1 Colloidal Microcrystalline Celluloses O. A. BATTISTA
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
Research Services Corp., 5280 Trail Lake Drive, Fort Worth, Tex. 76133
The science and technology o f polymers during the past few decades have been centered l a r g e l y around the phenomena and the products t h a t r e s u l t from p r e c i p i t a t i n g or " f r e e z i n g " long chain molecules i n t o f i x e d matrices l e a d i n g to important commercial s t r u c t u r a l shapes such as f i b e r s , f i l m s , p l a s t i c s , and c o a t i n g s . The b a s i c hypothesis around which the science o f microcrystalline c o l l o i d a l polymer chemistry (1) is u n f o l d i n g n e c e s s i t a t e s t h a t s p e c i f i c r e q u i s i t e s must be met; it is i n the d e l i b e r a t e combination o f these r e q u i s i t e s t h a t it d e r i v e s its value and originality. Firstly, the molecular weight o f the i n d i v i d u a l long-chain molecules must be high enough; the chain molecules must be long enough t o crystallize out o f s o l u t i o n or from a melt i n t o a two-phase network s t r u c t u r e comprising regions o f high l a t e r a l order (or crystallinity) and regions o f low lateral order (or low crystallinity). Secondly, a pretreatment must be i n v o l v e d which is capable of unhinging or loosening the i n d i v i d u a l m i c r o c r y s t a l s w i t h i n t h e i r precursor matrix without e x c e s s i v e l y s w e l l i n g them or d e s t r o y i n g t h e i r "crystallinity." Thirdly, once the i n d i v i d u a l m i c r o c r y s t a l s have been p r o p e r l y unhinged or loosened w i t h i n the polymer matrix, they must next be f r e e d by the proper k i n d o f mechanical energy. The i n d i v i d u a l microc r y s t a l s , comprising as they do hundreds of long-chain molecules aggregated together, will now act as d i s c r e t e , independent, submicron colloidal particles. C o l l o i d a l m i c r o c r y s t a l l i n e c e l l u l o s e s were the first o f a f a m i l y o f new products t h a t have emerged in recent years (Table 1 ) . The s i z e and shape o f n a t u r a l c e l l u l o s e m i c r o c r y s t a l s are more or l e s s f i x e d by n a t u r e . But wide v a r i a t i o n s in the dimension of such p a r t i c l e s are p o s s i b l e by the appropriate choice o f the n a t u r a l or s y n t h e t i c precursor raw m a t e r i a l (2,3,4). F i g u r e s 1 and 2 are e l e c t r o n micrographs illustrating the 1 In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
CELLULOSE TECHNOLOGY
Table 1
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
Nine Members o f the M i c r o c r y s t a l Polymer Products Family.
1·
AVICELS
FROM CELLULOSES
2.
AVIAMXLOSES.
3.
AVIBESTS
4.
AVITENES
5.
AVTAMIDES
FROM NYLONS
6.
AVIESTERS
FROM POLYESTERS
7.
AVIOLEFINS..
8.
AVISILKS
FROM NATURAL SILKS
9.
AVIWOOLS
FROM NATURAL WOOLS
....FROM AMYLOSES FROM CHRYSOTILES ...FROM COLLAGENS
...FROM POLYPROPYLENES
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
RESEARCH
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
1. BATTiSTA
Colloidal Microcrystalline Cellulose
Figure 1.
Microcrystals from wood pulp alpha cellulose
Figure 2.
