0 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -107.1. HRMS (ESI) m/z: [M+Na]+ calcd for C14H13BrF2O2Na+ 352.9959, found 352.9956. Ethyl 2-(5,8-Dimethoxy-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate (3na). Yellow oil; yield: 41.9 mg (67%); 1H NMR (400 MHz, CDCl3) δ 7.27-7.26 (m, 1H), 6.78 (d, J = 8.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.79 (s, 6H), 2.84 (t, J = 8.4 Hz, 2H), 2.41-2.35 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.95 (t, J = 35.0 Hz), 150.4, 150.3, 129.4 (t, J = 23.6 Hz), 125.0, 123.0 (t, J = 9.3 Hz), 121.8, 113.9 (t, J = 247.9 Hz), 111.9, 108.8, 62.9, 56.0, 55.9, 20.3, 20.2 (d, J = 3.0 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -106.9. HRMS (ESI) m/z: [M+Na]+ calcd for C16H18F2O4Na+ 335.1065, found 335.1063. Ethyl
2-(8-(benzyloxy)-5-methyl-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate
ACS Paragon Plus Environment
(3oa).
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 35
Yellow oil; yield: 49.0 mg (66%); 1H NMR (400 MHz, CDCl3) δ 7.42-7.30 (m, 6H), 7.02 (d, J = 8.4 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 5.06 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 2.78 (t, J = 8.4 Hz, 2H), 2.45-2.41 (m, 2H), 2.21 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 164.0 (t, J = 35.1 Hz), 153.5, 137.1, 135.2, 131.2, 128.6, 128.5 (t, J = 23.9 Hz), 127.9, 127.4, 127.2, 123.5 (t, J = 9.3 Hz), 121.1, 114.1 (t, J = 247.2 Hz), 110.0, 70.4, 62.9, 24.2, 20.5 (t, J = 2.8 Hz), 18.8, 13.9. 19F NMR (377 MHz, CDCl3) δ -106.4. HRMS (ESI) m/z: [M+Na]+ calcd for C22H22F2O3Na+ 395.1429, found 395.1424. Ethyl 2-(5-bromo-8-methoxy-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3pa). Yellow solid; m.p. 34°C; yield: 59.6 mg (83%); 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.8 Hz, 1H), 7.25 (t, J = 2.0 Hz, 1H), 6.64 (d, J = 8.8 Hz, 1H), 4.35 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 2.94 (t, J = 8.4 Hz, 2H), 2.45-2.41 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.8 (t, J = 34.9 Hz), 155.1, 135.9, 133.0, 129.7 (t, J = 23.8 Hz), 122.8, 122.5 (t, J = 9.3 Hz), 114.6, 113.6 (t, J = 248.3 Hz), 110.6, 63.0, 55.7, 27.5, 20.6 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -107.0. HRMS (ESI) m/z: [M+Na]+ calcd for C15H15BrF2O3+Na+ 383.0065, found 383.0072. Ethyl
2-(8-(benzyloxy)-6-bromo-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate
(3qa).
Yellow solid; m.p. 46 °C; yield: 55.2 mg (63%); 1H NMR (400 MHz, CDCl3) δ 7.43-7.32 (m, 5H), 7.23 (s, 1H), 6.95-6.93 (m, 2H), 5.05 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 2.81 (t, J = 8.0 Hz, 2H), 2.44-2.38 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.8 (t, J = 34.9 Hz), 155.4, 138.7, 136.1, 129.6 (t, J = 24.0 Hz), 128.7, 128.2, 127.4, 123.4, 122.8, 122.5 (t, J = 9.4 Hz), 120.2, 113.9, 113.8 (t, J = 247.8 Hz), 70.6, 63.0, 27.6, 20.7 (t, J = 2.8 Hz), 13.9.
19F
NMR (377 MHz, CDCl3) δ -106.5. HRMS (ESI) m/z: [M+Na]+ calcd for
ACS Paragon Plus Environment
Page 19 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
C21H19BrF2O3Na+ 459.0378, found 459.0383. Ethyl 2-(6,8-dichloro-3,4-dihydronaphthalen-2-yl)-2,2-difluoroacetate (3ra). White solid; m.p. 48 °C; yield: 29.5 mg (46%); 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 2.0 Hz, 1H), 7.23-7.21 (m, 1H), 7.06 (dd, J = 2.0, 1.0 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.462.42 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.45 (t, J = 34.7 Hz), 139.0, 134.3, 133.3, 132.8 (t, J = 23.8 Hz), 128.2, 127.6, 126.4, 123.9 (t, J = 9.3 Hz), 113.32 (t, J = 248.8 Hz), 63.2, 28.0, 20.8 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ 107.2. HRMS (ESI) m/z: [M+Na]+ calcd for C14H12Cl2F2O2Na+ 343.0075, found 343.0079. Ethyl 2-(8-bromo-6-methyl-3,4-Dihydronaphthalen-2-yl)-2,2-difluoroacetate (3sa). Yellow oil; yield: 49.7 mg (72%); 1H NMR (400 MHz, CDCl3) δ 7.26 (s, 1H), 7.21 (s, 1H), 6.91 (s, 1H), 4.37 (q, J = 7.2 Hz, 2H), 2.82 (t, J = 8.0 Hz, 2H), 2.43-2.39 (m, 2H), 2.29 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.7 (t, J = 34.6 Hz), 140.3, 137.9, 131.6 (t, J = 23.9 Hz), 131.5, 128.4, 127.8, 127.2 (t, J = 9.4 Hz), 123.3, 113.6 (t, J = 248.3 Hz), 63.1, 28.4, 21.0 (t, J = 2.8 Hz), 20.9, 14.0. 