15
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
Oxygen Interactions and Reactions on Palladium(100): Coadsorption Studies with C2H4, H2O, and CH3OH Ε. M.Stuve1,S. W. Jorgensen, and R. J. Madix Department of Chemical Engineering, Stanford University, Stanford, CA 94305 The reactions of ethylene, water, and methanol with coadsorbed oxygen on Pd(100) were studied with temper ature programmed reaction spectroscopy (TPRS) and high resolution electron energy loss spectroscopy (EELS). Ethylene dehydrogenation was poisoned by oxygen, and direct hydrogen transfer reactions between water and oxygen and between methanol and oxygen were observed. These reactions demonstrate the Brönsted base role of adsorbed oxygen perviously found on Ag(110) and show further that more active t r a n s i t i o n metals which themselves activate C-H bonds c a t a l y t i c a l l y oxidize via a two-step mechanism i n which the surface i n t e r mediates are scavenged by adsorbed oxygen. Recent studies /1,2/ have shown t h a t the surface reactivity of A g ( l l O ) c a n be g r e a t l y e n h a n c e d by p r e a d s o r b e d o x y g e n . The b e h a v i o r o f o x y g e n w i t h o t h e r c o a d s o r b a t e s on A g ( l l O ) c a n be c l a s s i f i e d into three categories: (1) Lewis a c i d or t h r o u g h - s u r f a c e interaction in w h i c h an o x y g e n a t o m w i t h d r a w s c h a r g e f r o m t h e s u r f a c e a n d c r e a t e s one o r more e l e c t r o n e g a t i v e s i t e s e l s e w h e r e on t h e s u r f a c e t h a t favor t h e a d s o r p t i o n o f charge d o n a t i n g s p e c i e s , (2) Brflnsted base i n t e r a c t i o n i n w h i c h an e l e c t r o n e g a t i v e o x y g e n a t o m c a n a b s t r a c t an a c i d i c p r o t o n from a n o t h e r c o a d s o r b e d s p e c i e s , and (3) n u c l e o p h i l i c a t t a c k in which the electrons of the oxygen atom attack an electron d e f i c i e n t s i t e on a n o t h e r c o a d s o r b e d s p e c i e s . It i s therefore of i n t e r e s t t o know w h e t h e r t h e s e f o r m s o f o x y g e n i n t e r a c t i o n s o c c u r on o t h e r m e t a l s , i n p a r t i c u l a r , on t h o s e more r e a c t i v e t h a n s i l v e r , s u c h as t h e g r o u p V I I I t r a n s i t i o n m e t a l s . The h i g h e r r e a c t i v i t y o f t h e s e m e t a l s p r e s e n t s an a d d e d c o m p l i c a t i o n i n t h e s t u d y o f o x y g e n i n t e r a c t i o n s i n t h a t t h e c o a d s o r b e d s p e c i e s i s u s u a l l y c a p a b l e o f some s o r t of reaction without oxygen. F o r r e a c t i o n s on A g ( 1 1 0 ) , o x y g e n a c t s a s a promoter, but i n t h e i n s t a n c e s where r e a c t i o n can o c c u r without o x y g e n , o x y g e n may a l t e r o r e v e n p o i s o n a r e a c t i o n , o r p e r h a p s p r o mote an e n t i r e l y different reaction path ( i n which oxygen may directly participate). The l a t t e r c a s e i s a n a l o g o u s t o oxidation 1Current address: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-1000 Berlin 33, Federal Republic of Germany 0097-6156/85/0288-0165$06.00/0
© 1985 American Chemical Society Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
166
CATALYST CHARACTERIZATION SCIENCE
r e a c t i o n s on A g ( l l O ) . R e a c t i o n m o d i f i c a t i o n o r p o i s o n i n g may i n v o l v e the aforementioned oxygen interactions, b u t an a d d i t i o n a l effect, known a s s c a v e n g i n g , i s p o s s i b l e . A g e n e r a l d e s c r i p t i o n o f oxygen scavenging i s as f o l l o w s . S u r f a c e i n t e r m e d i a t e s f o r m e d by i n t e r a c t i o n w i t h t h e m e t a l may r e a c t i n s t e a d w i t h a s c a v e n g e r ( o x y g e n ) a n d thereby p r o h i b i t o r a l t e r subsequent s u r f a c e r e a c t i o n s which would occur i n t h e absence o f t h e scavenger. I n