Microcrystals from rayon tire cord
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
4
CELLULOSE TECHNOLOGY RESEARCH
wide spread i n the lengths o f c e l l u l o s e m i c r o c r y s t a l s t h a t i s p o s s i b l e ; m i c r o c r y s t a l s o f wood c e l l u l o s e are compared with m i c r o - c r y s t a l s from v i s c o s e rayon a t the same m a g n i f i c a t i o n . C e l l u l o s e i s h i g h l y c r y s t a l l i n e , uniquely i s o t a c t i c l i n e a r polymer. I t contains m i c r o c r y s t a l s hinged together by t r u e (covalent) molecular bonds. Mechanical beating o f c e l l u l o s e f i b e r s leads only t o a separation o f the f i b r i l s , b u t mechanical energy alone cannot break the 1 , 4 ^ - g l y c o s i d i c bonds i n the molecular chains going from one c r y s t a l l i t e t o the other w i t h i n the f i b r i l with any degree o f e f f e c t i v e n e s s . However, once these hinges i n the i n t e r c o n n e c t i n g areas are broken, i n the case o f c e l l u l o s e by the use o f the hydronium i o n (HC1), then mechanical energy can be used t o cause the i n d i v i d u a l unhinged m i c r o c r y s t a l s t o d i s p e r s e i n t o a l i q u i d medium as i n d i v i d u a l c o l l o i d a l p a r t i c l e s . Not u n t i l a s u f f i c i e n t l y l a r g e number o f m i c r o c r y s t a l s i s so f r e e d does a mechanical g e l network develop t o g i v e a smooth, l a r d - l i k e g e l . F i g u r e 3 i l l u s t r a t e s t h e nature o f such aqueous suspensoids f o r m i c r o c r y s t a l l i n e c e l l u l o s e and f o r f i v e other members o f the m i c r o c r y s t a l l i n e polymer family. The m i c r o c r y s t a l s o f pure c e l l u l o s e i n aqueous g e l s do not melt, o f course. T h i s g i v e s such suspensoids a unique f u n c t i o n a l property which makes p o s s i b l e the development o f a new f a m i l y o f convenience foods; m i c r o c r y s t a l l i n e c e l l u l o s e g e l s are used i n precooked cans o f tuna f i s h , ham, chicken, turkey, and even potato salads as h e a t - i n s e n s i t i v e s a l a d d r e s s i n g s . No p r e v i o u s l y known e d i b l e salad d r e s s i n g formulation could stand up under the severe s t e r i l i z a t i o n requirements f o r such canned foods (Figure 4 ) · Table 2 l i s t s the f u n c t i o n a l c o n t r i b u t i o n s o f microc r y s t a l l i n e c e l l u l o s e s i n various product uses. F i g u r e 5 i l l u s t r a t e s the mechanism whereby d r y c o l l o i d a l p a r t i c l e s o f c r y s t a l l i n e c e l l u l o s e , containing numerous " h o l e s " v a r y i n g from 10 A-100 A i n diameter, may be produced· T h i s new porous form o f h i g h l y c r y s t a l l i n e c e l l u l o s e i n powder form i s capable o f absorbing o i l s , greases, c a t a l y s t s , e t c . When a d i l u t e s l u r r y o f a suspension o f i n d i v i d u a l m i c r o c r y s t a l s and l a r g e aggregates o f unhinged m i c r o c r y s t a l s i s spray-dried under proper c o n d i t i o n s , the f r e e m i c r o c r y s t a l s reagglomerate i n t o man-made c l u s t e r s not u n l i k e the manner i n which wooden matchs t i c k s aggregate when p i l e d on a t a b l e top. S t i l l other f a s c i n a t i n g o p p o r t u n i t i e s present themselves when chemistry i s wedded t o these novel c o l l o i d a l macromolecular p a r t i c l e s . F o r example, r e a c t i o n o f the m i c r o c r y s t a l l i n e c e l l u l o s e c r y s t a l s proceeds with p a r t i c u l a r ease and speed. D e r i v a t i v e s can be formed which are a l s o c o l l o i d a l . These are e n t i r e l y new m a t e r i a l s with very d i f f e r e n t p r o p e r t i e s and p o t e n t i a l a p p l i c a t i o n s . A t high degrees o f s u b s t i t u t i o n (D.S.), d e r i v a t i v e s o f m i c r o c r y s t a l l i n e c e l l u l o s e are s u b s t a n t i a l l y the same m a t e r i a l as produced from conventional c e l l u l o s e . A t low
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
1. BATTiSTA
Figure 3.