19F NMR (377 MHz, CDCl3) δ -106.8. HRMS (ESI) m/z: [M+Na]+ calcd for C15H15BrF2O2Na+ 367.0116, found 367.0127. Ethyl 2,2-Difluoro-2-(1-methyl-3,4-dihydronaphthalen-2-yl)acetate (3ta). Yellow oil; yield: 19.7 mg (37%); 1H NMR (400 MHz, CDCl3) δ 7.39-7.37 (m, 1H), 7.27-7.20 (m, 2H), 7.16-7.14 (m, 1H), 4.33 (q, J = 7.2 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.47-2.42 (m, 2H), 2.21 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 164.4 (t, J = 36.0 Hz), 136.4, 135.8, 135.7 (t, J = 7.6 Hz), 128.3-128.1 (m), 127.3 (t, J = 22.9 Hz), 127.2, 126.6, 124.1, 114.4 (t, J = 249.4 Hz), 62.9, 28.1, 22.7 (t, J = 5.9 Hz), 15.5 (t, J = 2.9 Hz), 14.0. 19F NMR (377 MHz, CDCl3) δ -101.1. HRMS (ESI) m/z: [M+Na]+ calcd for C15H16F2O2Na+ 289.1011, found 289.1017.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 35
Ethyl 2,2-difluoro-2-(1-propyl-3,4-dihydronaphthalen-2-yl)acetate (3ua). Yellow oil; yield: 26.5 mg (45%); 1H NMR (400 MHz, CDCl3) δ 7.39-7.37 (m, 1H), 7.25-7.20 (m, 2H), 7.19-7.15 (m, 1H), 4.32 (q, J = 7.2 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H), 2.42 (t, J = 7.6 Hz, 2H), 1.51-1.44 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 164.5 (t, J = 36.0 Hz), 140.5 (t, J = 5.1 Hz), 137.2, 134.3, 128.1, 127.5, 127.0 (t, J = 22.8 Hz), 126.5, 124.3, 114.47 (t, J = 249.5 Hz), 62.9, 30.6 (t, J = 2.6 Hz), 28.3, 22.9, 22.8 (t, J = 6.0 Hz), 14.1, 13.9. 19F NMR (377 MHz, CDCl3) δ -100.2. HRMS (ESI) m/z: [M+Na]+ calcd for C17H20F2O2Na+ 317.1324, found 317.1332. N,N-Diethyl-2,2-difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)acetamide (3ab). Yellow oil; yield: 45.5 mg (64%); 1H NMR (400 MHz, CDCl3) δ 7.38-7.31 (m, 3H), 7.20-7.15 (m, 4H), 7.06-7.01 (m, 1H), 6.63 (d, J = 8.0 Hz, 1H), 3.29 (q, J = 7.2 Hz, 2H), 3.20 (q, J = 7.2 Hz, 2H), 2.95 (t, J = 8.0 Hz, 2H), 2.64 (t, J = 8.0 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 162.59 (t, J = 30.5 Hz), 139.4 (t, J = 5.9 Hz), 137.5, 136.1, 135.7, 129.7 (t, J = 2.3 Hz), 129.4 (t, J = 22.1 Hz), 128.2, 127.8, 127.4, 127.2, 126.4, 116.6 (t, J = 251.1 Hz), 42.1 (t, J = 4.2 Hz), 41.6, 28.0, 23.3 (t, J = 4.6 Hz), 14.0, 12.4. 19F NMR (377 MHz, CDCl3) δ -92.4. HRMS (ESI) m/z: [M+Na]+ calcd for C22H23F2NONa+ 378.1640, found 378.1648. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)-1-(pyrrolidin-1-yl)ethan-1-one
(3ac).
Yellow oil; yield: 43.0 mg (61%); 1H NMR (400 MHz, CDCl3) δ 7.40-7.32 (m, 3H), 7.20-7.15 (m, 4H), 7.05-7.01 (m, 1H), 6.60 (d, J = 7.6 Hz, 1H), 3.33 (t, J = 6.4 Hz, 2H), 3.20 (t, J = 6.8 Hz, 2H), 2.97 (t, J = 8.0 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H), 1.83-1.76 (m, 2H), 1.74-1.67 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 161.8 (t, J = 31.0 Hz), 140.0 (t, J = 7.2 Hz), 136.8,
ACS Paragon Plus Environment
Page 21 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
136.2, 135.5, 123.0 (t, J = 1.9 Hz), 129.4 (t, J = 23.5 Hz), 128.3, 127.8, 127.7, 127.2, 127.1, 126.4, 115.8 (t, J = 249.9 Hz), 47.2, 46.4 (t, J = 4.7 Hz), 27.9, 26.4 (t, J = 14.4 Hz), 23.2, 22.7 (t, J = 4.8 Hz). 19F NMR (377 MHz, CDCl3) δ -93.9. HRMS (ESI) m/z: [M+Na]+ calcd for C22H21F2NONa+ 376.1483, found 376.1488. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)-1-(piperidin-1-yl)ethanone
(3ad).
Yellow oil; yield: 61.7 mg (84%); 1H NMR (400 MHz, CDCl3) δ 7.39-7.32 (m, 3H), 7.20-7.15 (m, 4H), 7.06-7.00 (m, 1H), 6.62 (d, J = 5.6 Hz, 1H), 3.36 (t, J = 5.6 Hz, 2H), 3.27 (t, J = 8.0 Hz, 2H), 2.95- (t, J = 8.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H), 1.61-1.55 (m, 2H), 1.52-1.45 (m, 4H). 13C{1H} NMR (100 MHz, CDCl3) δ 161.2 (t, J = 30.1 Hz), 139.9 (t, J = 6.8 Hz), 136.9, 136.1, 135.6, 129.8 (t, J = 2.2 Hz), 129.0 (t, J = 22.8 Hz), 128.3, 127.8, 127.7, 127.4, 127.2, 126.5, 116.1 (t, J = 248.3 Hz), 46.9 (t, J = 3.6 Hz), 43.9, 28.0, 26.1, 25.3, 24.4, 22.9 (t, J = 4.5 Hz).