t h i s summary n o t e , we d i s c u s s t h e r e a c t i o n s o f C 2 H 4 , H 2 0 , a n d CH3OH w i t h o x y g e n o n P d ( 1 0 0 ) . L e w i s a c i d o x y g e n i n t e r a c t i o n s a r e o b s e r v e d w i t h C2H4 t h a t c o n t r i b u t e to t h e poisoning of the dehydrogenation reaction; Brflnsted base i n t e r a c t i o n s between oxygen a n d H 2 0 a n d CH3OH, i n w h i c h h y d r o g e n i s d i r e c t l y t r a n s f e r r e d t o an oxygen a t o m , p r e d o m i n a t e ; scavenging of h y d r o g e n p r o d u c e d f r o m C2H4 d i s s o c i a t i o n by a d s o r b e d o x y g e n a c c o u n t s f o r o x i d a t i o n o f C2H4. Experimental T h e e x p e r i m e n t s w e r e p e r f o r m e d i n a n u l t r a - h i g h vacuum c h a m b e r ( b a s e pressure = 5 X 1 0 ~ n Torr) with f a c i l i t i e s f o r high resolution e l e c t r o n e n e r g y l o s s s p e c t r o s c o p y ( E E L S ) , t e m p e r a t u r e programmed r e a c t i o n s p e c t r o s c o p y (TPRS), Auger s p e c t r o s c o p y , and low energy e l e c t r o n d i f f r a c t i o n ( L E E D ) , w h i c h h a s been p r e v i o u s l y d e s c r i b e d / 3 / . The r e a c t a n t s w e r e d o s e d t h r o u g h g l a s s , m u l t i - c a p i l l a r y a r r a y , m o l e c u l a r beam d o s e r s w h i c h g a v e a n e f f e c t i v e beam p r e s s u r e o f b e t w e e n 2 0 0 ( f o r O2) a n d 2 0 0 0 ( f o r C?HA) t i m e s t h a t o f t h e b a c k g r o u n d p r e s s u r e w h i c h was h e l d t o about 2 X 1 0 " 1 0 T o r r d u r i n g t h e d o s e . The P d ( 1 0 0 ) s a m p l e was c l e a n e d by p r o l o n g e d A r i o n s p u t t e r i n g and a n n e a l i n g t r e a t m e n t s / 3 , 4 / a n d s u r f a c e c l e a n l i n e s s w a s v e r i f i e d b y T P R S , E E L S , a n d LEED / 3 , 5 / . The EELS measurements w e r e p e r f o r m e d o n l y i n t h e s p e c u l a r d i r e c t i o n w i t h a n i n c i d e n t beam e n e r g y o f a b o u t 1 e V . The h e a t i j i g r a t e f o r t h e thermal desorption measurements was a b o u t 15 K s " 1 . Additional e x p e r i m e n t a l d e t a i l s c a n be f o u n d e l s e w h e r e / 3 , 6 , 7 / . Results ETHYLENE ADSORPTION AND REACTION The
adsorption
ability ly
involved
adsorption presented H2
TPRS
covered age. C-H
C2H4;
in detail curves
structure
of
02Η4
Additional
are
be s a i d
H2
of
C2H4
is
our attention
on t h e
C2H4 1
02Η4
H2
shows
clean
H2 m o l e c u l e s for
f o r oxygen
a direct
f o r zero
oxygen
ML
coverages
of
pre
surface, cover
measure
of
adsorption coverage
oxygen
of less
fine
oxygen
oxygen
02Η4
oxygen
the
by each of
following 0.25
and
in
and
adsorbed
is
t h e C2H4 a n d
on c l e a n
independent
yield
on P d ( 1 0 0 )
differences
the
the
direct
f o r hydrogen
desorption
TPRS e x p e r i m e n t s
of
minor
between
molecules,
0 . 2 4 ML o f
0 . 0 ML
illustrates being
of
Figure
coverage
b u t t h e amount
The
mechanism
/6,8/.
There
cannot
Pd(100)
We f o c u s
elsewhere
02Η4
on
itself.
reaction
activation. from
02Η4
reaction without
desorption
of
T h e same
essentially
of
a surface
for saturation
surfaces,
decreases
the
Pd(100).
0 . 2 5 ML bond
reaction
t o modify
i n the reaction of
precovered
about
and
o f oxygen
than
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
to
atoms. 0 . 2 5 ML
15.
Oxygen Interactions and Reactions on Palladium(lOO)
STUVE E T A L .
1
τ
1
1
H , 0 H IC H^ 2
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
2
u
2
1
1
167
1
O + Pd(100) θ (Μϋ 0
χ1/5
—I
100
1
0.25
1 300
I
I
5 00
I
L_
700
TEMPERATURE ( K )
F i g u r e 1. T e m p e r a t u r e p r o g r a m m e d r e a c t i o n s p e c t r a o f C2H4 a n d H 2 f o l l o w i n g s a t u r a t i o n c o v e r a g e o f C2H4 on t h e c l e a n a n d o x y g e n c o v e r e d P d ( 1 0 0 ) s u r f a c e a t 100 Κ · A t o m i c o x y g e n was g e n e r a t e d on t h e s u r f a c e by e x p o s u r e t o 0 2 a t 300 K.
