Copper Catalyzed Intramolecular N-Arylation of Ketene Aminals at

5 days ago - Various 2-amino-3-cyanoindoles are synthesized through a copper catalyzed intramolecular N-arylation of ketene aminals at room temperatur...
0 downloads 0 Views 2MB Size
Subscriber access provided by Kaohsiung Medical University

Note

Copper Catalyzed Intramolecular N-Arylation of Ketene Aminals at Room Temperature: Synthesis of 2-Amino-3-cyanoindoles ANNARAM THIRUPATHI, Manojkumar Janni, and Saravanan Peruncheralathan J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00816 • Publication Date (Web): 31 May 2018 Downloaded from http://pubs.acs.org on May 31, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Copper Catalyzed Intramolecular N-Arylation of Ketene Aminals at Room Temperature: Synthesis of 2-Amino-3-cyanoindoles Annaram Thirupathi, Manojkumar Janni, and Saravanan Peruncheralathan* School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Jatni, Khurda – 752050, Odisha, India Email: [email protected]

Abstract

Various 2-amino-3-cyanoindoles are synthesized through a copper catalyzed intramolecular N-arylation of ketene aminals at room temperature for the first time with 60 99% yields within 0.1 - 2 hours. A controlled regioselective N-arylation of unsymmetrical ketene aminals is also studied. Further, a new double heteroannulation approach is demonstrated for the synthesis of 11-amino-indolo[2,3-b]quinolines from acyclic and nonheterocyclic precursors.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Catalytic organic transformation at ambient temperature is of central importance in the industrial research.1 This transformation can be scaled up to bulk production of agrochemicals, fine materials and drugs. Particularly, the C─N bond forming reactions are widely applied in industry for the synthesis of nitrogen containing fine chemicals and pharmaceuticals.2 Despite well-developed protocols, these reactions use harsh reaction conditions, using coupling reagents, generate waste materials, and longer reaction time. To overcome these drawbacks, transition metal catalyzed C─N bond forming reactions at room temperature are developed3,4 and frequently applied for the synthesis of variety of aryl amines5 and amides.6 However, this approach is less explored in the construction of functionalized heterocyclic compounds.7 Therefore, developing a catalytic C─N cross-coupling reaction at room temperature to access a broad spectrum of N-heterocycles is highly desirable. Recently, arylnitrile containing drugs have attracted considerable attention among medicinal chemists.8 In particular, 1,2-aminocyano arene derivatives have shown interesting biological properties and some of these compounds are in clinical trials.9 The representative examples of these molecules are depicted in Figure 1. Recently, the 2-amino-3-cyanoindole derivative was identified as a selective estrogen ligand -isoform for various diseases associated with estrogen receptor.10 Interestingly, these derivatives were also used as precursors for the synthesis of fused N-rich heterocycles.11 In literature, few methods are reported for the synthesis of 2-amino-3-cyanoindoles.12-14 Generally, the reported methods of these compounds involve step-wise transformations of o-halonitrobenzene13 or o-haloaniline precursors.14 Further, one-step protocol for the synthesis of 2-amino-3-cyano-5hydroxyindoles is developed through Nenitzescu reaction of ketene aminals with 1,4benzoquinone resulting in moderate yields.15 Recently, the palladium catalyzed direct Narylation followed by in situ cyclization of resulting intermediate to 2-amino-3-cyanoindoles was reported.16 However, this reaction failed to give the expected 2-aminoindole in the

ACS Paragon Plus Environment

Page 2 of 36

Page 3 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

presence of copper(I)iodide.16 Thus, in the context of the limitation of the existing methods such as low yields,15 tedious work-up,12n multi-step synthesis,12f 3-cyanoindole precursor,12j-l and high temperature,12g developing a mild and practical method for the synthesis of 2-amino3-cyanoindoles is vital.

Figure 1. Selective Biological Important 1,2- & 1,4-Amino-cyano Aryl/heteroaryl Derivatives Copper catalyzed C─N bond formation is one of the most powerful methods for the synthesis of indoles and their derivatives.17 Despite the versatility, only a few methods are known for the construction of indoles through N-arylation process.18 These methods suffer high catalyst loading,18b longer reaction time,18a-b and limited substrate scope.18h In addition, the copper catalyzed direct formation of indole ring by N-arylation of ketene aminals at room temperature has not been reported.19 Recently, we have reported a mild and practical method for the synthesis of 2-aminobenzo[b]thiophenes which involves a copper-catalyzed chemoselective intramolecular Ullman reaction at room temperature.20 In continuation of our ongoing interest in chemo- and regioselective synthesis of highly substituted heterocycles,21 herein we report the synthesis of various functionalized 2-amino-3-cyanoindoles at room temperature by copper catalyzed intramolecular N-arylation of ketene aminals for the first time. The regioselective C─N bond formation of unsymmetrical ketene aminals is also studied. The newly synthesized 2-anilino-3-cyanoindoles are transformed to 11-amino-indolo[2,3b]quinolines by Brønsted acid mediated intramolecular Gattermann type cyclization.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The required ketene aminals 3 were prepared by treating anion of 2-bromoaryl acetonitriles 1 with substituted carbodiimides 2 in moderate to good yields (Table 1). All newly synthesized α-cyano-α-(2-bromoaryl)-N,N-acetal derivatives 3 were characterized by spectral and analytical data. Table 1. Synthesis of Ketene Aminals 3a

After having the ketene aminals 3 in our hand, the aminal 3aa was chosen as model substrate for the copper catalyzed intramolecular N-arylation process. The initial experiment was performed with CuI affording 56% of the N-arylated product 4aa after 32 hours (Table 2, Entry 1). Interestingly, when 1,10-phenanthroline was used as a ligand, the yield of the Narylation was significantly increased (96%) and the reaction completed within 5 minutes (Table 2, Entry 2). Various bases like Cs2CO3, K2CO3 and K3PO4 were screened for the effectiveness of the coupling reaction. These conditions afforded the product 4aa ranging from 90-91% yields (Table 2, Entries 3-5). However, bases such as NaOAc and triethylamine were not effective (Table 2, Entries 6-7). The solvent effect on N-arylation process was also examined with different solvents such as THF, dioxane, toluene, DMSO, and DMA. Among these,

ACS Paragon Plus Environment

Page 4 of 36

Page 5 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

DMSO was comparable with DMF in terms of conversion and yields of 2-amino-3-cyanoindole 4aa (Table 2, Entries 8 -12). Next, various copper salts were studied for the N-arylation reaction. CuCl was found to give a quantitative conversion to the product 4aa in comparision with CuBr and Cu(OAc)2 (Table 2, Entries 13-15) and was chosen for further studies. To finetune the reaction, a set of ligands, BINAM, TMEDA, and L-proline were screened and found to be less beneficial when compared with 1,10-phenanthroline (Table 2, Entries 16-18). Lowering the catalyst loading significantly reduced the yield of the product 4aa and increased the reaction time (Entries 19 and 20). Table 2. Optimization of the N-arylation of Aminal 3aaa,b

With the optimized conditions of the reaction, we studied a series of ketene aminals 3 for the N-arylation process. The N,N-diphenyl N,N-acetal derivative 3ab was smoothly transformed to 1-N-phenyl-2-anilino-3-cyanoindole (4ab) in 90% yield (Table 3).

Similarly,

3-cyano-2-(4-fluoroanilino)indole

4ac

was

obtained

from

the

corresponding ketene aminal 3ac in good yield (74%, Table 3). Interestingly, 2,6-

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 36

dimethylanilino substituted ketene aminal 3ad afforded 4ad in excellent yield (86%, Table 3). These reactions completed within 5 minutes. Table 3. Copper Catalyzed N-Arylation of Ketene Aminals 3 at Room Temperaturea

Next, the electron donating substituent effects on the aryl groups were investigated. The 5,6-dimethoxy substituted 2-amino-3-cyanoindoles 4ba and 4bb were synthesized from the respective ketene aminals in 92% and 88% yields, respectively. However, 5,6-methylenedioxy-2-(4-anisidinyl)indole 4ca was obtained in moderate yield with a longer reaction time (2 h, Table 3). On the other hand, the 2, 6-dimethyl phenyl substituted aminal 3cd gave very good yield of product 4cd within 5 minutes. In the case of the α-(2-bromo-3,6-dimethoxyphenyl) aminals 3dc and 3dd with electron withdrawing and sterically hindered substituents on nitrogen afforded the respective 2amino-3-cyanoindoles 4dc and 4dd in 84-85% yields. naphthyl)-aminal

3ea

was

transformed

to

The α-cyano-α-(1-bromo-21-N-(4-methoxyanilino)-2-(4-

methoxyanilino)-3-cyanobenzo[g]indole (4ea) in 88% yield under the optimized reaction conditions. Whereas, the 4-fluroanilino derivative 3ec gave only 67% of 2amino-3-cyanoindole 4ec (Table 3).

ACS Paragon Plus Environment

Page 7 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

We then turned our attention to examine the alkyl substituted ketene aminals for intramolecular copper catalyzed N-arylation reaction. The ketene aminal 3ae derived from isopropyl carbodiimide was subjected to undergo the reaction under optimized conditions. To our surprise, the expected 2-amino-3-cyanoindole 4ae was not formed at room temperature. However, the same reaction when performed at 120 oC afforded the 2-isopropylaminoindole 4ae in 80% yield (Table 4). Similarly, the other alkyl amino substituted indole derivatives 4af, 4bf, and 4ce were prepared from the respective aminals 3af, 3bf, and 3ce at 120 oC with short reaction times (30 mins) (Table 4). Table 4. Copper Catalyzed N-Arylation of Alkyl Substituted Ketene Aminals 3

Next we focused on the N-arylation of ketene aminals 3ag and 3ah having unsymmetrical aryl groups (4-MeOPh vs 4-NO2Ph, Table 5). Under the optimized conditions, 3ag resulted in the formation of 3-cyano-2-(4-nitroanilino)indole 4ag in 81% yield, which was confirmed by single crystal X-ray analysis (Table 5). A similar trend was also observed in the ketene aminal 3ah affording 3-cyano-1-N-phenylindole 4ah in 86% yield. Both these unsymmetrical aminals gave an exclusively single regioisomer. It seems that the electron rich nitrogen is arylated faster than the deficient one. These results encouraged us to investigate the alkyl and aryl sybstituted ketene aminal. Thus, we performed an experiment with the alkyl, aryl substituted ketene aminal 3ai at room temperature. As seen above, the N-arylation occurred at the aryl substituted N-atom and the product 4ai was obtained in 68% yield. The structure of 4ai was confirmed by single crystal X-ray analysis (Table 5).