19F
NMR (377 MHz, CDCl3) δ -91.6. HRMS (ESI) m/z: [M+Na]+ calcd for
C23H23F2NO+Na+ 390.1640, found 390.1643. 2,2-Difluoro-1-morpholino-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)ethanone (3ae). White solid; m.p. 119-120 °C; yield: 45.0 mg (61%); 1H NMR (400 MHz, CDCl3) δ 7.40-7.33 (m, 3H), 7.20-7.16 (m, 4H), 7.08-7.02 (m, 1H), 6.63 (d, J = 7.6 Hz, 1H), 3.61 (t, J = 4.8 Hz, 2H), 3.56 (t, J = 4.8 Hz, 2H), 3.45 (t, J = 4.4 Hz, 2H), 3.33 (t, J = 4.4 Hz, 2H), 2.95 (t, J = 8.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 161.5 (t, J = 30.6 Hz), 140.4 (t, J = 7.0 Hz), 136.7, 136.1, 135.4, 129.8 (t, J = 2.1 Hz), 128.5, 128.4 (t, J = 22.7 Hz), 127.9, 127.8, 127.4, 127.3, 126.5, 116.0 (t, J = 248.3 Hz), 66.5, 66.4, 46.5 (t, J = 3.7 Hz), 42.9, 27.9, 22.7 (t, J = 4.6 Hz). 19F NMR (377 MHz, CDCl3) δ -91.2. HRMS (ESI) m/z: [M+Na]+ calcd for C22H21F2NO2Na+ 392.1433, found 392.1437.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 35
2,2-Difluoro-N-phenyl-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)acetamide (3af). White solid; m.p. 120-121 °C; yield: 53.3 mg (71%); 1H NMR (400 MHz, CDCl3) δ 7.33-7.22 (m, 8H), 7.197.17 (m, 4H), 7.15- 7.11 (m, 1H), 7.04-7.00 (m, 1H), 6.58 (d, J = 8.0 Hz, 1H), 2.98 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 162.1 (t, J = 30.4 Hz), 141.3 (t, J = 6.5 Hz), 137.0, 136.1, 136.0, 135.3, 130.1 (d, J = 2.1 Hz), 129.0, 128.9 (d, J = 22.9 Hz), 128.5, 128.0, 127.7, 127.3, 127.1, 126.4, 125.2, 119.8, 115.1 (t, J = 253.1 Hz), 27.9, 22.9 (t, J = 5.3 Hz). 19F NMR (377 MHz, CDCl3) δ -97.2. HRMS (ESI) m/z: [M+Na]+ calcd for C24H19F2NONa+ 398.1327, found 398.1330. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)-N-(p-tolyl)acetamide
(3ag).
White
solid; m.p. 121-122 °C; yield: 59.1 mg (76%); 1H NMR (400 MHz, CDCl3) δ 7.32-7.25 (m, 3H), 7.21-7.15 (m, 7H), 7.09 (d, J = 8.0 Hz, 2H), 7.04-7.00 (m, 1H), 6.59 (d, J = 8.0 Hz, 1H), 2.98 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H), 2.31 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 161.9 (t, J = 30.1 Hz), 141.2 (t, J = 6.3 Hz), 137.1, 136.1, 135.3, 134.9, 133.6, 130.1 (t, J = 2.0 Hz), 129.4, 129.0 (t, J = 23.0 Hz), 128.5, 127.9, 127.7, 127.3, 127.0, 126.4, 119.8, 115.2 (t, J = 253.1 Hz), 27.9, 22.9 (t, J = 5.3 Hz), 20.9. 19F NMR (377 MHz, CDCl3) δ -97.3. HRMS (ESI) m/z: [M+Na]+ calcd for C25H21F2NONa+ 412.1483, found 412.1483. N-(4-bromophenyl)-2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)acetamide
(3ah).