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
168
CATALYST CHARACTERIZATION SCIENCE
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
showed t h a t t h e h y d r o g e n y i e l d ( w h i c h i n c l u d e s h y d r o g e n t h a t d e s o r b s i n t h e f o r m o f H2O, s e e b e l o w ) d e c r e a s e s l i n e a r l y w i t h i n c r e a s i n g oxygen c o v e r a g e . T h e H 2 d e s o r p t i o n i n f i g . 1 i s t h e r e s u l t o f C2H4 d e h y d r o g e n a tion C2H4(a) — 2 H2(g) + 2 C(a) (1) T h i s was t h e o n l y r e a c t i o n d e t e c t e d f o r C2H4 on c l e a n P d ( 1 0 0 ) ; no CH4, C2H2, C2H5, o r C5H5 was d e t e c t e d . The e f f e c t o f i n c r e a s i n g oxygen c o v e r a g e i s , t h e r e f o r e , t o p r o g r e s s i v e l y p o i s o n t h e d e h y d r o genation r e a c t i o n . The m a g n i t u d e o f t h e d e c r e a s e i n h y d r o g e n y i e l d w i t h i n c r e a s i n g oxygen c o v e r a g e i n d i c a t e s t h a t two adsorbed oxygen atoms block t h e r e a c t i o n o f o n e C2H4 m o l e c u l e a c c o r d i n g t o t h e stoichiometry of equation (1). T h i s c a n be i n t e r p r e t e d a s a s i t e blocking effect of oxygen. Oxygen i s adsorbed i n t o the p(2x2) s t r u c t u r e f o r c o v e r a g e s b e t w e e n 0 . 0 5 a n d 0 . 2 5 ML / 3 / , a n d e a c h o x y g e n a t o m may b l o c k f o u r Pd a t o m s , a s s u m i n g t h a t 0 r e s i d e s i n t h e f o u r fold hollow / 9 / . A s t w o 0 a t o m s b l o c k t h e r e a c t i o n o f o n e C2H4 m o l e c u l e , i t f o l l o w s t h a t a n e n s e m b l e o f e i g h t i s o l a t e d Pd a t o m s a r e required f o r e a c h C2H4 r e a c t i o n e v e n t . Oxygen has an a d d i t i o n a l , m i n o r e f f e c t on C2H4 d e h y d r o g e n a t i o n , t h a t b e i n g a l i m i t e d a b i l i t y t o s c a v e n g e some o f t h e r e a c t i o n p r o d u c t s . S m a l l amounts ( l e s s t h a n 0 . 0 4 ML e a c h ) o f H 2 0 a n d C 0 2 w e r e d e t e c t e d a t 3 3 0 Κ a n d 5 6 5 K , r e s p e c t i v e l y , f r o m C2H4 a n d a p p r o x i m a t e l y 0 . 2 ML o f c o a d s o r b e d o x y g e n /10/. T h e s e s i d e r e a c t i o n s h a v e l i t t l e e f f e c t on C2H4 d e h y d r o g e n a t i o n ; t h e o c c u r a n c e o f t h i s r e a c t i o n d e p e n d s on t h e i n i t i a l , a d s o r b e d s t a t e o f C2H4 a s d i s c u s s e d b e l o w . E l e c t r o n e n e r g y l o s s s p e c t r a f o r C2H4 o n c l e a n a n d o x y g e n c o v e r e d P d ( 1 0 0 ) a r e shown i n f i g . 2 . The v i b r a t i o n a l s p e c t r u m f o r C2H4 on c l e a n P d ( 1 0 0 ) ( f i g . 2 a ) i s a s f o l l o w s / 6 , 8 / : v(CH) = 2980 c m " 1 , « ( C H ) » 1 4 5 5 c m ' 1 , v ( C C ) = 1 1 3 5 c m * 1 , CHo d e f o r m a t i o n s = 9 2 0 c m " 1 , a n d C2H4 r e s t r i c t e d t r a n s l a t i o n = 3 9 0 c m " * . S i m i l a r l y , t h e a s s i g n ments f o r t h e v i b r a t i o n a l s p e c t r u m o f C2H4 on t h e o x y g e n covered s u r f a c e ( f i g . 2b) a r e / 1 0 / : v i C H ) = 3 0 2 0 c m " 1 , « ( C H ) = 1510 c m " 1 , a n d C H d e f o r m a t i o n s = 9 4 0 c m " 1 . T h e v ( C C ) mode was f o u n d a t 1 3 4 0 cm f o r C2D4 o n o x y g e n c o v e r e d P d ( 1 0 0 ) / 1 0 / . The f r e q u e n c i e s o f t h e v i b r a t i o n a l l y c o u p l e d δ CH2) a n d v ( C C ) modes e n a b l e u s t o a s s i g n t h e s p e c t r u m on c l e a n P d ( 1 0 0 ) t o d i - o - b o n d e d o r a p p r o x i m a t e l y s p ^ h y b r i d i z e d C2H4 a n d t h e s p e c t r u m on t h e p ( 2 X 2 ) 0 s t r u c t u r e t o π - b o n d e d o r approximately s p 2 h y b r i d i z e d C2H4. The p r o p e r a s s i g n m e n t o f t h e 6 ( C H p ) a n d v ( C C ) modes i s n o t t r i v i a l , a s we h a v e d i s c u s s e d e l s e w h e r e /6,8,10,11/. 2
2
2
The TPRS a n d E E L S r e s u l t s a r e i n t e r p r e t e d a s f o l l o w s . The H 2 d e s o r p t i o n y i e l d , a m e a s u r e o f t h e e x t e n t o f C2H4 d e h y d r o g e n a t i o n , d e c r e a s e s l i n e a r l y w i t h i n c r e a s i n g oxygen c o v e r a g e , and t h e EELS r e s u l t s show t h a t C2H4 i s d i - o - b o n d e d on t h e c l e a n s u r f a c e a n d π - b o n d e d on t h e o x y g e n c o v e r e d s u r f a c e . Thus, i t i s t h e d i - o - b o n d e d form o f C2H4 t h a t u n d e r g o e s d e h y d r o g e n a t i o n . The s a t u r a t i o n c o v e r a g e o f π b o n d e d C2H4 i s a p p r o x i m a t e l y 0 . 2 5 ML a n d i s i n d e p e n d e n t o f o x y g e n coverage, whereas the saturation of di-o-bonded C2H4 decreases
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
15.