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Table 5. Regioselective Copper Catalysed N-Arylation of Unsymmetrical Ketene Aminals 3a

We then turned our interest towards the studies involving α-oxo-ketene aminals (6a and 6c). The required α-oxo-ketene aminals 7 were prepared from reaction of enolate of 2-bromo-benzyl derivatives with cabodiimides (Table 6). The α-oxo-ketene aminals 6ad, 6bb and 6ca derived from the respective ketones 5a, 5b, and 5c, were smoothly transformed to 3-aroxy-2-aminoindoles 7ad, 7bb, and 7ca respectively in moderate to very good yields (Table 6). Table 6. Synthesis of α-Oxo-ketene Aminals 6 and 3-Aroyl-2-aminoindoles 7a

The newly synthesized indole core is decorated with two functional groups at 2- and 3positions, respectively. We envisioned that the electrophilicity of the nitrile can be increased by a Brønsted acid, which could be trapped in situ by an intramolecular attack of aniline moiety at its ortho position. This new strategy would result in the construction of 4-aminoquinoline ring over the indole. To optimize the proposed strategy, we screened a set of Brønsted acids for the intramolecular reaction of 2-anilino-3-cyanoindole 4aa. Interestingly, we found that in

ACS Paragon Plus Environment

Page 8 of 36

Page 9 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

the presence of triflic acid (10 equiv), the indole 4aa was smoothly converted to the corresponding 11-amino-indolo[2,3-b]quinoline 8aa in 95% yield at room temperature. Using the optimized conditions, several indole derivatives 4 were transformed to the corresponding indolo fused quinolines 8ab, 8ac, 8dc, and 8ea in moderate to very good yields (Table 7). To the best of our knowledge, the construction of indolo[2,3-b]quinolines from an acyclic precursor via double heteroannulation strategy at room temperature is hitherto not reported in literature.22 Table 7. Synthesis of 11-Amino-indolo[2,3-b]quinolines 8a

In conclusion, we have demonstrated a simple and efficient protocol for the synthesis of 2-amino-3-cyanoindoles through the copper catalyzed N-arylation of ketene aminals at room temperature for the first time. This protocol provides various substituted 2-amino-3cyanoindoles in good to excellent yields in short reaction time. In addition, the controlled regioselective N-arylation of unsymmetrical ketene aminals was established. The N-arylation was also extended to α-oxo ketene aminals. Interestingly, the new double heteroaromatic annulation strategy was used to synthesize 11-amino-indolo[2,3-b]quinolines from acyclic precursors at room temperature for the first time.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Experimental Section General Information All reactions were performed by using standard vial technique with rubber septum. All solids were weighed in air. Toluene, Dioxane, DMF, DMSO, DMA, Cs2CO3, K3PO4, NaOAc, DMAP, KOtBu, and Et3N were purchased from Aldrich, Acros, Merck, Spectrochem or AlfaAesar and used as received. CuI, CuBr, CuCl and Cu(OAc)2 were purchased from Aldrich. Carbodiimides were synthesized from respective thioureas, which derived from aniline derivatives and few carbodiimides were purchased from Aldrich. Tetramethylethylenediamine, (R)-(+)-1,1'-binaphthyl-2,2'-diamine, L-proline and 1,10-phenanthroline were purchased from Aldrich. All other reagents were purchased from common suppliers and used without further purification. Flash chromatography was performed using Merck Silica gel (230-400 mesh). Fractions were monitored by thin-layer chromatography on precoated silica gel 60 F254 plates (Merck & co.) and were visualized by UV. NMR data were recorded on Bruker ARX 400 and 700 spectrometers. 13C and 1H NMR spectra were recorded in CDCl3, MeOH-d4 and DMSOd6 referenced according to signals of deutero solvents. ESI HR-MS measurements were performed on Bruker micrOTOF-Q-II mass-spectrometer. General Procedure for the Synthesis of Ketene Aminals 3 & 6 To a stirring suspension of NaH (60% suspension in mineral oil) (0.144 mg, 3.6 mmol, 1.2 equiv) in DMF at 0

oC

was added drop wise the corresponding 2-haloaryl

acetonitrile/deoxybenzoin (3 mmol) in DMF. After being further stirred for 1 h at room temperature, a solution of carbodiimide (3.6 mmol, 1.2 equiv) in DMF was added to the reaction mixture at 0 oC and followed by further stirring for 5 min - 15 h at room temperature. After complete consumption of the starting materials (monitored by TLC), the reaction mixture was quenched with saturated NH4Cl solution and extracted with EtOAc. The combined organic layer washed with water (3 x 25 mL) and brine (25 mL), dried over anhydrous Na2SO4, and

ACS Paragon Plus Environment

Page 10 of 36

Page 11 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

concentrated under reduced pressure. The crude products were purified by flash chromatography using hexane and EtOAc as eluent. 2-(2-Bromophenyl)-3,3-bis((4-methoxyphenyl)amino)acrylonitrile (3aa): Yield: 51% (695 mg); White Solid; Rf = 0.34 in 25% EtOAc in Hexanes; Melting Point: 143 – 145 oC; IR (KBr): ν (cm-1) = 3292, 2933, 2171, 1601, 1579, 1510, 1371, 1240, 1031, 822; 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.0 Hz, 1H), 7.34 (dd, J = 7.7, 1.4 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 8.9 Hz, 2H), 7.02 – 6.94 (m, 1H), 6.83 (d, J = 8.9 Hz, 2H), 6.77 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 Hz, 2H), 6.41 (s, 1H), 5.67 (s, 1H), 3.74 (s, 3H), 3.67 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.6, 156.4, 153.9, 134.0, 133.3, 133.0, 131.9, 131.5, 128.5, 127.7, 125.9, 123.5, 123.2, 122.0, 114.6, 114.1, 67.1, 55.59, 55.54; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C23H21N3O2Br: 450.0812 & 452.0792, found: 450.0814 & 452.0801. 2-(2-Bromophenyl)-3,3-bis(phenylamino)acrylonitrile (3ab): Yield: 66% (775 mg); Pale yellow solid; Rf = 0.31 in 25% EtOAc in Hexanes; Melting Point: 148 – 150 oC; IR (KBr): ν (cm-1) = 3368, 3237, 3050, 2924, 2193, 1573, 1344, 1028, 752; 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.4 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.21 (m, 3H), 7.12 – 6.97 (m, 6H), 6.87 (m, 3H), 6.67 (s, 1H), 5.85 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 151.9, 139.2, 138.5, 133.6, 133.5, 132.8, 129.4, 128.9, 128.8, 127.8, 125.7, 123.9, 123.7, 121.4, 120.6, 120.5, 70.3; HRMS (ESITOF) m/z: [M + H]+ Calcd. for C21H17N3Br: 390.0600 & 392.0581, found: 390.0619 & 392.0601. 2-(2-Bromophenyl)-3,3-bis((4-fluorophenyl)amino)acrylonitrile (3ac): Yield: 73% (936 mg); Pale yellow solid; Rf = 0.25 in 25% EtOAc in Hexanes; Melting Point: 217 – 219 oC; IR (KBr): ν (cm-1) = 3376, 3246, 3055, 2192, 1579, 1508, 1215, 831; 1H NMR (400 MHz, DMSOD6) δ 9.06 (s, 1H), 8.69 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.30 (dd, J = 7.6, 1.2 Hz, 1H), 7.24 (t, J = 7.1 Hz, 1H), 7.15 – 7.03 (m, 4H), 7.03 – 6.98 (m, 1H), 6.92 – 6.82 (m, 4H); 13C NMR (100 MHz, DMSO-D6) δ 157.4 (d, J = 238 Hz), 157.3 (d, J = 237 Hz), 152.0, 137.7, 136.4,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

135.2, 132.9, 132.3, 127.8, 127.7, 124.2, 121.6, 121.2 (d, J = 7.2 Hz), 120.2 (d, J = 7.2 Hz), 115.4 (d, J = 22.3 Hz), 114.8 (d, J = 22.5 Hz), 69.6; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. for C21H14F2BrN3Na: 448.0231 & 450.0238, found: 448.0238 & 450.0220. 2-(2-Bromophenyl)-3,3-bis((2,6-dimethylphenyl)amino)acrylonitrile (3ad): Yield: 68% (916 mg); White solid; Rf = 0.31 in 25% EtOAc in Hexanes; Melting Point: 176 – 177 oC; IR (KBr): ν (cm-1) = 3374, 3254, 2924, 2174, 1600, 1585, 1470, 1222, 773; 1H NMR (400 MHz, CDCl3, Major isomer only) δ 7.68 (d, J = 8 Hz, 1H), 7.51 (d, J = 6.8 Hz, 1H), 7.33 (t, J = 6.4 Hz, 1H), 7.19 – 7.16 (m, 3H), 7.11 – 7.07 (m, 2H), 7.04 – 7.03 (m, 2H), 5.57 (s, 1H), 5.22 (s, 1H), 2.46 (s, 6H), 2.35 (s, 6H). 13C NMR (100 MHz, CDCl3, Major isomer only) δ 154.6, 137.6, 134.6, 134.4, 134.3, 133.5, 133.4, 130.6, 129.4, 128.7, 128.5, 128.3 (2C), 128.0, 123.6, 120.6, 60.0, 18.6, 18.5. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C25H25N3Br: 446.1226 & 448.1207, found: 446.1245 & 448.1228. 2-(2-Bromophenyl)-3,3-bis(isopropylamino)acrylonitrile (3ae): Yield: 50% (489 mg); White solid; Rf = 0.38 in 30% EtOAc in Hexanes; Melting Point: 101 – 104 oC; IR (KBr): ν (cm-1) = 3328, 3089, 2967, 2158, 1604, 1561, 1479, 1304, 1144, 1023, 741; 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.8 Hz, 1H), 7.43 – 7.20 (m, 2H), 7.10 (t, J = 7.3 Hz, 1H), 4.25 3.23 (m, 4H), 1.16 (s, 12H); 13C NMR (100 MHz, CDCl3) δ 160.1, 134.8, 133.4, 133.3, 128.7, 127.8, 126.8, 123.2, 64.3, 46.7(2C), 23.5(2C); HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C15H21N3Br: 322.0913 & 324.0893, found: 322.0939 & 324.0923. 2-(2-Bromophenyl)-3,3-bis(cyclohexylamino)acrylonitrile (3af): Yield: 42% (499 mg); White solid; Rf = 0.3 in 15% EtOAc in Hexanes; Melting Point: 100 – 102 oC; IR (KBr): ν (cm1)