Colloidal Microcrystalline
Cellulose
Aqueous suspensoids of six classes of microcrystal polymer products
Figure 4. Typical commercial food products containing microcrystalline cellulose
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5
CELLULOSE TECHNOLOGY RESEARCH
6
Table 2 Puntional P r o p e r t i e s
and End Uses
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
of M i c r o c r y s t a l l i n e C e l l u l o s e s
Functionality
Product Uses
Emulsion S t a b i l i t y a t High Temperatures
Heat S t a b l e Dressings
Ice-Crystal
Control
S t a b i l i t y To E f f e c t s o f Heat Shock
Frozen Desserts
Improved Body and Texture
Foam S t a b i l i t y Freeze/Thaw
Stability
Whipped Toppings
Improved Body and Texture
G e l l i n g Agent
Low C a l o r i e Dressings
Thickener
Sauces and Gravies
Suspending Agent
Suspension o f Food S o l i d s
Non-Nutritive F i l l e r
Confections Baked Goods
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
1. BATTiSTA
Figure 5.
Colloidal Microcrystalline Cellulose
Reaggregated cellulose microcrystals as porous colloidal particles
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Downloaded by GEORGETOWN UNIV on June 27, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0010.ch001
8
CELLULOSE TECHNOLOGY RESEARCH
degrees o f s u b s t i t u t i o n , where the c o l l o i d a l nature o f the m i c r o c r y s t a l s i s maintained, the d e r i v a t i v e s form unique c o l l o i d a l d i s p e r s i o n s . Dispersions o f a t l e a s t 20% s o l i d s i n water can be produced. These may have the appearance o f greases, ointments, or l o t i o n s , depending on the extent o f topochemical d e r i v a t i z a t i o n and the nature o f the groups added. We have described m i c r o c r y s t a l l i n e c e l l u l o s e s , t h i s f i r s t i n a new species o f c o l l o i d a l m i c r o c r y s t a l polymer products t o reach world-wide commercial success. The knowledge gleaned from converting f i b r o u s c e l l u l o s e s i n t o new, u s e f u l c o l l o i d a l forms has guided us i n t o converting other l i n e a r and c r y s t a l l i n polymer precursors i n t o u s e f u l c o l l o i d a l forms. To date these have i n c l u d e d : c o l l o i d a l m i c r o c r y s t a l l i n e amyloses, microc r y s t a l l i n e mineral s i l i c a t e s , m i c r o c r y s t a l l i n e c o l l a g e n s , m i c r o c r y s t a l l i n e polyamides, m i c r o c r y s t a l l i n e p o l y s t e r s , m i c r o c r y s t a l l i n e polypropylenés, m i c r o c r y s t a l l i n e s i l k s , and m i c r o c r y s t a l l i n e wools. A t r e a t i s e encompassing the r e s u l t s o f our research i n the newest f i e l d s o f M i c r o c r y s t a l Polymer Science i n c o l l a b o r a t i o n with many a s s o c i a t e s over a p e r i o d o f 20 years now i s a v a i l a b l e ( 1 ) . T h i s author p r e d i c t s t h a t numerous new avenues o f opportunity remain unexplored f o r the more r e c e n t members o f the m i c r o c r y s t a l polymer science f a m i l y .
Literature Cited
1.
B a t t i s t a , O.A., M i c r o c r y s t a l Polymer Science, A T r e a t i s e . McGraw-Hill Book Co., Inc. 1975.
2.
B a t t i s t a , O. Α., and Smith, P.Α., Ind. Eng. Chem. (1962) 54, (9), 20-29.
3.
B a t t i s t a , O.A., e t al, Ind. Eng. Chem., (1956) 48 333-335.
4.
B a t t i s t a , O.A., and Smith, P.A., U.S. Patent No. 2,978,446 ( L e v e l - o f f D.P. C e l l u l o s e Products), 1961, April 4.
In Cellulose Technology Research; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.