White solid; m.p. 118-119 °C; yield: 84.4 mg (93%); 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 8.8 Hz, 2H), 7.30-7.16 (m, 10H), 7.05-7.00 (m, 1H), 6.58 (d, J = 7.6 Hz, 1H), 2.99 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 162.1 (t, J = 30.5 Hz), 141.5 (t, J = 6.8 Hz), 136.8, 136.0, 135.2, 135.1, 131.9, 130.2 (d, J = 2.0 Hz), 128.8 (t, J = 23.2 Hz), 128.6, 128.0, 127.8, 127.4, 127.0, 126.5, 121.3, 117.9, 115.0 (t, J = 254.3 Hz), 27.8, 22.7
ACS Paragon Plus Environment
Page 23 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(t, J = 5.4 Hz). 19F NMR (377 MHz, CDCl3) δ -96.6. HRMS (ESI) m/z: [M+Na]+ calcd for C24H18BrF2NONa+ 476.0432, found 476.0445. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)-N-(4(trifluoromethyl)phenyl)acetamide (3ai). White solid; m.p. 156-157 °C; yield: 63.8 mg (72%); 1H
NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.32 (s, 1H),
7.29-7.17 (m, 7H), 7.05-7.01 (m, 1H), 6.58 (d, J = 8.0 Hz, 1H), 3.00 (t, J = 8.0 Hz, 2H), 2.76 (t, J = 8.0 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 162.4 (t, J = 30.6 Hz), 141.7 (t, J = 7.0 Hz), 139.2 (q, J = 1.3 Hz), 136.8, 136.0, 135.1, 130.2 (t, J = 1.9 Hz), 128.7, 128.0, 127.9, 127.4, 127.1, 127.0 (q, J = 32.7 Hz), 126.5, 126.2 (q, J = 3.8 Hz), 123.9 (q, J = 270.0 Hz), 119.5, 115.0 (t, J = 252.6 Hz), 27.8, 22.6 (t, J = 5.4 Hz). 19F NMR (377 MHz, CDCl3) δ -62.2, -96.5. HRMS (ESI) m/z: [M+Na]+ calcd for C25H18F5NONa+ 466.1201, found 466.1209. Synthesis of compound 4aa. A round flask was equipped with a magnetic stir bar, 3aa
(0.2 mmol), NaBH4 (0.3 mmol), and EtOH (1.0 mL). The resulting mixture was stirred for 2 h at room temperature. The resulting solution was added HCl (2.5M, 0.5 mL). The reaction mixture was extracted with CH2Cl2 (10 mL × 3). The combined organic extracts were dried over anhydrous Na2SO4, After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography to give 4aa. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)ethanol (4aa). Yellow oil; yield: 48.6 mg (85%); 1H NMR (400 MHz, CDCl3) δ 7.41-7.33 (m, 3H), 7.19-7.15 (m, 4H), 7.05-7.01 (m, 1H), 6.58 (d, J = 7.6 Hz, 1H), 3.64 (td, J = 13.6, 6.8 Hz, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.56 (t, J = 8.0 Hz, 2H), 1.76 (t, J = 6.8 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ 140.1 (t, J = 5.6 Hz), 138.2, 135.9, 135.8, 129.6 (t, J = 2.4 Hz), 129.0 (t, J = 22.6 Hz), 128.2, 127.9, 127.3,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
127.2, 127.1, 126.5, 121.5 (t, J = 242.4 Hz), 64.8 (t, J = 31.5 Hz), 28.0, 23.5 (t, J = 5.3 Hz). 19F NMR (377 MHz, CDCl3) δ -101.6. HRMS (ESI) m/z: [M+Na]+ calcd for C18H16F2ONa+ 309.1061, found 309.1065. Synthesis of compound 5aa. A round flask was equipped with a magnetic stir bar, 3aa (0.2 mmol), NBS (0.6 mmol), and 1,4-dioxane (1.0 mL). The resulting mixture was stirred for 2 h at room temperature. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography to give 5aa. Ethyl 2,2-difluoro-2-(1-phenylnaphthalen-2-yl)acetate (5aa). Yellow oil; yield: 42.2 mg (65%); 1H
NMR (400 MHz, CDCl3) δ 7.99 (d, J = 8.8 Hz, 1H), 7.93-7.89 (m, 2H), 7.56-7.52 (m, 1H),
7.47-7.44 (m, 3H), 7.41-7.32 (m, 2H), 7.27-7.25 (m, 2H), 3.95 (q, J = 7.2 Hz, 2H), 1.14 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.7 (t, J = 34.0 Hz), 139.2 (t, J = 5.0 Hz), 135.9, 134.3, 133.1, 131.3 (d, J = 1.6 Hz), 128.8 (t, J = 23.1 Hz), 128.2, 128.1, 127.9, 127.8, 127.3, 127.1, 126.7, 121.8 (t, J = 8.4 Hz), 113.6 (t, J = 249.0 Hz), 62.8, 13.6.19F NMR (377 MHz, CDCl3) δ -94.4. HRMS (ESI) m/z: [M+Na]+ calcd for C20H16F2O2+Na+ 349.1011, found 349.1013. Synthesis of compound 6aa. A round flask was equipped with a magnetic stir bar, 3aa (0.2 mmol), K2CO3 (1M, 0.6 mL), and MeOH (0.6 mL). The resulting mixture was stirred overnight at room temperature. The resulting solution was added HCl (2.5M, 0.5 mL), and stirred at room temperature for 8 h. The reaction mixture was extracted with CH2Cl2 (10 mL × 3). The combined organic extracts were dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to yield the corresponding product 6aa. 2,2-Difluoro-2-(1-phenyl-3,4-dihydronaphthalen-2-yl)acetic acid (6aa). White solid; m.p.
ACS Paragon Plus Environment
Page 24 of 35
Page 25 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
112 °C; yield: 56.4 mg (94%); 1H NMR (400 MHz, CDCl3) δ 8.85 (br, 1H), 7.34-7.31 (m, 3H), 7.20 (d, J = 4.0 Hz, 2H), 7.21-7.14 (m, 2H), 7.08-7.02 (m, 1H), 6.64 (d, J = 7.6 Hz, 1H), 2.98 (t, J = 8.0 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H). 13C{1H} NMR (100 MHz, DMSO-d6) δ 164.9 (t, J = 33.6 Hz), 140.3 (t, J = 5.6 Hz), 137.3, 136.2, 135.4, 129.8 (d, J = 2.4 Hz), 128.9, 128.4, 128.1, 127.9, 127.8, 126.9, 114.4 (t, J = 248.2 Hz), 27.6, 22.9 (t, J = 4.6 Hz). 19F NMR (377 MHz, DMSO-d6) δ -97.4. HRMS (ESI) m/z: [M+Na]+ calcd for C18H14F2O2Na+ 323.0854, found 323.0862.