= 3307, 2930, 2853, 2157, 1527, 1470, 1450, 1342; 1H NMR (400 MHz, CDCl3) δ 7.59 (d,

J = 7.3 Hz, 1H), 7.34 - 7.24(m, 2H), 7.11 - 7.08 (m, 1H), 3.72 – 4.21 (m, 2H), 3.05 – 3.42 (m, 2H), 1.93 (s, 4H), 1.47 - 4.47 (m, 6H), 1.30 - 1.97 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 159.9, 135.1, 133.1, 128.2, 127.6, 126.6, 123.65, 123.6, 62.6, 53.4(2C), 33.7(2C), 25.2(2C),

ACS Paragon Plus Environment

Page 12 of 36

Page 13 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

24.7(2C); HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C21H29BrN3: 402.1539 & 404.1520 found: 402.1560 & 404.1545. (E)&(Z)-2-(2-Bromophenyl)-3-((4-methoxyphenyl)amino)-3-((4nitrophenyl)amino)acrylo nitrile (3ag): Yield: 59% (815 mg); Yellowish orange solid; Rf = 0.33 in 40% EtOAc in Hexanes; Melting Point: 109 – 111 oC; IR (KBr): ν (cm-1) = 3371, 2928, 2370, 2184, 1595, 1510, 1333, 1305, 1248, 1179, 1111; 1H NMR (400 MHz, CDCl3, Mixture of two isomers in the ratio of ≅ 1 : 1.1) δ 8.03 – 7.97 (m, 2H) [7.91 – 7.86 (m, 2H)], 7.58 – 7.55 (m, 1H) [7.49 – 7.46 (m, 1H)], 7.42 – 7.39 (m, 1H), 7.34 – 7.29 (m, 3H), [7.19 – 7.08 (m, 4H)], 7.02 -6.97 (m, 3H) [ 6.91 – 6.85 (m, 3H)], 6.77 – 6.71 (m, 2H), [6.65 – 6.59 (m, 2H)], 6.20 (s, 1H) [6.00 (s, 1H)], 3.71 (s, 3H), [3.66 (s, 3H)]; 13C NMR (100 MHz, CDCl3, Mixture of two isomers) δ 156.9 (156.8), 151.0 (150.9), 146.2 (145.2), 142.8 (142.2),133.7 (133.6), 132.9 (132.8), 132.7 (132.4), 131.3 (130.8), 129.6 (129.2), 128.3 (128.0), 127.3 (125.7), 125.3 (124.9), 123.09 (123.02), 120.7 (118.2), 117.9 (114.7), 114.4 (114.2), 73.3 (72.7), 55.6 (55.4); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C22H17BrN4O3Na: 487.0376 & 489.0357, found: 487.0396 & 489.0374. (E)&(Z)-2-(2-Bromophenyl)-3-((4-nitrophenyl)amino)-3-(phenylamino)acrylonitrile (3ah): Yield: 65% (852 mg); Yellowish orange solid; Rf = 0.32 in 33% EtOAc in Hexanes; Melting Point: 129 – 131 oC; IR (KBr): ν (cm-1) = 3385, 2924, 2366, 2186, 1596, 1499, 1330, 1258, 1181, 1112, 848, 751; 1H NMR (400 MHz, CDCl3, Mixture of two isomers in the ratio of ≅ 1 : 1.2) δ 8.01 (d, J = 9.0 Hz, 2H) [7.90 (d, J = 9.0 Hz, 2H)], 7.58 (d, J = 8.0 Hz, 1H) [ 7.50 (d, J = 8.0 Hz, 1H)], 7.41 (dd, J = 7.7, 1.2 Hz, 1H) [7.38 – 7.35 (m, 1H)], 7.34 – 7.31 (m, 1H) [7.31– 7.26 (m, 1H)], 7.23 - 7.18 (m, 3H), [7.15 -7.08 (m, 6H)], 7.06 – 6.98 (m, 3H), 6.94 - 6.89 (m, 2H) [6.94 - 6.89 (m, 2H)], 6.20 (s, 1H) [6.05 (s, 1H)]. 13C NMR (100 MHz, CDCl3, Mixture of two isomers) δ 150.25 (150.22), 146.36 (146.32), 145.36 (145.32), 142.07 (142.05), 141.88 (141.85), 138.7 (138.0), 133.64 (132.8), 132.6 (132.4), 129.5 (129.45), 129.2 (129.1),

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 36

128.1 (127.9) 125.5 (125.2), 125.1 (124.8), 124.2 (124.1), 120.6 (120.3), 118.2 (117.8), 74.5 (74.1); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C21H15BrN4O2Na: 457.0271 & 459.0251, found: 457.0273 & 459.0252. (E)&(Z)-2-(2-Bromophenyl)-3-(tert-butylamino)-3-(phenylamino)acrylonitrile

(3ai):

Yield: 60% (660 mg); Yellow solid; Rf = 0.29 in 25% EtOAc in Hexanes; Melting Point: 134 – 135 oC; IR (KBr): ν (cm-1) = 3393, 3295, 2964, 2369, 2172, 1570, 1421, 1394, 1286, 1229; 1H

NMR (700 MHz, CDCl3, Mixture of two isomers in the ratio of ≅ 1 : 0.4) 7.29 (d, J = 7.7

Hz, 1H), 7.23 – 7.10 (m, 2H), 7.14 (d, J = 7.7 Hz, 1H), 7.01 – 6.81 (m, 2H), 6.83 – 6.75 (m, 3H), 5.65 (s, 1H), 4.6 (s, 1H), 1.40 (s, 9H);13C NMR (175 MHz, CDCl3, Major isomer only) δ 156.3, 139.2, 134.0, 133.1, 132.1, 128.6, 128.1, 127.3, 124.8, 122.9, 122.6, 119.7, 72.8, 55.0, 31.1; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C19H20BrN3Na: 392.0733 & 394.0713, found: 392.0704 & 394.0689. 2-(2-Bromo-4,5-dimethoxyphenyl)-3,3-bis((4-methoxyphenyl)amino)acrylonitrile (3ba): Yield: 54% (827 mg); Yellow solid; Rf = 0.35 in 30% EtOAc in Hexanes; Melting Point: 148 – 150 oC; IR (KBr): ν (cm-1) = 3339, 2931, 2835, 2169, 1608, 1504, 1245, 1172, 827; 1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 8.8 Hz, 2H), 6.95 (s, 1H), 6.85 (d, J = 8.8 Hz, 2H), 6.81 (s, 1H), 6.76 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 6.33 (s, 1H), 5.68 (s, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.74 (s, 3H), 3.68 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.5, 156.4, 153.9, 148.7, 148.5, 132.1, 131.6, 125.7, 123.3, 123.2, 122.1, 116.4, 115.7, 115.0, 114.5, 114.1, 67.0, 56.2, 56.1, 55.5(2C); HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C25H25N3O4Br: 510.1023 & 512.1004, found: 510.1034 & 512.1021. 2-(2-Bromo-4,5-dimethoxyphenyl)-3,3-bis(phenylamino)acrylonitrile (3bb): Yield: 59% (795 mg); Pale yellow solid; Rf = 0.32 in 30% EtOAc in Hexanes; Melting Point: 196 – 198 oC;

IR (KBr): ν (cm-1) = 3374, 3332, 2928, 2169, 1600, 1497, 1432, 1245, 1172, 1014, 746;

1H

NMR (400 MHz, CDCl3) δ 7.21 (t, J = 7.7 Hz, 2H), 7.12 – 7.02 (m, 4H), 7.03 – 6.94 (m,

ACS Paragon Plus Environment

Page 15 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

2H), 6.93– 6.83 (m, 3H), 6.82 (s, 1H), 6.57 (s, 1H), 5.89 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 151.8, 148.9, 148.6, 139.3, 138.8, 129.3, 129.0, 128.9, 125.3, 123.7, 121.5, 120.4, 120.3, 116.2, 115.7, 114.7, 70.2, 56.2, 56.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H21N3O2Br: 450.0812 & 452.0792, found: 450.0803 & 452.0790. 2-(2-Bromo-4,5-dimethoxyphenyl)-3,3-bis(cyclohexylamino)acrylonitrile (3bf): Yield: 29% (406 mg); White solid; Rf = 0.28 in 25% EtOAc in Hexanes; Melting Point: 137 – 138 oC;

IR (KBr): ν (cm-1) = 3692, 3339, 2931, 2852, 2150, 1541, 1500, 1435, 1209; 1H NMR (700

MHz, CDCl3) δ 7.02 (s, 1H), 6.77 (s, 1H), 4.10 (brs, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.59 (brs, 1H), 3.36 – 3.23 (m, 1H), 3.05 – 2.91 (m, 1H), 2.07 – 1.95 (m, 2H), 1.86 – 1.73 (m, 4H), 1.64 – 1.51 (m, 4H), 1.28 – 0.95 (m, 10 H); 13C NMR (175 MHz, CDCl3) δ 160.1, 148.9, 148.5, 126.4, 123.4, 117.4, 115.6, 115.4, 63.7, 56.1, 56.1, 54.4, 53.1, 48.8, 34.0, 33.9, 25.6, 25.3, 24.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H33BrN3O2: 462.1751 & 464.1731, found: 462.1731 & 464.1712. 2-(6-Bromobenzo[d][1,3]dioxol-5-yl)-3,3-bis((4-methoxyphenyl)amino)acrylonitrile (3ca): Yield: 58% (866 mg); Yellow solid; Rf = 0.32 in 30% EtOAc in Hexanes; Melting Point: 154 – 155 oC; IR (KBr): ν (cm-1) = 3261, 2913, 2161, 1510, 1470, 1242, 1028, 828; 1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 8.8 Hz, 2H), 6.94 (s, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.79 (s, 1H), 6.76 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 8.8 Hz, 2H), 6.33 (s, 1H), 5.91 (s, 2H), 5.62 (s, 1H), 3.74 (s, 3H), 3.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.7, 156.5, 154.0, 147.8, 147.6, 131.9, 131.5, 126.6, 123.6, 123.5, 121.8, 117.3, 114.6, 114.2, 113.0, 112.2, 102.0, 67.1, 55.6, 55.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C24H21N3O4Br: 494.0710 & 496.0691, found: 494.0691 & 496.0681. 2-(6-Bromobenzo[d][1,3]dioxol-5-yl)-3,3-bis((2,6-dimethylphenyl)amino)acrylonitrile (3cd): Yield: 62% (910 mg); White solid; Rf = 0.3 in 20% EtOAc in Hexanes; Melting Point: 117 – 118 oC; IR (KBr): ν (cm-1) = 3377, 3261, 2920, 2176, 1585, 1474, 1223, 1035; 1H NMR