STUVEETAL.
Oxygen Interactions and Reactions on Palladium(lOO)
169
Figure 2. E l e c t r o n energy l o s s spectra f o r s a t u r a t i o n coverage of C2H4 on c l e a n ( a ) a n d o x y g e n c o v e r e d ( b ) P d ( 1 0 0 ) a t 8 0 K . Oxygen was d o s e d a s i n f i g . 1 t o a c o v e r a g e o f 0 . 1 8 M L .
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
CATALYST CHARACTERIZATION SCIENCE
170 linearly
from
to
ML.
0.25
coverage
i s estimated H20
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
Temperature OH
was
obtained Κ
state
groups the due at
AND
with for
0.0
to
255
K,
the
is
not
on
17/
oxygen
coverage
detected
in
is
fig.
increased 2b
as
its
of
H20
ML.)
spectra
Pd(100)
adsorption at
167
bound This
Κ
show
on
of
γ,
the
to
represents
that
•
H20(g)
these
H20
shown
clean
the
i s observed
state
depicting
are
multilayer
directly
2 OH EELS r e s u l t s according to
0.035
reaction
labelled
3b).
as
OH
H20
H20
ML
C2H4
be o n l y
oxygen
0^ s t a t e to
and 0 ( f i g .
to
programmed
and
182
ML
(Di-o-bonded
REACTIONS OF
peaks,
0.12
OH
in
H20,
reaction
fig.
surface and
surface
Curve
(a)
and c o n t a i n s
two
3.
the
/7/.
following the
the
0^ s t a t e
An
coadsorption
reaction
of
OH
of
H?0
groups
III
+ 0 groups
(2) form
at
about
+ 0 + 2 OH
Equation (2) d e s c r i b e s t h e d i s p r o p o r t i o n a t i o n t h e Ύ r e a c t i o n peak i n f i g . 3b c o u l d a l s o be via
at
additional
175
Κ
(3) o f OH g r o u p s , although due t o OH d i s s o c i a t i o n
OH > 0 + H OH + Η + H 2 0 ( g )
(4a) (4b)
W h e t h e r t h e OH g r o u p s r e a c t v i a e q u a t i o n (2) o r (4) c a n be t e s t e d w i t h TPRS m e a s u r e m e n t s f o l l o w i n g t h e f o r m a t i o n o f OH g r o u p s , formed f r o m H 2 0 and 0 c o a d s o r p t i o n , w i t h h e a t i n g t o 200 K , by c o a d s o r p t i o n o f D a t o m s a s shown i n c u r v e s ( c ) a n d ( d ) o f f i g . 3 . The γ s t a t e f o r H 2 0 i s s e e n a t 230 Κ i n c u r v e ( c ) , w h i l e t h e D 2 p e a k a t 360 Κ ( t h e normal t e m p e r a t u r e f o r r e c o m b i n a t i v e d e s o r p t i o n o f D2) verifies that D atoms were i n d e e d c o a d s o r b e d . C u r v e ( d ) shows t h a t _no HD0 d e s o r b e d at t h e t e m p e r a t u r e o f t h e y s t a t e i n ( c ) , but t h a t a h i g h e r t e m p e r a t u r e s t a t e , l a b e l l e d 3 , o c c u r r e d a t 330 K. The 3 H 2 0 s t a t e i s d u e t o t h e r e a c t i o n o f a t o m i c oxygen and h y d r o g e n t o f o r m H 2 0 as v e r i f i e d i n s e p a r a t e t h e r m a l d e s o r p t i o n measurements o f c o a d s o r b e d 0 and H atoms /7,9/. The H i n t h e 3 HDO s t a t e came f r o m t h e a d s o r p t i o n o f h y d r o g e n f r o m t h e r e s i d u a l g a s i n t h e vacuum c h a m b e r a s t h e r e a c t a n t surface was b e i n g p r e p a r e d (note the high m u l t i p l i e r of curve ( d ) ) . Thus, t h e a b s e n c e o f HDO i n t h e λ s t a t e r u l e s o u t e q n . ( 4 ) s o t h e OH r e a c tion must proceed through the direct hydrogen transfer mechanism given in eqn. (2). T h a t t h e 3 H 2 0 s t a t e i s n o t s e e n i n f i g . 3b shows t h a t H 2 0 d o e s n o t d i s s o c i a t e t o OH a n d H on o x y g e n c o v e r e d P d ( 1 0 0 ) . A t no t i m e , t h e n , d u r i n g t h e t e m p e r a t u r e ramp f o l l o w i n g H?0 and 0 c o a d s o r p t i o n a r e Η a t o m s a d s o r b e d on t h e s u r f a c e , s o t h e f o r m a t i o n of OH g r o u p s must a l s o be a d i r e c t t r a n s f e r o f h y d r o g e n a s d e p i c t e d i n eqn. (3).