Synthesis of compound 7aa. The 6aa (0.2 mmol) and CsF (1.0 mmol) were dissolved in 1.0 mL of NMP. The reaction mixture was stirred at 170 °C in an atmosphere of nitrogen for 5 h. After cooling to room temperature, water (3.0 mL) was added to the reaction mixture. Organic materials were extracted for three times with ethyl acetate and the combined organic layer were washed with brine and dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography to give 7aa. 3-(Difluoromethyl)-4-phenyl-1,2-dihydronaphthalene (7aa). Yellow oil; yield: 27.1 mg (53%); 1H
NMR (400 MHz, CDCl3) δ 7.46-7.38 (m, 3H), 7.22-7.18 (m, 4H), 7.09-7.05 (m, 1H), 6.70
(d, J = 7.6 Hz, 1H), 6.07 (t, J = 55.6 Hz, 1H), 2.95 (d, J = 8.0 Hz, 1H), 2.62-2.57 (m, 2H). 13C{1H}
NMR (100 MHz, CDCl3) δ 141.5 (t, J = 10.8 Hz), 136.5, 136.1 (t, J = 1.6 Hz), 134.7,
129.9 (t, J = 1.6 Hz), 128.8 (t, J = 23.7 Hz), 128.6, 128.5, 128.0, 127.6, 127.3, 126.5, 114.3 (t, J = 229.7 Hz), 27.7, 19.6 (t, J = 2.7 Hz). 19F NMR (377 MHz, CDCl3) δ -115.4. HRMS (ESI) m/z: [M+Na]+ calcd for C17H14F2Na+ 279.0956, found 279.0951. Characterization of compound 9ja and 10ja. MCPs (1j, 4×0.2 mmol), ethyl
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
bromodifluoroacetate (2a, 4×0.4 mmol), B2pin2 (30 mol %), CuBr (10 mol %), dtbbpy (10 mol %), and NaHCO3 (2 equiv) was added in 1,4-dioxane (4×1 mL), and stirred under N2 for 16 h at 80°C. After the reaction, 1,4-dioxane was removed under reduced pressure, EtOH (4 mL) was then added, followed by addition of AgNO3 (0.16 mmol). The mixture was further stirred under reflux for 10 h. Purification was finally performed by flash column chromatography on silica gel using EtOAc and petroleum ether to give the desired product 3ja and by-products (9ja and 10ja). The ratio of 3ja to 8ja was validated unambiguously by crude 1H NMR spectroscopy. Note: When using MCPs containing only a phenyl group as the substrate, a difluoroalkylsubstituted homoallylic halide by-product 8ja was observed. Since product 3ja and by-product 8ja represent the same Rf in chromatography, the reaction mixture was further treated with AgNO3 to convert by-product 8ja to the corresponding difluoroalkyl-substituted homoallylic nitrate 9ja and difluoroalkyl-substituted homoallylic ether 10ja. Ethyl (Z)-3-(4-bromobenzylidene)-2,2-difluoro-5-(nitrooxy)pentanoate (9ja). Yellow oil; yield: 13.8 mg (4%); 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.08 (s, 1H), 4.55 (t, J = 7.2 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 2.81 (t, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 163.5 (t, J = 34.8 Hz), 135.0 (t, J = 9.2 Hz), 133.0, 132.1, 130.1, 128.7 (t, J = 22.6 Hz), 123.0, 114.0 (t, J = 251.5 Hz), 70.0, 63.5, 24.6 (t, J = 2.1 Hz), 13.9. 19F NMR (377 MHz, CDCl3) δ -104.2. HRMS (ESI) m/z: [M+Na]+ calcd for C14H14BrF2NO5Na+ 415.9916, found 415.9929. Ethyl (E)-3-(4-bromobenzylidene)-5-ethoxy-2,2-difluoropentanoate (10ja). Yellow oil; yield: 11.3 mg (4%); 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.96 (s, 1H), 4.35 (q, J = 7.2 Hz, 2H), 3.55 (t, J = 7.2 Hz, 2H), 3.45 (q, J = 7.2 Hz, 2H), 2.66 (t,
ACS Paragon Plus Environment
Page 26 of 35
Page 27 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 164.6 (t, J = 34.9 Hz), 133.7, 132.9 (t, J = 9.5 Hz), 131.7, 131.0 (t, J = 21.8 Hz), 130.6, 122.4, 114.5 (t, J = 251.1 Hz), 68.2, 66.3, 63.1, 27.4 (d, J = 1.9 Hz), 15.1, 14.0. 19F NMR (377 MHz, CDCl3) δ -101.2. HRMS (ESI) m/z: [M+Na]+ calcd for C16H19BrF2O3Na+ 399.0378, found 399.0379. ASSOCIATED CONTENT SUPPORTING INFORMATION The Supporting Information is available free of charge on the ACS Publications website at DOI: jo-2019-01106f. Reaction optimization; mechanistic study; structural determination of 3ca; 1H, 13C NMR and 19F
NMR spectra of all the new compounds (PDF).