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 36

(400 MHz, CDCl3, Major isomer only) 7.13 – 7.09 (m, 2H), 7.07 – 7.02 (m, 4H), 7.00 (s, 1H), 6.86 (s, 1H), 5.94 (s, 2H), 5.47 (s, 1H), 5.19 (s, 1H), 2.37 (s, 6H), 2.29 (s, 6H);13C NMR (100 MHz, CDCl3, Major isomer only) δ 154.7, 148.4, 147.7, 137.76, 137.70, 134.0, 128.7, 128.47, 128.42, 128.1, 127.3, 123.6, 119.5, 115.4, 113.4, 113.1, 102.0, 59.7, 18.7, 18.5; HRMS (ESITOF) m/z: [M + H]+ Calcd. For C26H25N3O2Br; 490.1125 & 492.1106, found: 490.1136 & 492.1120. 2-(6-Bromobenzo[d][1,3]dioxol-5-yl)-3,3-bis(isopropylamino)acrylonitrile (3ce): Yield: 42% (461 mg); Pale yellow solid; Rf = 0.3 in 25% EtOAc in Hexanes; Melting Point: 116-118 oC;

IR (KBr): ν (cm-1) = 3394, 3307, 2972, 2930, 2152, 1572, 1552, 1477, 1034; 1H NMR (400

MHz, CDCl3) δ 7.06 (s, 1H), 6.77 (s, 1H), 5.98 (s, 2H), 4.0 – 3.89 (m, 1H), 3.76 – 3.63 (m, 1H), 3.43 (brs, 2H), 1.21 (s, 6H), 0.96 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 160.2, 147.9, 147.6, 127.2, 123.1, 117.9, 112.9, 112.4, 101.9, 64.4, 47.4, 46.1, 23.5(2C); HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C16H21N3O2Br: 366.0812 & 368.0792, found: 366.0816 & 368.0797. 2-(2-Bromo-3,5-dimethoxyphenyl)-3,3-bis((4-fluorophenyl)amino)acrylonitrile

(3dc):

Yield: 59% (858 mg); Pale yellow solid; Rf = 0.25 in 30% EtOAc in Hexanes; Melting Point: 161 – 163 oC; IR (KBr): ν (cm-1) = 3406, 3319, 2930, 2173, 1585, 1509, 1336, 1215, 1156; 1H NMR (400 MHz, CDCl3) δ 7.03-6.98 (m, 2H), 6.92 – 6.82 (m, 4H), 6.75 (t, J = 8.5 Hz, 2H), 6.60 (s, 1H), 6.55 (d, J = 2.4 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 5.76 (s, 1H), 3.83 (s, 3H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.9, 159.2 (d, J = 242 Hz), 158.6 (d, J = 255 Hz), 157.3, 152.9, 135.2 (d, J = 2.4 Hz), 134.9, 134.5 (d, J = 2.4 Hz), 122.9 (d, J = 8.2 Hz), 122.6 (d, J = 8.1 Hz), 121.4, 115.9 (d, J = 22.8 Hz), 115.5 (d, J = 22.8 Hz), 108.5, 106.4, 99.1, 69.8, 56.4, 55.7; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C23H18F2BrN3O2Na: 508.0443 & 510.0423, found: 508.0457 & 510.0442. 2-(2-Bromo-3,5-dimethoxyphenyl)-3,3-bis((2,6-dimethylphenyl)amino)acrylonitrile (3dd): Yield: 75% (1.143 g); White solid; Rf = 0.32 in 25% EtOAc in Hexanes; Melting Point:

ACS Paragon Plus Environment

Page 17 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

166 – 167 oC; IR (KBr): ν (cm-1) = 3365, 3250, 2926, 2176, 1581, 1451, 1340, 1025; 1H NMR (400 MHz, CDCl3, Major isomer only) δ 7.10 – 7.07 (m, 2H), 7.06 – 6.94 (m, 4H), 6.64 (s, 1H), 6.42 (s, 1H), 5.43 (s, 1H), 5.25 (s, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 2.38 (s, 6H), 2.28 (s, 6H);

13C

NMR (100 MHz, CDCl3, Major isomer only) δ 159.9, 157.5, 154.4, 137.6, 137.5,

136.7, 136.3, 134.4, 133.5, 128.6, 128.2, 128.1, 120.5, 110.0, 105.7, 99.4, 60.3, 56.4, 55.6, 18.6, 18.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C27H29N3O2Br: 506.1438 & 508.1419, found: 506.1436 & 508.1421. 2-(1-Bromonaphthalen-2-yl)-3,3-bis((4-methoxyphenyl)amino)acrylonitrile (3ea): Yield: 40% (603 mg); Pale red solid; Rf = 0.38 in 30% EtOAc in Hexanes; Melting Point: 106 – 109 oC;

IR (KBr): ν (cm-1) = 3361, 2931, 2834, 2170, 1604, 1582, 1510, 1242, 1179, 1035, 821; 1H

NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.49 – 7.45 (m, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.10 – 7.05 (m, 2H), 6.85 – 6.80 (m, 2H), 6.80 – 6.75 (m, 2H), 6.54 – 6.50 (m, 2H), 6.48 (s, 1H), 5.72 (s, 1H), 3.74 (s, 3H), 3.57 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.6, 156.3, 154.1, 133.3, 132.9, 132.1, 132.0, 131.4, 129.5, 128.0, 128.0, 127.6, 127.5, 126.6, 125.8, 123.4, 123.1, 121.9, 114.6, 114.0, 68.7, 55.5, 55.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C27H23N3O2Br: 500.0968 & 502.0949, found: 500.0963 & 502.0944. 2-(1-Bromonaphthalen-2-yl)-3,3-bis((4-fluorophenyl)amino)acrylonitrile (3ec): Yield: 56% (805 mg); Pale yellow solid; Rf = 0.30 in 25% EtOAc in Hexanes; Melting Point: 131 – 133 oC; IR (KBr): ν (cm-1) = 3265, 2925, 2184, 1587, 1508, 1320, 1217, 1156; 1H NMR (700 MHz, DMSO-D6) δ 9.15 (s, 1H), 8.76 (s, 1H), 8.15 (d, J = 7.6 Hz, 1H), 7.87 - 7.80 (m, 2H), 7.67 – 7.56 (m, 1H), 7.56 – 7.48 (m, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.21 – 7.11 (m, 2H), 7.11 – 7.02 (m, 2H), 6.98 – 6.88 (m, 2H), 6.87 – 6.75 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 157.9 (d, J = 236.9 Hz), 157.8 (d, J = 236.7 Hz), 152.9, 138.2, 137.0, 134.2, 133.1, 132.7, 129.9, 128.6, 128.34, 128.31, 127.1 (d, J = 2.45 Hz), 126.8 (d, J = 2.5 Hz), 124.1, 122.0, 121.7 (d, J

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

= 4.3 Hz), 120.8 (d, J = 5.0 Hz), 116.6 (d, J = 22.2 Hz), 115.4 (d, J = 21.8 Hz), 71.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C25H17BrF2N3: 476.0568 & 478.0549, found: 476.0589 & 478.0577. 2-(2-Bromophenyl)-3,3-bis((2,6-dimethylphenyl)amino)-1-phenylprop-2-en-1-one (6ad): Yield: 44% (684 mg); Yellow solid; Rf = 0.30 in 10% EtOAc in Hexanes; Melting Point: 158 – 160 oC; IR (KBr): ν (cm-1) = 3328, 3237, 2921, 1948, 1583, 1470, 1311, 1211, 1025, 766; 1H NMR (400 MHz, CDCl3, Major isomer only) δ 8.17 – 8.94(m, 1H), 7.64 – 7.40(m, 2H), 7.40 – 7.23 (m, 3H), 7.20 – 6.94 (m, 6H), 6.94 – 6.70 (m, 3H), 6.58 – 6.52 (m, 1H), 5.6 (s, 1H), 2.6 – 1.9 (m, 12H); 13C NMR (100 MHz, CDCl3, Major isomer only) δ 195.4, 162.0, 142.8, 138.7, 136.2, 136.0, 135.8, 134.2, 133.0, 131.7, 130.3, 130.0, 129.4, 128.9, 128.6, 128.4, 128.2, 128.0, 127.8, 125.4, 97.9, 18.6, 18.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C31H30N2OBr: 525.1536 & 527.1517, found: 525.1508 & 527.1494. 2-(2-Bromo-4,5-dimethoxyphenyl)-1-phenyl-3,3-bis(phenylamino)prop-2-en-1-one (6bb): Yield: 39% (625 mg); Yellow solid; Rf = 0.30 in 30% EtOAc in Hexanes; Melting Point: 156 – 158 oC; IR (KBr): ν (cm-1) = 3316, 3054, 2931, 2839, 1599, 1500, 1323, 1234, 1027; 1H NMR (700 MHz, CDCl3, Major isomer only) δ 14.06 (s, 1H), 7.28 – 7.24 (m, 2H), 7.19 - 7. 11(m, 4H), 7.10 – 6.93 (m, 7H), 6.91 – 6.78 (m, 3H), 6.64 (s, 1H), 6.08 (s, 1H), 3.82 (s, 3H), 3.60 (s, 3H); 13C NMR (175 MHz, CDCl3, Major isomer only) δ 190.0, 156.4, 149.0, 148.6, 142.8, 138.4, 129.9, 129.1, 128.6, 128.4, 128.1, 127.5, 127.1, 124.3, 123.0, 122.2, 121.9, 119.2, 118.0, 115.4, 100.2, 56.1, 56.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C29H26BrN2O3: 529.1121 & 531.1102, found: 529.1120 & 531.1108. 1-(Benzo[d][1,3]dioxol-5-yl)-2-(6-bromobenzo[d][1,3]dioxol-5-yl)-3,3-bis((4-methoxy phenyl)amino)prop-2-en-1-one (6ca): Yield: 41% (753 mg); Yellow solid; Rf = 0.33 in 40% EtOAc in Hexanes; Melting Point: 159 – 161 oC; IR (KBr): ν (cm-1) = 3394, 2912, 1608, 1509, 1244, 1036, 933, 825; 1H NMR (400 MHz, CDCl3, Major isomer only) δ 13.88 (s, 1H), 7.00