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
15.
STUVEETAL.
Oxygen Interactions and Reactions on Palladium(lOO)
171
H 0/OH/0/D/Pd(100) Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
2
HDO/OH + D
H 0. D / O H * D 2
2
H 0/H 0 • 0 2
2
(b)
H 0/H 0 2
2
(a) 100
200
400
300
Temperature (K) Figure 3 . T e m p e r a t u r e programmed r e a c t i o n s p e c t r a f o r t h e w a t e r a n d o x y g e n c o a d s o r p t i o n s y s t e m on P d ( 1 0 0 ) . (a): H 2 0 desorption f o l l o w i n g a n e x p o s u r e o f 2 L H 2 0 a t 100 K . (b): H20 desorption f o l l o w i n g e x p o s u r e o f t h e s u r f a c e w i t h 0 . 1 6 ML a t o m i c o x y g e n t o 2 L HpO a t 100 K . (c): H 2 0 a n d Do d e s o r p t i o n f r o m a s u r f a c e w i t h c o a d s o r b e d OH a n d D s p e c i e s . The OH g r o u p s w e r e g e n e r a t e d b y a d s o r b i n g 0 . 1 0 ML a t o m i c o x y g e n a t 300 K , 2 L H 2 0 a t 100 K , a n d h e a t i n g t o 200 K. The s u r f a c e w i t h 0 . 2 0 ML o f OH g r o u p s was e x p o s e d t o 2 L Do a t 100 K . (d): HDO d e s o r p t i o n f r o m a s u r f a c e p r e p a r e d a s i n ( c ) , e x c e p t t h a t t h e D e x p o s u r e was 4 L . 2
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
172
CATALYST CHARACTERIZATION SCIENCE
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
METHANOL REACTIONS I n t h i s s e c t i o n we p r e s e n t p r e l i m i n a r y r e s u l t s o f CH3OH r e a c t i o n s with preadsorbed oxygen. Of p r i m a r y i n t e r e s t i s t h e mechanism f o r t h e removal o f t h e h y d r o x y l hydrogen d u r i n g f o r m a t i o n o f t h e methoxy (CH3O) i n t e r m e d i a t e . F i g . 4 shows TPRS c u r v e s f o r CH3OH, H 2 0 , a n d H 2 C 0 f o l l o w i n g c o a d s o r p t i o n o f CH3OH a n d 0 on P d ( l O O ) . Desorption of CO a n d C 0 2 a l s o o c c u r s , b u t we l i m i t t h e d i s c u s s i o n h e r e t o w a t e r f o r m a t i o n by CH3OH and 0 . Methanol d e s o r p t i o n o c c u r s i n t h r e e peaks a t 155 K , 180 K , a n d 205 K . The 150 Κ p e a k i s a s s i g n e d t o m u l t i l a y e r s o f CH3OH, a n d t h e t w o h i g h e r t e m p e r a t u r e s t a t e s a r e d u e t o CH3OH in d i r e c t contact with the surface. T h e r e a r e two peaks o b s e r v e d f o r m/e = 30 a t 155 Κ a n d 215 K . We a s s i g n t h e 155 Κ peak t o t h e c r a c k i n g f r a c t i o n o f CH3OH, b u t t h e 215 peak m u s t be d u e t o f o r m a l d e h y d e (H2C0) d e s o r p t i o n , s i n c e i t i s s l i g h t l y h i g h e r i n t e m p e r a t u r e and o f g r e a t e r a m p l i t u d e t h a n t h e 205 Κ peak f o r CH3OH. Water d e s o r p t i o n o c c u r s i n t h r e e p e a k s a t 155 K , 215 K , a n d 3 3 0 K . As o f t h i s w r i t i n g we a r e n o t c e r t a i n o f t h e s o u r c e o f H 2 0 t h a t d e s o r b s a t 155 K , b u t b e l i e v e i t t o be e i t h e r f r o m w a t e r i n t h e r e s i d u a l g a s , o r a s m a l l i m p u r i t y i n t h e CH3OH s a m p l e . We f o c u s more c l o s e l y on t h e 215 Κ a n d 3 3 0 Κ H 2 0 d e s o r p t i o n s t a t e s w i t h t h e r e s u l t s shown i n f i g . 5 . Curves ( a ) - ( c ) were o b t a i n e d f o l l o w i n g t h e c o a d s o r p t i o n o f CHoOD a n d 0 and show t h a t none o f t h e d e u t e r i u m l a b e l f o r m s w a t e r i n t n e 330 Κ s t a t e . We c o n c l u d e t h a t t h e H 2 0 d e s o r p t i o n a t 330 Κ i n c u r v e ( c ) i s due t o t h e m e t h y l hydrogens r e a c t i n g w i t h preadsorbed oxygen. The 3 3 0 Κ peak i s t h e 3 H 2 0 s t a t e f o r 0 and Η r e c o m b i n a t i o n ( s e c t i o n 3 . 