AUTHOR INFORMATION Corresponding Author * E-mail:
[email protected]. * E-mail:
[email protected]. Notes The authors declare no competing financial interest. ACKNOWLEDGMENT We acknowledge financial supports from the National Natural Science Foundation of China (21702087, and 21801105), Natural Science Foundation of Liaoning Province (2015020196, 20170520353, and 20180510033), the Program for Liaoning Innovative Talents in University (LR2017021), Research Project Fund of Liaoning Provincial Department of Education
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(L2017LQN010 and L2017LZD001 ), Talent Scientific Research Fund of Liaoning Shihua University (2016XJJ-078 and 2016XJJ-079), the open project of Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (No.130028836 and 130028911 ). References (1) (a) Teponno, R. B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044-1092. (b) Nono, E. C. N.; Mkounga, P.; Kuete, V.; Marat, K.; Hultin, P. G.; Nkengfack, A. E. Pycnanthulignenes A−D, Antimicrobial Cyclolignene Derivatives from the Roots of Pycnanthus angolensis. J. Nat. Prod., 2010, 73, 213-216. (c) Voets, M.; Antes, I.; Scherer, C.; Müller-Vieira, U.; Biemel, K.; MarchaisOberwinkler, S.; Hartmann, R. W. Synthesis and Evaluation of Heteroaryl-Substituted Dihydronaphthalenes and Indenes: Potent and Selective Inhibitors of Aldosterone Synthase (CYP11B2) for the Treatment of Congestive Heart Failure and Myocardial Fibrosis. J. Med. Chem., 2006, 49, 2222-2231. (d) Azhar-Ul, H.; Malik, A.; Anis, I.; Khan, S. B.; Ahmed, E.; Ahmed, Z.; Nawaz, S. A.; Choudhary, M. I. Enzymes Inhibiting Lignans from Vitex negundo. Chem. Pharm. Bull., 2004, 52, 1269-1272. (2) (a) Magoulas, G. E.; Papaioannou, D. Bioinspired Syntheses of Dimeric Hydroxycinnamic Acids (Lignans) and Hybrids, Using Phenol Oxidative Coupling as Key Reaction, and Medicinal Significance Thereof. Molecules 2014, 19, 19769-19835. (b) Silva, L. F.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; Doriguetto, A. C. Iodine(III)-Promoted Ring Contraction of 1,2-Dihydronaphthalenes: A Diastereoselective Total Synthesis of (±)Indatraline. Org. Lett., 2007, 9, 1433-1436. (c) Scribner, A. W.; Haroutounian, S. A.; Carlson, K. E.; Katzenellenbogen, J. A. 1-Aryl-2-pyridyl-3,4-dihydronaphthalenes: Photofluorogenic
ACS Paragon Plus Environment
Page 28 of 35
Page 29 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Ligands for the Estrogen Receptor. J. Org. Chem., 1997, 62, 1043-1057. (3) (a) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine‐Containing Functional Groups Angew. Chem., Int. Ed., 2013, 52, 8214-8264. (b) Yamazaki, T.; Taguchi, T.; Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009. (c) O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev., 2008, 37, 308-319. (d) Kirk, K. L. Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. Org. Process Res. Dev., 2008, 12, 305-321. (e) Muller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science, 2007, 317, 1881-1886. (4) (a) Ye, Y.; Takada, T.; Buchwald, S. L. Palladium‐Catalyzed Fluorination of Cyclic Vinyl Triflates: Effect of TESCF3 as an Additive. Angew. Chem., Int. Ed. 2016, 55, 15559-15563. (b) Hamel, J.-D.; Cloutier, M.; Paquin, J.-F. Exploiting a Difference in Leaving Group Ability: An Approach to β-Substituted Monofluoroalkenes Using gem-Chlorofluoropropenes. Org. Lett. 2016, 18, 1852-1855. (c) Chang, D.; Gu, Y.; Shen, Q. Pd‐Catalyzed Difluoromethylation of Vinyl Bromides, Triflates, Tosylates, and Nonaflates. Chem. - Eur. J. 2015, 21, 6074-6078. (d) Bergeron, M.; Guyader, D.; Paquin, J.-F. SN2′ Reaction of Allylic Difluorides with Lithium Amides and Thiolates. Org. Lett. 2012, 14, 5888-5561. (e) Bergeron, M.; Johnson, T.; Paquin, J.-F. The Use of Fluoride as a Leaving Group: SN2′ Displacement of a C–F Bond on 3,3‐Difluoropropenes
with
Organolithium
Reagents
To
Give
Direct
Access
to
Monofluoroalkenes. Angew. Chem., Int. Ed. 2011, 50, 11112-11116. (f) Pigeon, X.; Bergeron, M.; Barabé, F.; Dubé, P.; Frost, H. N.; Paquin, J.-F. Activation of Allylic C–F bonds: Palladium‐Catalyzed Allylic Amination of 3,3‐Difluoropropenes. Angew. Chem., Int. Ed. 2010,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
49, 1123-1127. (5) (a) Li, Z.-R.; Bao, X.-X.; Sun, J.; Shen, J.; Wu, D.-Q.; Liu, Y.-K.; Deng, Q.-H.; Liu, F. Ironcatalyzed trifluoromethylation of vinylcyclopropanes: facile synthesis of CF3–containing dihydronaphthalene derivatives. Org. Chem. Front., 2016, 3, 934-938. (b) Zhu, Z. Z.; Chen, K.; Yu, L. Z.; Tang, X. Y.; Shi, M. Copper(I)-Catalyzed Intramolecular Trifluoromethylation of Methylenecyclopropanes. Org. Lett., 2015, 17, 5994-5997. (c) Gao, P.; Shen, Y. W.; Fang, R.; Hao, X. H.; Qiu, Z. H.; Yang, F.; Yan, X. B.; Wang, Q.; Gong, X. J.; Liu, X. Y.; Liang, Y. Copper‐Catalyzed One‐Pot Trifluoromethylation/Aryl Migration/Carbonyl Formation with Homopropargylic Alcohols. Angew. Chem., Int. Ed. 2014, 53, 7629-7633. (d) Xu, J.; Wang, Y.L.; Gong, T.-J.; Xiao, B.; Fu, Y. Copper-catalyzed endo-type trifluoromethylarylation of alkynes. Chem. Commun. 2014, 50, 12915-12918. (e) Ji, Y.-L.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Copper-catalyzed tandem trifluoromethylation/cyclization of internal alkynes. Org. Chem. Front. 2014, 1, 1280-1284. (6) (a) Wang, X.; Zhao, S.; Liu, J.; Zhu, D.; Guo, M.; Tang, X.; Wang, G. Copper-Catalyzed C–H Difluoroalkylations and Perfluoroalkylations of Alkenes and (Hetero)arenes. Org. Lett., 2017, 19, 4187-4190. (b) Wu, L.-H.; Zhao, K.; Shen, Z.-L.; Loh, T.-P. Copper-catalyzed trifluoromethylation of styrene derivatives with CF3SO2Na. Org. Chem. Front., 2017, 4, 18721875; (c) Li, J.; Chen, J.; Jiao, W.; Wang, G.; Li, Y.; Cheng, X.; Li, G. Difluoroalkylation/C– H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis. J. Org. Chem., 2016, 81, 9992-10001. (d) Feng, Z.; Xiao, Y.-L.; Zhang, X. Palladium-catalyzed phosphonyldifluoromethylation of alkenes with bromodifluoromethylphosphonate. Org. Chem. Front., 2016, 3, 466-469; and references cited therein. (e) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.;