ACS Paragon Plus Environment

Page 18 of 36

Page 19 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(s, 1H), 6.98 – 6.89 (m, 2H), 6.86 (s, 1H), 6.82 – 6.72 (m, 4H), 6.68 (s, 1H), 6.62 – 6.4 (m, 3H), 6.53 – 6.44 (m, 2H), 5.98 – 5.94 (m, 2H), 5.89 (s, 2H), 3.67 (s, 3H), 3.65 (s, 3H);

13C

NMR (175 MHz, CDCl3, Major isomer only) δ 187.6, 158.1, 156.7, 147.9, 147.8, 147.5, 146.8, 137.1, 131.3, 125.1, 124.8, 121.9, 120.0, 114.7, 114.4, 113.8 (2C), 112.9, 108.3, 108.1, 107.2, 102.2, 101.9, 100.9, 99.1, 55.5, 55.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C31H26N2O7Br: 617.0918 & 619.0899, found: 617.0924 & 619.0908. Procedure for Optimization of the N-Arylation of Ketene Aminal 3aa An oven-dried 8 mL reaction vial was charged with copper-salt (1-5 mol%), ligand (210 mol%) and base (0.75 mmol, 1.2 equiv), respective aminal 3aa (0.5 mmol) in solvent (2.0 mL) was stirred at room temperature for 5 min – 3 h. The reaction mixture was monitored by TLC. After the starting material had been completely consumed, the reaction mixture was purified by flash chromatography using hexane and EtOAc as eluent. General Procedure for Copper Catalyzed N-Arylation of Ketene Aminals 3 & 6 An oven-dried 8 mL reaction vial was charged with CuCl (5 mol%, 2.47 mg), 1,10Phenanthroline (10 mol%, 9 mg) and KOtBu (0.75 mmol, 1.2 equiv, 0.112 g), the respective ketene aminal 3 (0.5 mmol) in DMF (2.0 mL) was stirred at room temperature / 120 ºC for 5 min - 2 h. The reaction mixture was monitored by TLC. After the starting material had been completely consumed, the reaction mixture was purified by flash chromatography using hexane and EtOAc as eluent. 3-Cyano-1-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-1H-indole (4aa): Yield: 99% (183 mg); Pale brick red colour solid; Rf = 0.36 in 25% EtOAc in Hexanes; Melting Point: 121 – 123 oC; IR (KBr): ν (cm-1) = 3337, 2931, 2195, 1561, 1514, 1253, 1029, 829; 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 7.6 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.21 – 7.17 (m, 1H), 7.17 – 7.12 (m, 2H), 7.12 – 7.07 (m, 3H), 6.92 – 6.86 (m, 3H), 5.80 (br s, 1H), 3.89 (s, 3H), 3.80 (s, 3H);

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

13C

NMR (100 MHz, CDCl3) δ 160.4, 157.6, 148.7, 134.6, 131.3, 129.5, 127.7, 126.4, 125.1,

122.2, 121.7, 117.6, 116.0, 115.7, 114.6, 109.6, 67.8, 55.7, 55.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H20N3O2: 370.1550, found: 370.1552. 3-Cyano-1-phenyl-2-(phenylamino)-1H-indole (4ab): Yield: 90% (140 mg); Pale brick red colour solid; Rf = 0.34 in 25% EtOAc in Hexanes; Melting Point: 178 – 179 oC; IR (KBr): ν (cm-1) = 3444, 3265, 2919, 2212, 1559, 1220, 748; 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.43 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.27 - 7.23 (m, 1H), 7.19 – 7.06 (m, 4H), 7.03 (d, J = 8.0 Hz, 1H), 5.94 (s, 1H); 13C

NMR (100 MHz, CDCl3) δ 146.3, 139.3, 134.4, 134.3, 130.5, 129.6, 129.4, 127.9, 127.4,

124.41, 122.7, 122.5, 120.6, 118.2, 115.7, 110.1, 71.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C22H15N3: 310.1339, found: 310.1353. 3-Cyano-1-(4-fluorophenyl)-2-((4-fluorophenyl)amino)-1H-indole (4ac): Yield: 74% (128 mg); White solid; Rf = 0.40 in 25% EtOAc in Hexanes; Melting Point: 188 – 189 oC; IR (KBr): ν (cm-1) = 3277, 3056, 2210, 1563, 1510, 1212, 832; 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.6 Hz, 1H), 7.49 – 7.36 (m, 2H), 7.32 – 7.21 (m, 3H), 7.18 – 7.11 (m, 1H), 7.11 - 7.05 (m, 2H), 7.04 - 6.93 (m, 3H), 5.92 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 162.8 (d, J = 250.8 Hz), 159.9 (d, J = 244.3 Hz), 147.3, 135.1 (d, J = 2.5 Hz), 134.4, 130.2 (d, J = 2.9 Hz), 130.0 (d, J = 8.8 Hz), 127.2, 123.5 (d, J = 8.2 Hz), 122.7, 122.5, 118.0, 117.6 (d, J = 23.0 Hz), 116.2 (d, J = 22.9 Hz), 115.5, 109.8, 70.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C21H14F2N3: 346.1150, found: 346.1154. 3-Cyano-1-(2,6-dimethylphenyl)-2-((2,6-dimethylphenyl)amino)-1H-indole (4ad): Yield: 86% (157 mg); Brick red colour solid; Rf = 0.31 in 25% EtOAc in Hexanes; Melting Point: 225 – 228 oC; IR (KBr): ν (cm-1) = 3266, 3026, 2921, 2192, 1596, 1560, 1519, 1469, 1202, 767; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.7 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.36-7.31 (m, 2H), 7.21 (m, 1H), 7.16 7.12 (m, 3H), 7.03 (t, J = 7.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H),

ACS Paragon Plus Environment

Page 20 of 36

Page 21 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

5.41 (s, 1H), 2.29 (s, 6H), 2.12 (s, 6H);

13C

NMR (100 MHz, CDCl3) δ 148.2, 138.5, 137.3,

133.9, 132.8, 131.2, 130.4, 129.5, 128.7, 128.6, 128.2, 122.0, 121.4, 117.4, 115.1, 108.7, 64.4, 18.3, 17.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C25H24N3: 366.1965, found: 366.1970. 3-Cyano-5,6-dimethoxy-1-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-1H-indole (4ba): Yield: 92% (198 mg); Brick red colour solid; Rf = 0.37 in 30% EtOAc in Hexanes; Melting Point: 195 – 197 oC; IR (KBr): ν (cm-1) = 3322, 2932, 2194, 1567, 1519, 1490, 1252, 1186, 1026; 1H NMR (400 MHz, DMSO-D6) δ 8.15 (s, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.99 (m, 3H), 6.81 (d, J = 8.8 Hz, 2H), 6.51 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.70 (s, 3H), 3.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.2, 157.0, 147.1, 146.7, 146.5, 132.4, 129.3, 128.3, 126.8, 123.7, 120.1, 116.3, 115.7, 114.6, 100.5, 94.6, 69.4, 56.6, 56.5, 55.7, 55.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C25H24N3O4: 430.1761, found: 430.1786. 3-Cyano-5,6-dimethoxy-1-phenyl-2-(phenylamino)-1H-indole (4bb): Yield: 88% (163 mg); Brick red colour solid; Rf = 0.34 in 30% EtOAc in Hexanes; Melting Point: 179 – 180 oC; IR (KBr): ν (cm-1) =3347, 2936, 2214, 1602, 1487, 1384, 1280, 1167; 1H NMR (400 MHz, CDCl3) δ 7.56 - 7.49 (m, 3H), 7.40 - 7.39 (m, 2H), 7.26 (s, 2H), 7.10 (s, 1H), 6.99 - 6.98 (m, 3H), 6.57 (s, 1H), 5.80 (s, 1H), 3.95 (s, 3H), 3.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 147.2, 147.0, 144.1, 140.7, 134.7, 130.3, 129.3, 129.3, 128.0, 127.6, 123.0, 119.7, 118.7, 115.9, 100.6, 94.6, 74.4, 56.5, 56.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H20N3O2: 370.1550, found: 370.1554. 3-Cyano-5,6-methylenedioxy-1-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-1Hindole (4ca): Yield: 60% (125 mg,); Reddish black colour solid; Rf = 0.33 in 30% EtOAc in Hexanes; Melting Point: 174 – 176 oC; IR (KBr): ν (cm-1) = 3353, 2912, 2202, 1514, 1338, 1254, 1164, 1034, 836; 1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.7 Hz, 2H), 7.07 – 7.03 (m, 4H), 6.98 (s, 1H), 6.84 (d, J = 8.7 Hz, 2H), 6.43 (s, 1H), 5.90 (s, 2H), 5.65 (s, 1H), 3.87 (s, 3H),

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.3, 157.0, 147.0, 144.5, 144.4, 132.5, 129.3, 129.0, 126.7, 123.6, 121.1, 116.0, 115.7, 114.6, 100.9, 97.8, 92.0, 70.2, 55.8, 55.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C24H20N3O4: 414.1448, found: 414.1434. 3-Cyano-5,6-methylenedioxy-1-(2,6-dimethylphenyl)-2-((2,6-dimethylphenyl)amino)1H-indole (4cd): Yield: 85% (174 mg); Reddish black colour solid; Rf = 0.3 in 20% EtOAc in Hexanes; Melting Point: More than 285 oC; IR (KBr): ν (cm-1) = 3353, 2922, 2855, 2202, 1562, 1472, 1280, 1166, 1036; 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.37 (m, 1H), 7.33-7.31 (m, 2H), 7.22 – 7.16 (m, 1H), 7.13-7.11 (m, 2H), 6.95 (s, 1H), 6.16 (s, 1H), 5.88 (s, 2H), 5.24 (s, 1H), 2.27 (s, 6H), 2.12 (s, 6H);