2 ) , so i t i s c l e a r t h a t t h e methyl hydrogens were t r a n s f e r r e d t o t h e s u r f a c e at a t e m p e r a t u r e l o w e r t h a n 330 K. The p r i m a r y r o u t e by w h i c h t h e d e u t e r i u m label i s r e m o v e d i s t h e d e s o r p t i o n o f HD0 o r D 2 0 a t 215 K , a n d we a s s i g n t h i s p e a k t o t h e d i r e c t t r a n s f e r o f d e u t e r i u m f r o m CH3OD t o e i t h e r o x y g e n o r a n h y d r o x y l g r o u p w i t h t h e e n s u i n g f o r m a t i o n o f CH3O species CH3OD + 0 CH3O + 0D CH3OD + 0D > CH3O + D 2 0 CH3OD + OH • CH3O + HDO
(5a) (5b) (5c)
F o r m a t i o n o f C H 3 O , f o l l o w i n g CH3OH a n d 0 c o a d s o r p t i o n a n d a n n e a l i n g t h e s a m p l e t o 1/5 K , was v e r i f i e d w i t h E E L S m e a s u r e m e n t s ; t h e s p e c t r a w e r e i n g o o d a g r e e m e n t w i t h EEL s p e c t r a o f CH3OH on c l e a n P d ( 1 0 0 ) /12/. The c o n c u r r e n t d e s o r p t i o n o f H 2 C 0 a t 2 1 5 Κ i n d i c a t e s t h a t o n e o f t h e m e t h y l h y d r o g e n s was l o s t a t o r b e l o w t h i s t e m p e r a t u r e a n d i s apparently the source of Η incorporated i n t o the water products at 215 Κ i n c u r v e s 5b a n d 5c a c c o r d i n g t o C H 3 0 + 0 • H 2 C 0 + OH CH3O + OH + H 2 C 0 + H 2 0 CH3O + OD > H 2 C 0 + HDO
(6a) (6b) (6c)
N o t e t h a t r e a c t i o n ( 6 a ) i s t h e s o u r c e o f OH f o r r e a c t i o n ( 5 c ) . In c u r v e s ( d ) - ( f ) o f f i g . 5 , we s e e t h a t t h e r e i s no e f f e c t upon e i t h e r
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
15.
stuveetal.
Oxygen Interactions and Reactions on Palladium(lOO)
173
Products/CH3OH+ O+PtldOO)
150
200
250 Temperature
300
350
(K)
Figure 4. T e m p e r a t u r e p r o g r a m m e d r e a c t i o n s p e c t r a o f CH3OH, H 2 C 0 and HoO f o l l o w i n g a d s o r p t i o n o f m u l t i l a y e r s o f CH3OH on P d ( l O O ) a t The o x y g e n was 130 t p r e c o v e r e d w i t h 0 . 2 5 ML a t o m i c o x y g e n . a d s o r b e d a t 300 K . A l l t r a c e s a r e on t h e same s c a l e .
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
174
CATALYST CHARACTERIZATION SCIENCE
1
1
1
r
Water / Methanol + 0+D + Pd (100) (d)-(f):CH 0H + 0
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
3
—I
—I
150
200
1
I
250
300
L
25
Temperature (K) Figure 5. Temperature programmed reaction spectra of water d e s o r p t i o n f o l l o w i n g m e t h a n o l a n d o x y g e n c o a d s o r p t i n on P d ( 1 0 0 ) . (a)-(c): D 2 0 , HDO, a n d H 2 0 d e s o r p t i o n f o l l o w i n g a d s o r p t i o n o f m u l t i l a y e r s o f CH3OD a t 1 3 0 Κ on t h e s u r f a c e p r e c o v e r e d w i t h 0 . 2 5 ML a t o m i c o x y g e n , (d)-(f): S o l i d l i n e s a r e t h e same a s ( a ) - ( c ) e x c e p t t h a t CH3OH was u s e d i n p l a c e o f CH3OD. The dashed l i n e s i n curves ( d ) - ( f ) demonstrate t h e e f f e c t o f coadsorbed D atoms. For t h e s e e x p e r i m e n t s t h e o x y g e n p r e c o v e r e d s u r f a c e was e x p o s e d t o 4 L D 2 a t 130 Κ p r i o r t o CH3OH e x p o s u r e .
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
15.
STUVEETAL.