ACS Paragon Plus Environment
Page 30 of 35
Page 31 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Gu, J.-W.; Zhang, X. A General Synthesis of Fluoroalkylated Alkenes by Palladium‐Catalyzed Heck‐Type Reaction of Fluoroalkyl Bromides. Angew. Chem., Int. Ed. 2015, 54, 1270-1274. (f) Belhomme, M.-C.; Poisson, T.; Pannecoucke X. Copper Catalyzed β- Difluoroacetylation of Dihydropyrans and Glycals by Means of Direct C–H Functionalization. Org. Lett. 2013, 15, 3428-3431. (g) Qi, Q.; Shen, Q.; Lu, L. Copper-Mediated Aerobic Fluoroalkylation of Arylboronic Acids with Fluoroalkyl Iodides at Room Temperature. J. Am. Chem. Soc. 2012, 134, 6548-6551. (7) (a) Meanwell, N. A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem., 2011, 54, 2529-2591. (b) Kitazume, T.; Kamazaki, T. Experimental Methods in Organic Fluorine Chemistry, Gordon and Breach Science Tokyo, 1998. (c) Erickson, J. A.; Mcloughlin, J. I. Hydrogen Bond Donor Properties of the Difluoromethyl Group. J. Org. Chem., 1995, 60, 1626-1631. (8) For selected reviews of difluoroalkylation, see: (a) Lemos, A.; Lemaire, C.; Luxen, A. Progress in Difluoroalkylation of Organic Substrates by Visible Light Photoredox Catalysis Adv. Synth. Catal. 2019, 361,1500-1537. (b) Feng, Z.; Xiao, Y.-L.; Zhang, X. Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl Halides. Acc. Chem. Res. 2018, 51, 2264-2278. (c) Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Recent advances in radical transformations of internal alkynes. Chem. Commun. 2018, 54, 10791-10811. (d) Xu, P.; Li, W.; Xie, J.; Zhu, C. Exploration of C–H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond. Acc. Chem. Res. 2018, 51, 484-495. (e) Belhomme, M. C.; Besset, T.; Poisson, T.; Pannecoucke, X. Recent Progress toward the Introduction of Functionalized Difluoromethylated Building Blocks onto C(sp2) and C(sp)
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 35
Centers. Chem.-Eur. J. 2015, 21, 12836-12865. (f) Ni, C.; Hu, M.; Hu, J. Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis. Chem. Rev., 2015, 115, 765-825. (g) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao,
J.-C.;
Gu,
Y.-C.
Progress
in
fluoroalkylation
of
organic
compounds viasulfinatodehalogenation initiation system. Chem. Soc. Rev., 2012, 41, 45364559. (9) For selected copper-catalyzed radical difluoromethylation examples: (a) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Copper-Catalyzed Radical Selenodifluoromethylation of Alkenes: Access to CF2-Containing γ-Lactams. Org. Lett. 2019, 21, 2052-2055; and references cited therein. (b) Kong, W.; Yu, C.; An, H.; Song, Q. CopperCatalyzed Intermolecular Reductive Radical Difluoroalkylation–Thiolation of Aryl Alkenes. Org. Lett. 2018, 20, 4975-4978; and references cited therein. (c) Da, Y.; Han, S.-N.; Du, X.-Y.; Liu, S.-D.; Liu, L.; Li, J. Copper(I)-Catalyzed Oxydifluoroalkylation of Alkenes: A Route to Functionalization of Lactones. Org. Lett. 2018, 20, 5149-5152. (d) Wang, X.; Liu, J.; Yu, Z.; Guo, M.; Tang, X.; Wang, G. Desulfonylation-Initiated Distal Alkenyl Migration in CopperCatalyzed Alkenylation of Unactivated Alkenes. Org. Lett. 2018, 20, 6516-6519. (e) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines. Nat. Commun. 2017, 8, 14841. (f) Lv, Y.; Pu, W.; Wang, Q.; Chen, Q.; Niu, J.; Zhang, Q. Copper‐Catalyzed Aminodifluoroalkylation of Alkenes with α‐Bromodifluoroacetamides: Synthesis of 3,3‐Difluoropyrrolidin‐2‐ones. Adv. Synth. Catal. 2017, 359, 3114-3119. (g) Prieto, A.; Melot, R.; Bouyssi, D.; Monteiro, N. C–H
ACS Paragon Plus Environment
Page 33 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Difluoroalkylation of Aldehyde Hydrazones with Functionalized Difluoromethyl Bromides under Copper Catalysis. ACS Catal. 2016, 6, 1093-1096. (h) Hua, H.-L.; Zhang, B.-S.; He, Y.T.; Qiu, Y.-F.; Hu, J.-Y.; Yang, Y.-C.; Liang, Y.-M. Copper-catalyzed difluoromethylation of propargylamide-substituted indoles: synthesis of mono- and bis-difluoromethylated indoloazepinone derivatives. Chem. Commun. 2016, 52, 10396-10399. (10) For selected reviews, see: (a) Yu, L. Z.; Chen, K.; Zhu, Z. Z.; Shi, M. Recent advances in the chemical transformations of functionalized alkylidenecyclopropanes (FACPs). Chem. Commun. 2017, 53, 5935-5945. (b) Yu, L.; Liu, M.; Chen, F.; Xu, Q. Heterocycles from methylenecyclopropanes. Org. Biomol. Chem. 2015, 13, 8379-8392. (c) Pellissier, H. Recent developments in the synthesis and reactivity of methylene- and alkylidenecyclopropane derivatives. Tetrahedron 2014, 70, 4991-5031. (d) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Progress in the Synthesis and Transformations of Alkylidenecyclopropanes and Alkylidenecyclobutanes. Chem. Rev. 2014, 114, 7317-7420. (e) Zhang, D. H.; Tang, X. Y.; Shi, M.