13C

NMR (100 MHz, CDCl3) δ 147.2, 144.0, 143.9, 138.4,

137.1, 134.2, 131.3, 130.4, 129.5, 128.6, 128.5, 127.0, 121.7, 115.2, 100.8, 98.0, 91.2, 65.1, 18.3, 17.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C26H24N3O2: 410.1863, found: 410.1856. 3-Cyano-1-(4-fluorophenyl)-2-((4-fluorophenyl)amino)-5,7-dimethoxy-1H-indole (4dc): Yield: 84% (170 mg); White colour solid; Rf = 0.28 in 33% EtOAc in Hexanes; Melting Point: 242 - 244 oC; IR (KBr): ν (cm-1) = 3293, 2205, 1560, 1542, 1510, 1308, 1213, 1015, 820; 1H NMR (400 MHz, DMSO-D6) δ 8.30 (s, 1H), 7.48-7.42 (m, 2H), 7.28 (t, J = 8.7 Hz, 2H), 7.087.04(m, 4H), 6.55 (d, J = 1.8 Hz, 1H), 6.36 (d, J = 1.8 Hz, 1H), 3.79 (s, 3H), 3.51 (s, 3H); 13C NMR (100 MHz, DMSO-D6) δ 161.7 (d, J = 244.9 Hz), 157.6 (d, J = 242.7 Hz), 156.4, 147.8, 147.0, 138.2, 132.9, 130.9 (d, J = 8.8 Hz), 128.7, 120.7 (d, J = 7.8 Hz), 117.6, 115.5 (d, J = 14.0 Hz), 115.3, 115.2 (d, J = 24.8 Hz), 95.5, 91.8, 73.1, 55.7, 55.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H18F2N3O2: 406.1362, found: 406.1341. 3-Cyano-1-(2,6-dimethylphenyl)-2-((2,6-dimethylphenyl)amino)-5,7-dimethoxy-1Hindole (4dd): Yield: 93% (198 mg); Brick red colour solid; Rf = 0.35 in 25% EtOAc in Hexanes; Melting Point: 236 - 238 oC; IR (KBr): ν (cm-1) = 3353, 3003, 2923, 2199, 1620, 1595, 1558, 1151; 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.30 (m, 1H), 7.25-7.22 (m, 2H), 7.20

ACS Paragon Plus Environment

Page 22 of 36

Page 23 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

– 7.16 (m, 1H), 7.12-7.10 (m, 2H), 6.60 (d, J = 1.9 Hz, 1H), 6.20 (d, J = 1.9 Hz, 1H), 5.26 (s, 1H), 3.82 (s, 3H), 3.49 (s, 3H), 2.26 (s, 6H), 2.13 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 156.4, 147.8, 146.9, 137.9, 137.3, 134.1, 134.1, 130.2, 129.5, 128.63, 128.60, 128.5, 116.0, 115.4, 94.3, 92.4, 65.5, 55.9, 55.9, 18.3, 17.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C27H28N3O2: 426.2176, found: 426.2181. 3-Cyano-1-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-1H-benzo[g]indole

(4ea):

Yield: 88% (185 mg); Pale red colour solid; Rf = 0.39 in 25% EtOAc in Hexanes; Melting Point: 206 - 208 oC; IR (KBr): ν (cm-1) = 3342, 2933, 2836, 2199, 1562, 1512, 1245, 1031, 813; 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.32 - 7.28 (m, 1H), 7.22 – 7.08 (m, 5H), 7.01 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 8.5 Hz, 2H), 5.58 (s, 1H), 3.96 (s, 3H), 3.80 (s, 3H); 13C NMR (175 MHz, CDCl3) δ 161.0, 157.4, 147.8, 132.1, 131.0, 130.5, 129.4, 128.8, 126.7, 125.7, 124.6, 124.5, 123.4, 123.3, 121.6, 119.7, 117.6, 116.1, 115.8, 114.6, 70.4, 55.8, 55.5; HRMS (ESITOF) m/z: [M + H]+ Calcd. For C27H22N3O2: 420.1707, found: 420.1699. 3-Cyano-1-(4-fluorophenyl)-2-((4-fluorophenyl)amino)-1H-benzo[g]indole (4ec): Yield: 67% (133 mg); Brick red colour solid; Rf = 0.37 in 25% EtOAc in Hexanes; Melting Point: 254 - 256 oC; IR (KBr): ν (cm-1) = 3395, 2211, 1542, 1510, 1227, 822; 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.0 Hz, 1H), 7.76-7.65 (m, 2H), 7.51-7.46 (m, 2H), 7.38-7.31 (m, 3H), 7.18 (t, J = 7.7 Hz, 1H), 7.06-76.9 (m, 4H), 6.95 (d, J = 8.6 Hz, 1H), 5.55 (s, 1H); 13C NMR (100 MHz, DMSO-D6) δ 162.7 (d, J = 247.5 Hz), 157.6 (d, J = 238.0 Hz), 147.1, 138.6, 133.1, 131.7 (d, J = 8.8 Hz), 130.8 , 129.3 , 126.6, 125.9 , 123.7(2C) , 123.4 , 121.2 , 120.6 (d, J = 8 Hz), 119.3 , 117.3 , 117.0 (d, J = 4.0 Hz), 115.5 (d, J = 22.4 Hz), 115.1 , 75.6; HRMS (ESITOF) m/z: [M + Na]+ Calcd. For C25H15F2N3Na: 418.1126, found: 418.1133. 3-Cyano-1-isopropyl-2-(isopropylamino)-1H-indole (4ae): Yield: 80% (97 mg); White colour solid; Rf = 0.37 in 30% EtOAc in Hexanes; Melting Point: 158 - 159 oC; IR (KBr): ν

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(cm-1) = 3327, 2972, 2188, 1566, 1470, 1321, 1166, 740; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.4 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.16-7.07 (m, 2H), 4.56-4.49 (m, 1H), 4.27-4.21 (m, 1H), 3.44 (brs, 1H) 1.60 (d, J = 7.0 Hz, 6H), 1.35 (d, J = 6.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 150.0, 131.9, 128.7, 121.1, 120.6, 118.5, 117.2, 110.5, 66.2, 46.8, 46.3, 23.7, 20.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C15H20N3: 242.1652, found: 242.1667. 3-Cyano-1-cyclohexyl-2-(cyclohexylamino)-1H-indole (4af): Yield: 72% (115 mg); White colour solid; Rf = 0.4 in 15% EtOAc in Hexanes; Melting Point: 175 - 176 oC; IR (KBr): ν (cm1)

= 3302, 3058, 2932, 2187, 1557, 1469, 1327, 1112, 733; 1H NMR (400 MHz, CDCl3) δ 7.48

(d, J = 7.6 Hz, 1H), 7.32 (d, J = 6.0 Hz, 1H), 7.14 - 7.04 (m, 2H), 4.03 - 3.97 (m, 1H), 3.90 – 3.70 (m, 1H), 2.25 - 2.15 (m, 4H), 2.07 - 2.17 (m, 2H), 1.89 - 1.84(m, 2H), 1.83 -1.73 (m, 3H), 1.71 – 1.60 (m, 1H), 1.53 – 1.40 (m, 4H), 1.36 – 1.18 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 150.0, 132.2, 128.6, 121.0, 120.4, 118.4, 117.1, 110.8, 66.3, 55.1, 53.8, 34.0, 30.8, 26.3, 25.5, 25.3, 24.5; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C21H27N3Na: 344.2097 found: 344.2107. 3-Cyano-1-cyclohexyl-2-(cyclohexylamino)-5,6-dimethoxy-1H-indole (4bf): Yield: 79% (151 mg); White colour solid; Rf = 0.34 in 25% EtOAc in Hexanes; Melting Point: 131 - 133 oC;

IR (KBr): ν (cm-1) = 3761, 3348, 2934, 2856, 2191, 1560, 1491, 1405, 1259, 1057, 787;

1H

NMR (700 MHz, DMSO-D6) δ 7.00 (s, 1H), 6.76 (s, 1H), 6.27 (s, 1H), 4.23 (s, 1H), 3.76

(s, 6H), 3.68 (s, 1H), 2.18 - 2.01 (m, 4H), 1.92 – 1.54 (m, 8H), 1.45 - 1.17 (m, 8H); 13C NMR (175 MHz, DMSO-D6) δ 149.7, 145.3, 144.2, 125.0, 121.7, 118.5, 99.7, 98.7, 62.5, 56.9, 55.9, 53.1, 53.0, 33.2, 29.7, 25.5, 25.2, 24.6, 24.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H32N3O2: 382.2489, found: 382.2499. 3-Cyano-5,6-methylenedixy-1-isopropyl-2-(isopropylamino)-1H-indole (4ce): Yield: 81% (116 mg); grey colour solid; Rf = 0.3 in 25% EtOAc in Hexanes; Melting Point: 164 - 166 oC; IR (KBr): ν (cm-1) = 3319, 2973, 2195, 1564, 1473, 1316, 1255, 1161, 1038; 1H NMR (400

ACS Paragon Plus Environment

Page 24 of 36

Page 25 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

MHz, DMSO-D6) δ 7.15 (s, 1H), 6.73 (s, 1H), 6.21 (d, J = 7.9 Hz, 1H), 5.92 (s, 2H), 4.7 - 4.63 (m, 1H), 4.07 – 4.02 (m, 1H), 1.44 (d, J = 6.9 Hz, 6H), 1.25 (d, J = 6.3 Hz, 6H); 13C NMR (100 MHz, DMSO-D6) δ 149.5, 142.4, 142.3, 124.8, 122.2, 118.2, 100.3, 96.0, 94.0, 63.3, 45.7, 45.2, 21.3, 20.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C16H20N3O2: 286.1550, found: 286.1524. 3-Cyano-1-(4-methoxyphenyl)-2-((4-nitrophenyl)amino)-1H-indole (4ag): Yield: 81% (155 mg); Yellow colour solid; Rf = 0.33 in 30% EtOAc in Hexanes; Melting Point: 196 - 198 oC;

IR (KBr): ν (cm-1) = 3423, 3246, 2217, 1601, 1552, 1330, 1307, 1250; 1H NMR (700 MHz,