Oxygen Interactions and Reactions on Palladium(lOO)
t h e 155 Κ o r 2 1 5 Κ H 2 0 d e s o r p t i o n s t a t e s when d e u t e r i u m a t o m s a r e c o a d s o r b e d w i t h CH3OH a n d 0. T h e o n l y d i f f e r e n c e s a r e t h e a p p e a r a n c e o f t h e HDO a n d D 2 0 3 s t a t e s a t 3 3 0 Κ d u e t o t h e D a t o m s . Thus, the w a t e r t h a t d e s o r b s a t 2 1 5 Κ was f o r m e d b y a d i r e c t t r a n s f e r o f h y d r o gen f r o m m e t h a n o l t o t h e p r e a d s o r b e d o x y g e n . A t t h e p r e s e n t t i m e we do n o t know t h e i d e n t i t y o f t h e s u r f a c e s p e c i e s r e s p o n s i b l e f o r t h e 215 Κ H 2 0 p e a k . I t i s due t o e i t h e r a s t a b i l i z e d form o f m o l e c u l a r H 0, o r t o a n OH g r o u p more r e a c t i v e t h a n t h a t found f r o m H 0 + 0 ( \ + 20H(aj. B o t h TPRS a n d EELS m e a s u r e m e n t s ( n o t s h o w n ) r u l e o u t OH g r o u p s i d e n t i c a l t o t h o s e formed from H 0 and 0 i n t h i s c a s e . We a r e c u r r e n t l y working t o resolve t h i s question. 2
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
175
2
a
2
Discussion The results presented above demonstrate that t h e Brflnsted base behavior of adsorbed oxygen, d i s c u s s e d p r e v i o u s l y by B a r t e a u and M a d i x f o r A g ( 1 1 0 ) / l / , a l s o m a n i f e s t s i t s e l f on more a c t i v e t r a n s i t i o n metal s u r f a c e s . We o b s e r v e , i n a d d i t i o n , t h e a b i l i t y o f o x y g e n t o scavenge r e a c t i o n p r o d u c t s . The L e w i s a c i d i n t e r a c t i o n i n v o l v e s c h a r g e w i t h d r a w a l f r o m t h e s u r f a c e by a d s o r b e d oxygen w h i c h s t a b i l i z e s c h a r g e d o n a t i n g s p e c i e s a s i n t h e c a s e o f c o a d s o r b e d CoH*. Ethylene, h o w e v e r , may a d s o r b i n t o e i t h e r o f t w o f o r m s o n Pd(lOO). The d i - o - b o n d e d f o r m o f C 2 H 4 c a n be c l a s s i f i e d a s c h a r g e w i t h d r a w i n g with charge going from t h e s u r f a c e i n t o t h e empty, anti-bonding π-orbital of C2H4 resulting i n rehybridization. The π-bonded form o f C 2 H 4 c a n be c l a s s i f i e d a s c h a r g e d o n a t i n g w i t h c h a r g e g o i n g f r o m t h e f i l l e d , bonding π-orbital o f C2H4 t o t h e s u r f a c e . The EELS s p e c t r u m o f f i g . 2b shows t h a t t h e c h a r g e d o n a t i n g ττ-bonded C 2 H 4 i s i n d e e d s t a b l e w i t h t h e charge w i t h d r a w i n g atomic oxygen, t h o u g h , a c c o r d i n g t o t h e C 2 H 4 TPD f r o m t h e c l e a n a n d p ( 2 X 2 ) 0 s u r f a c e s , t h e b i n d i n g e n e r g y does not change a p p r e c i a b l y . On t h e o t h e r h a n d , i f L e w i s a c i d oxygen i n t e r a c t i o n s s t a b i l i z e charge donating species, then they should d e s t a b i l i z e charge withdrawing s p e c i e s . T h i s i s m a n i f e s t e d by the oxygen-induced poisoning o f C2H4 dehydrogenation which proceeds from d i - o - b o n d e d C 2 H 4 . The i n h i b i t i o n o f C 2 H 4 d e h y d r o g e n a t i o n i s due to the poisoning of sites required f o r di-o-bonded C2H4 adsorption, and t h e r e q u i r e m e n t of eight Pd a t o m s f o r e a c h d i - o - b o n d e d C2H4 molecule indicates that a l a r g e e n s e m b l e i s n e e d e d f o r C-H bond activation. We p r o p o s e t h a t b o t h s i t e b l o c k a g e a n d t h r o u g h - s u r f a c e , Lewis acid i n t e r a c t i o n s between oxygen and d i - o - b o n d e d C2H4 are responsible f o r the oxygen-induced poisoning o f C2H4 dehydrogenation on P d ( 1 0 0 ) . The
direct
hydrogen t r a n s f e r r e a c t i o n s , e q n s . (3) and ( 5 a ) , f o r w i t h 0 a r e examples o f t h e Brflnsted base b e h a v i o r o f oxygen. I n t h e s e r e a c t i o n s , t h e B r f l n s t e d a c i d s p e c i e s , HoO o r CH3OH, g i v e s up i t s a c i d i c h y d r o g e n t o t h e B r f l n s t e d b a s e s p e c i e s , oxygen. The Brflnsted base b e h a v i o r o f oxygen i s not observed with C2H4 b e c a u s e C 2 H 4 i s a much w e a k e r a c i d t h a n e i t h e r H 2 0 o r CH3OH / 2 / . The s c a v e n g i n g e f f e c t o f a t o m i c o x y g e n , o b s e r v e d w i t h C 2 H 4 a n d CH3OH, d o e s n o t d e p e n d i n a d i r e c t way on t h e n a t u r e o f t h e c o a d s o r b a t e , b u t o n l y on t h e v a r i o u s s p e c i e s e v o l v e d d u r i n g t h e r e a c t i o n o f the coadsorbate. Oxygen i s c a p a b l e o f s c a v e n g i n g h y d r o g e n and c a r b o n produced by C 2 H 4 d e c o m p o s i t i o n t o form H 2 0 i n t h e 3 s t a t e a t 330 Κ
H 0 a n d CH3OH 2
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
CATALYST CHARACTERIZATION SCIENCE
176 and
CO a n d C 0 2 a t h i g h e r
believed self. of
Downloaded by HONG KONG UNIV SCIENCE TECHLGY on April 4, 2017 | http://pubs.acs.org Publication Date: October 16, 1985 | doi: 10.1021/bk-1985-0288.ch015
the
to
have
Oxygen
adsorbed
temperatures
no d i r e c t
effect
s c a v e n g i n g may p l a y
CH3O,
hydroxyl
however.