Gold-Catalyzed
Tandem
Reactions
of
Methylenecyclopropanes
and
Vinylidenecyclopropanes. Acc. Chem. Res. 2014, 47, 913-924. (f) Shi, M.; Lu, J. M.; Wei, Y.; Shao, L. X. Rapid Generation of Molecular Complexity in the Lewis or Brønsted AcidMediated Reactions of Methylenecyclopropanes. Acc. Chem. Res. 2012, 45, 641-652. (g) Shi, M.; Shao, L. X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chemistry of Vinylidenecyclopropanes. Chem. Rev. 2010, 110, 5883-5913. (11) (a) Chen, M.; Wei, Y.; Shi, M. A facile method for the synthesis of trifluoromethylthio/chloro-homoallylic alcohols from methylenecyclopropanes. Org. Chem. Front. 2018, 5, 20302034. (b) Zhang, X.-Y.; Li, P.-H.; Shi, M. Fluorination of Alkylidenecyclopropanes. Asian J.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 35
Org. Chem. 2018, 7, 1924-1933. (12) Li, J.-X.; Li, L.; Zhou, M.-D.; Wang, H. Visible-light-promoted organic-dye-catalyzed three-component coupling of aldehydes, hydrazines and bromodifluorinated reagents. Org. Chem. Front., 2018, 5, 1003-1007. (13) For related process, see: (a) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. CopperCatalyzed Direct C-2 Difluoromethylation of Furans and Benzofurans: Access to C-2 CF2H Derivatives. J. Org. Chem. 2014, 79, 7205-7211. (b) Fujikawa, K.; Kobayashi, A.; Amii, H. An Efficient Route to Difluoromethylated Pyridines. Synthesis 2012, 44, 3015-3018. (c) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. A New Method for Aromatic Difluoromethylation: Copper-Catalyzed Cross-Coupling and Decarboxylation Sequence from Aryl Iodides. Org. Lett. 2011, 13, 5560-5563. (14) (a) Liu, Y.; Wang, Q.-L.; Chen, Z.; Zhou, Q.; Li, H.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.;
Tang,
K.-W.
Visible-Light-Catalyzed
C–C
Bond
Difunctionalization
of
Methylenecyclopropanes with Sulfonyl Chlorides for the Synthesis of 3-Sulfonyl-1,2dihydronaphthalenes. J. Org. Chem. 2019, 84, 2829-2839. (b) Liu, Y.; Wang, Q. L.; Zhou, C. S.; Xiong, B. Q.; Zhang, P. L.; Yang, C. A.; Tang, K. W. Metal-Free Oxidative C–C Bond Functionalization of Methylenecyclopropanes with Ethers Leading to 2-Substituted 3,4Dihydronaphthalenes. J. Org. Chem. 2017, 82, 7394-7401. (c) Jiang, H.-C.; Tang, X.-Y.; Shi, M. Copper-catalyzed regio- and enantioselective aminoboration of alkylidenecyclopropanes: the synthesis of cyclopropane-containing β-aminoalkylboranes. Chem. Commun. 2016, 52, 5273-5276. (d) Schweinitz, A.; Chtchemelinine, A.; Orellana, A. Synthesis of Benzodiquinanes via Tandem Palladium-Catalyzed Semipinacol Rearrangement and Direct Arylation. Org. Lett.
ACS Paragon Plus Environment
Page 35 of 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
2011, 13, 232-235. (e) Matsuda, T.; Shigeno, M.; Murakami, M. Palladium-Catalyzed Sequential Carbon−Carbon Bond Cleavage/Formation Producing Arylated Benzolactones. Org. Lett. 2008, 10, 5219-5221. (f) Shi, M.; Wang, B.-Y.; Huang, J.-W. Palladium-Catalyzed Isomerization of Methylenecyclopropanes in Acetic Acid. J. Org. Chem. 2005, 70, 5606-5610. (15) (a) Yang, Y.; Yuan, F.; Ren, X.; Wang, G.; Zhao, W.; Tang, X.; Guo, M. Copper-Catalyzed Oxydifluoroalkylation of Hydroxyl-Containing Alkenes. J. Org. Chem. 2017, 82, 6811-6818. (b) Wang, L.; Wei, X.-J.; Jia, W.-L.; Zhong, J.-J.; Wu, L.-Z.; Liu, Q. Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C−H Functionalization at Room Temperature. Org. Lett. 2014, 16, 5842-5845.
ACS Paragon Plus Environment