CDCl3) δ 8.14 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.28 - 7.26 (m, 3H), 7.12 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.34 (s, 1H), 3.86 (s, 3H); 13C NMR (100 MHz, DMSO-D6) δ 159.4, 149.5, 143.5, 139.8, 134.6, 128.7, 126.7, 125.6(2C), 123.8, 122.8, 118.1, 115.0, 114.9, 114.8, 111.2, 78.2, 55.4; HRMS (ESITOF) m/z: [M + Na]+ Calcd. For C22H16N4O3Na: 407.1115, found: 407.1094. 3-Cyano-2-((4-nitrophenyl)amino)-1-phenyl-1H-indole (4ah): Yield: 82% (146 mg); Yellow colour solid; Rf = 0.32 in 30% EtOAc in Hexanes; Melting Point: 263 - 264 oC; IR (KBr): ν (cm-1) = 3256, 2363, 2219, 1601, 1552, 1499, 1308, 1223, 744; 1H NMR (400 MHz, DMSO-D6) δ 9.75 (s, 1H), 8.04 (d, J = 9.1 Hz, 2H), 7.65 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.5 Hz, 2H), 7.51 - 7.45 (m, 3H), 7.35 - 7.26 (m, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 9.1 Hz, 2H); 13C NMR (175 MHz, DMSO-D6) δ 149.4, 143.2, 139.8, 134.3, 134.2, 129.8, 129.0, 127.4, 125.6, 125.6, 124.0, 122.9, 118.2, 115.0, 114.7, 111.2, 78.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C21H15N4O2: 355.1190, found: 355.1203. 3-Cyano-2-(tert-butylamino)-1-phenyl-1H-indole (4ai): Yield: 68% (0.098 mg); White colour solid; Rf = 0.34 in 25% EtOAc in Hexanes; Melting Point: 169 - 170 oC; IR (KBr): ν (cm-1) = 3403, 2930, 2370, 2195, 1563, 1370, 1211, 750; 1H NMR (700 MHz, CDCl3) δ 7.63 (t, J = 7.5 Hz, 2H), 7.59 - 7.54 (m, 2H), 7.36 (d, J = 7.6 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.04

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 36

(t, J = 7.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.12 (s, 1H), 1.41 (s, 9H); 13C NMR (175 MHz, CDCl3) δ 148.7, 134.5, 134.2, 130.6, 129.7, 128.6, 128.5, 122.1, 121.6, 119.3, 117.4, 109.3, 68.0, 53.5, 30.5; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. For C19H19N3Na: 312.1471, found: 312.1442. 3-Benzoyl-1-(2,6-dimethylphenyl)-2-((2,6-dimethylphenyl)amino)-1H-indole

(7aa):

Yield: 55% (124 mg); Red colour solid; Rf = 0.30 in 5% EtOAc in Hexanes; Melting Point: 216 - 218 oC; IR (KBr): ν (cm-1) = 3041, 2923, 1697, 1573, 1534, 1475, 1203, 759; 1H NMR (400 MHz, CDCl3) δ 10.28 (s, 1H), 7.81 (d, J = 4.7 Hz, 2H), 7.63 -7.47 (m, 3H), 7.05 (d, J = 6.8 Hz, 1H), 6.98 – 6.83 (m, 6H), 6.78 (d, J = 6.3 Hz, 2H), 6.46 (d, J = 5.2 Hz, 1H), 2.10 (s, 6H), 1.83 (s, 6H);

13C

NMR (100 MHz, CDCl3) δ 191.4, 157.5, 142.1, 137.3, 137.2, 135.3,

134.1, 133.1, 130.3, 128.6, 128.4, 128.4, 128.1, 127.8, 126.9, 126.0, 122.0, 121.4, 119.1, 109.6, 99.6, 18.5, 17.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C31H29N2O: 445.2274, found: 445.2284. 3-Benzoyl-[5,6-dimethoxy-1-phenyl-2-(phenylamino)]-1H-indole (7ba): Yield: 56% (125 mg); Pale red colour solid; Rf = 0.33 in 25% EtOAc in Hexanes; Melting Point: 169 - 171 oC; IR (KBr): ν (cm-1) = 3057, 2943, 2826, 1584, 1339, 1193, 1154, 722; 1H NMR (400 MHz, CDCl3) δ 10.22 (brs, 1H), 7.85 – 7.75 (m, 2H), 7.56-7.55 (m, 3H), 7.33 – 7.27 (m, 4H), 7.227.18 (m, 1H), 6.98 (t, J = 7.5 Hz, 2H), 6.87-6.82 (m, 3H), 6.62 (s, 1H), 6.40 (s, 1H), 3.77 (s, 3H), 3.60 (s, 3H);

13C

NMR (100 MHz, CDCl3) δ 191.0, 150.2, 145.9, 145.9, 141.6, 139.0,

136.2, 130.4, 129.4, 129.3, 128.4, 128.3, 128.0, 127.9, 126.9, 123.7, 122.4, 118.6, 102.8, 101.0, 94.8, 56.5, 55.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C29H25N2O3: 449.1860, found: 449.1871. 3-(3,4-Methylenedioxy-benzoyl)-5,6-methylenedioxy-1-(4-methoxyphenyl)-2-(4-methoxy phenylamino)-1H-indole (7cc): Yield: 82% (220 mg); Black solid; Rf = 0.35 in 30% EtOAc in Hexanes; Melting Point: 192 - 194 oC; IR (KBr): ν (cm-1) = 3415, 2904, 1580, 1513, 1465,

ACS Paragon Plus Environment

Page 27 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

1337, 1248, 1169, 1034; 1H NMR (700 MHz, CDCl3) δ 7.36 (d, J = 7.7 Hz, 1H), 7.28 - 7.25 (m, 2H), 7.07 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.78 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 6.54 - 6.51 (m, 3H), 6.42 (s, 1H), 6.08 (s, 2H), 5.85 (s, 2H), 3.76 (s, 3H), 3.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ :189.4, 159.0, 156.4, 151.8, 149.6, 147.7, 143.6, 143.5, 135.7, 132.3, 130.9, 128.8, 128.5, 125.1, 123.1, 119.4, 114.4, 113.7, 108.6, 108.1, 101.5, 100.6, 100.4, 99.6, 92.1, 55.5, 55.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C31H25N2O7: 537.1656, found: 537.1686. General Procedure for the Synthesis of 11-Amino-indolo[2,3-b]quinolines 8 An oven-dried 8 mL reaction vial was charged with respective 2-aminoindole (0.5 mmol) in dry DCE (2.0 mL) was added triflic acid (5 mmol, 0.441ml, 10 equiv) drop wise at room temperature. The reaction mixture was stirred at room temperature and monitored by TLC. After complete consumption of the starting material, the reaction mixture quenched with saturated NaHCO3 solution and extracted with DCM. The combined organic layer washed with (3x10 mL) & brine (10 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude products were purified by flash chromatography using EtOAc and hexane as eluent. 2-Methoxy-6-(4-methoxyphenyl)-6H-indolo[2,3-b]quinolin-11-amine (8aa): Yield: 95% (175 mg); Grey colour solid; Rf = 0.3 in 40% EtOAc in Hexanes; Melting Point: 192 - 194 oC; IR (KBr): ν (cm-1) = 3313, 2924, 2052, 1621, 1598, 1454, 1248, 1232; 1H NMR (400 MHz, DMSO-D6) δ 8.51 (d, J = 7.5 Hz, 1H), 7.85 (s, 1H), 7.60 (d, J = 9.0 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.30 - 7.22 (m, 2H), 7.21 - 7.13 (m, 5H), 3.92 (s, 3H), 3.87 (s, 3H); 13C NMR (175 MHz, DMSO-D6) δ 158.2, 153.8, 152.6, 145.6, 142.8, 140.1, 129.2, 129.0, 128.8, 124.9, 121.6, 121.0, 120.5, 119.8, 115.1, 114.6, 108.4, 102.0, 97.8, 55.6, 55.3; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H20N3O2: 370.1550, found: 370.1570.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 36

6-Phenyl-6H-indolo[2,3-b]quinolin-11-amine (8ab): Yield: 78% (121 mg); pale orange colour solid; Rf = 0.36 in 25% EtOAc in Hexanes; Melting Point: 103 - 105 oC; IR (KBr): ν (cm-1) = 3373, 2924, 2853, 1626, 1402, 1214, 750, 702; 1H NMR (400 MHz, DMSO-D6) δ 8.54 (d, J = 7.6 Hz, 1H), 8.49 (d, J = 8.4 Hz, 1H), 7.73 – 7.61 (m, 5H), 7.58 (t, J = 7.6 Hz, 1H), 7.54 - 7.48 (m, 1H), 7.42 – 7.22 (m, 6H);

13C

NMR (175 MHz, DMSO-D6) δ 153.4, 147.2,

146.6, 139.5, 136.4, 129.4, 128.8, 127.8, 127.4, 127.3, 125.0, 122.8, 121.6, 121.3, 120.7, 120.3, 115.1, 108.6, 97.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C21H16N3: 310.1339, found: 310.1358. 2-Fluoro-6-(4-fluorophenyl)-6H-indolo[2,3-b]quinolin-11-amine (8ac): Yield: 80% (139 mg); colourless solid; Rf = 0.37 in 20% EtOAc in Hexanes; Melting Point: 202 - 203 oC; IR (KBr): ν (cm-1) = 3423, 1640, 1514, 1259, 1040; 1H NMR (700 MHz, DMSO-D6) δ 8.54 (d, J = 7.5 Hz, 1H), 8.34 - 8.30 (m, 1H), 7.78 – 7.58 (m, 3H), 7.49 - 7.45 (m, 3H), 7.39 (t, J = 7.5 Hz, 1H), 7.36 – 7.26 (m, 3H), 7.23 (d, J = 7.8 Hz, 1H); 13C NMR (175 MHz, DMSO-D6) δ 159.6 (d, J = 717.5 Hz), 158.2 (d, J = 710.5 Hz), 153.2, 146.1 (d, J = 3.5 Hz), 144.2, 139.8, 132.6 (d, J = 3.5 Hz), 130.0 (d, J = 8.92 Hz), 129.6 (d, J = 8.75 Hz), 125.4, 121.9, 120.9, 120.5, 118.3 (d, J = 24.5 Hz), 116.3 (d, J = 22.75 Hz), 115.1 (d, J = 8.75 Hz), 108.6, 106.6 (d, J = 22.75 Hz), 97.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C21H14N3F2: 346.1150, found: 346.1149. 2-Fluoro-6-(4-fluorophenyl)-7,9-dimethoxy-6H-indolo[2,3-b]quinolin-11-amine