hydrogen
These
side reactions are
on t h e i n i t i a l
/10/·
decomposition i t -
an i m p o r t a n t
We h a v e
observed
o f CH3OH t o f o r m
role
i n the s t a b i l i t y
that
oxygen
abstracts
desorbs
a t 215 K,
H 2 0 , which
and t h e m e t h y l h y d r o g e n s t o f o r m H 2 0 a t 330 K. Oxygen s c a v e n g i n g o f the hydroxyl H c a n a c t t o s t a b i l i z e CH3O s p e c i e s b y p r e v e n t i n g t h e CH3O r e h y d r o g e n a t i o n r e a c t i o n . T h i s e f f e c t was p r e v i o u s l y s e e n b y G a t e s a n d K e s m o d e l f o r CH3OH a n d 0 on P d ( l l l ) / 1 3 / . U n l i k e P d ( l l l ) , h o w e v e r , CH3O s p e c i e s a r e s t a b l e o n c l e a n P d ( l O O ) / 1 2 / , a n d we a r e c u r r e n t l y s t u d y i n g w h e t h e r t h e r e i s a n y a d d i t i o n a l s t a b i l i t y o f CH3O on P d ( 1 0 0 ) d u e t o t h e p r e s e n c e o f o x y g e n . Conclusions The
Lewis
acid
and Brflnsted base oxygen
on A g ( 1 1 0 ) a l s o o c c u r o n P d ( 1 0 0 ) . actions ing
were
inferred
o f t h e C2H4
bonded
C0H4.
Brflnsted CH3OH
t o oxygen
tified
species
atomic
hydrogen
base
reaction
acid
found inter-
of the poison-
by d é s t a b i l i s a t i o n o f d i - σ -
interactions
were
observed
between
and 0 as e v i d e n c e d by t h e d i r e c t t r a n s f e r
t o form
from
Lewis
C0H4 a n d 0 a s t h e r e s u l t
dehydrogenation
and 0 a n d between hydrogen
between
interactions previously
Through-surface,
CH3OH.
OH s p e c i e s Oxygen
p r o d u c e d b y C0H4
o
r
from
of
H 2 0 and an a s y e t u n i d e n
a d s o r b e d on P d ( 1 0 0 ) C H
H20
also
scavenges
3 ° decomposition.
Acknowledgments We w i s h t o t h a n k D r . C . R . B r u n d l e o f IBM R e s e a r c h - S a n J o s e f o r t h e l o a n o f t h e vacuum chamber u s e d i n t h i s w o r k . One o f u s ( S W J ) g r a t e fully acknowledges a f e l l o w s h i p from t h e N a t i o n a l Science Founda tion. T h i s w o r k was s u p p o r t e d b y t h e N a t i o n a l S c i e n c e F o u n d a t i o n (NSF-CPE 8320072).
L i t e r a t u r e Cited
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
M. A. Barteau and R. J. Madix, in "The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis," Vol. 4, Eds. D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1982). M. A. Barteau and R. J. Madix, Surface Science 120 (1982) 262. E. M. Stuve, R. J. Madix, and C. R. Brundle, Surface Science , in press (CO Oxidation on Pd(100)). A. Ortega, F. M. Hoffman, and A. M. Bradshaw, Surface Science 119 (1083) 79. R. J. Behm, K. Christmann, G. Ertl, and M. A. Van Hove, J. Chem. Phys. 73 (1980) 2984. Ε. M. Stuve and R. J. Madix, Surface Science, in press. Ε. M. Stuve, S. W. Jorgensen, and R. J. Madix, submitted to Sur face Science (Water and Oxygen Coadsorption on Pd(100)). Ε. M. Stuve, R. J. Madix, and C. R. Brundle, Surface Science, Proc. ECOSS-6, in press. C. Nyberg and C. G. Tenstal, Surface Science 126 (1983) 163. Ε. M. Stuve and R. J. Madix, submitted to Surface Science. Ε. M. Stuve and R. J. Madix, to be submitted. K. Christmann and J. E. Demuth, J. Chem. Phys. 76 (1982) 6318. J. A. Gates and L. L. Kesmodel, J. Catalysis 83 (1083) 437.
RECEIVED
June 21, 1985
Deviney and Gland; Catalyst Characterization Science ACS Symposium Series; American Chemical Society: Washington, DC, 1985.