(8dc):

Yield: 82% (166 mg,); colourless solid; Rf = 0.34 in 30% EtOAc in Hexanes; Melting Point: 274 - 276 oC; IR (KBr): ν (cm-1) = 3410, 2839, 2037, 1631, 1513, 1303, 1206, 1031, 825; 1H NMR (400 MHz, DMSO-D6) δ 8.27 (dd, J = 9.6, 2.7 Hz, 1H), 7.73 – 7.58 (m, 2H), 7.49 – 7.37 (m, 3H), 7.29 (t, J = 8.8 Hz, 2H), 7.24 (brs, 2H), 6.68 (d, J = 1.8 Hz, 1H), 3.92 (s, 3H), 3.59 (s, 3H);

13C

NMR (100 MHz, DMSO-D6) δ 160.6 (d, J = 242.7 Hz), 156.7 (d, J = 237.0 Hz),

155.2, 154.1, 146.2, 145.8, 144.2, 134.8, 130.5, 130.4, 129.5 (d, J = 8.0 Hz), 122.7 (d, J = 16.0

ACS Paragon Plus Environment

Page 29 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Hz), 118.2 (d, J = 24.9 Hz), 114.6, 114.4, 106.6 (d, J = 23.0 Hz), 98.6, 98.5, 98.5, 56.2, 55.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C23H18N3O2F2: 406.1362, found: 406.1453. 9-Methoxy-13-(4-methoxyphenyl)-13H-benzo[6,7]indolo[2,3-b]quinolin-7-amine

(8ea):

Yield: 72% (152 mg); Green colour solid; Rf = 0.34 in 30% EtOAc in Hexanes; Melting Point: 202 - 203 oC; IR (KBr): ν (cm-1) = 3433, 3329, 3241, 2995, 2834, 1722, 1643, 1614, 1512, 1439, 1713, 1234, 1035; 1H NMR (400 MHz, DMSO-D6 + CF3COOD) δ 8.73 (d, J = 6.8 Hz, 1H), 8.11 – 7.83 (m, 4H), 7.68 (d, J = 5.6 Hz, 2H), 7.50 - 7.35 (m, 2H), 7.38 – 7.18 (m, 3H), 7.16 – 7.01 (m, 1H), 3.95 (s, 3H), 3.89 (s, 3H); 13C NMR (175 MHz, DMSO-D6 + CF3COOD) δ 161.8, 156.6, 151.7, 145.3, 133.3, 132.9, 131.8, 131.5, 129.6, 128.4, 126.6, 125.8, 124.1, 124.0, 121.4, 121.0 (2C), 120.1, 117.4, 116.7, 114.9, 104.4, 98.3, 56.4, 56.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd. For C27H22N3O2: 420.1707, found: 420.1719. Supporting Information The Supporting Information is available free of charge on the ACS Publications website. Mechanism for the formation of the E/Z isomers 3ag, 3ah, and 3ai. 1H NMR and 13C NMR spectra of all of the compounds and Molecular structures of compounds 4ag and 4ai at 30% probability of thermal ellipsoids. (PDF) X-ray crystallographic data for compounds 4ag and 4ai (CIF) The X-ray data were also deposited with the CCDC (Entries 1833742 & 1833743)]. Acknowledgments This work was supported by the Department of Atomic Energy, Government of India. References (1) Corbet, J. P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006, 106, 2651 – 2710. (2) (a) Magano, J.; Dunetz, J. R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011, 111, 2177 – 2250. (b) Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2009, 351, 3027 – 3043. (c) Schlummer, B.; Scholz, U. Palladium-Catalyzed C−N and C−O Coupling: A Practical Guide from an Industrial Vantage Point. Adv. Synth. Catal. 2004, 346, 1599 – 1626. (3) (a) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C−N CrossCoupling Reactions. Chem. Rev. 2016, 116, 12564 – 12649. (b) Bariwal, J.; Eycken, E. V. D. C–N Bond Forming Cross-coupling Reactions: an overview. Chem. Soc. Rev., 2013, 42, 9283 – 9303. (c) Fischer, C.; Koenig, B. Palladium and Copper Mediated N-aryl Bond Formation Reactions for the Synthesis of Biological Active Compounds. Beilstein J. Org. Chem. 2011, 7, 59 – 74. (d) Beletskaya, I. P.; Cheprakov, A. V. The Complementary Competitors: Palladium and Copper in C−N Cross-Coupling Reactions. Organometallics, 2012, 31, 7753 – 7808. (4) Evano, G.; Blanchard, N.; Toumi, M. Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. Chem. Rev. 2008, 108, 3054 – 3131. (5) Selected Reports: (a) Bandaru, S. S. M.; Bhilare, S.; Chrysochos, N.; Gayakhe, V.; Trentin, I.; Schulzke, C.; Kapdi, A. R.; Pd/PTABS: Catalyst for Room Temperature Amination of Heteroarenes. Org. Lett. 2018, 20, 473 – 476. (b) Wang, D.; Zheng, Y.; Yang, M.; Zhang, F.; Mao, F.; Yua, J.; Xia, X. Room-Temperature Cu-Catalyzed NArylation of Aliphatic Amines in Neat Water. Org. Biomol. Chem., 2017, 15, 8009 – 8012. (c) Ding, X.; Huang, M.; Yi, Z.; Du, D.; Zhu, X.; Wan, Y. Room-Temperature CuICatalyzed Amination of Aryl Iodides and Aryl Bromides. J. Org. Chem. 2017, 82, 5416 – 5423. (d) Deldaele, C.; Evano, G. Room-Temperature Practical Copper-Catalyzed Amination of Aryl Iodides. ChemCatChem, 2016, 8, 1319 – 1328. (e) Wheaton, C. A.; Bow, J. P. J.; Stradiotto, M. New Phosphine-Functionalized NHC Ligands: Discovery of an Effective Catalyst for the Room-Temperature Amination of Aryl Chlorides with Primary and Secondary Amines. Organometallics, 2013, 32, 6148 – 6161. (f) Yang, C. T.; Fu, Y.; Huang, Y. B.; Yi, J.; Guo, Q. X.; Liu, L. Room-Temperature Copper-Catalyzed Carbon–Nitrogen Coupling of Aryl Iodides and Bromides Promoted by Organic Ionic Bases. Angew. Chem. Int. Ed. 2009, 48, 7398 – 7401. (g) Zhu, L.; Li, G.; Luo, L.; Guo, P.; Lan, J.; You, J. Highly Functional Group Tolerance in Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles under Mild Conditions. J. Org. Chem. 2009, 74, 2200 – 2202. (h) Shafir, A.; Buchwald, S. L. Highly Selective Room-Temperature CopperCatalyzed C-N Coupling Reactions. J. Am. Chem. Soc. 2006, 128, 8742 – 8743. (i)

ACS Paragon Plus Environment

Page 30 of 36

Page 31 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. Room-Temperature Palladium-Catalyzed Amination of Aryl Bromides and Chlorides and Extended Scope of Aromatic C–N Bond Formation with a Commercial Ligand. J. Org. Chem., 1999, 64, 5575 – 5580. (j) Wolfe, J. P.; Buchwald, S. L. A Highly Active Catalyst for the Room Temperature Amination and Suzuki Coupling of Aryl Chlorides. Angew. Chem. Int. Ed. 1999, 38, 2413 – 2416. (k). Old, D. W.; Wolfe, J. P.; Buchwald, S. L. A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: RoomTemperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides. J. Am. Chem. Soc. 1998, 120, 9722 – 9723. (6) (a) Jung, S. H.; Sung, D. B.; Park, C. H.; Kim, W. S. Copper-Catalyzed N-Arylation of 2-Pyridones Employing Diaryliodonium Salts at Room Temperature. J. Org. Chem. 2016, 81, 7717 – 7724. (b) Moon, S. Y.; Koh, M.; Rathwell, K.; Jung, S. H.; Kim, W. S. Coppercatalyzed N-Arylation of tert-butyl N-Sulfonylcarbamates with Diaryliodonium Salts at Room Temperature. Tetrahedron, 2015, 71, 1566 –1573. (c) Feng, C.; Loh, T. P. Rhodium(III)-Catalyzed

Cross-Coupling

of

Alkenylboronic

Acids

and

N-Pivaloyloxylamides. Org. Lett. 2014, 16, 3444 – 3447. (d) Do, H. Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C. Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature. J. Am. Chem. Soc. 2014, 136, 2162 – 2167. (e) Jouvin, K.; Couty, F.; Evano, G. Copper-Catalyzed Alkynylation of Amides with Potassium Alkynyltrifluoroborates: A Room-Temperature, Base-Free Synthesis of Ynamides. Org. Lett., 2010, 12, 3272 – 3275. (f) Bhagwanth, S.; Waterson, A. G.; Adjabeng, G. M.; Hornberger, K. R. Room-Temperature Pd-Catalyzed Amidation of Aryl Bromides Using tert-Butyl Carbamate. J. Org. Chem. 2009, 74, 4634 – 4637. (g) Wallace, D. J.; Klauber, D. J.; Chen, C.; Volante, R. P. Palladium-Catalyzed Amidation of Enol Triflates: A New Synthesis of Enamides. Org. Lett., 2003, 5, 4749 – 4752. (7) (a) Xiong, X.; Jiang, Y.; Ma, D. Assembly of N,N-Disubstituted Hydrazines and 1-Aryl1H-indazoles via Copper-Catalyzed Coupling Reactions. Org. Lett., 2012, 14, 2552 – 2555. (b)Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. Assembly of Substituted 1HBenzimidazoles and 1,3-Dihydrobenzimidazol-2-ones via CuI/L-Proline Catalyzed Coupling of Aqueous Ammonia with 2-Iodoacetanilides and 2-Iodophenylcarbamates. J. Org. Chem. 2009, 74, 7974 – 7977. (c) Zou, B.; Yuan, Q.; Ma, D.; Synthesis of 1,2Disubstituted Benzimidazoles by a Cu-Catalyzed Cascade Aryl Amination/Condensation Process. Angew. Chem. Int. Ed. 2007, 46, 2598 – 2601. (d) Chen, Y.; Wang, Y.; Sun, Z.;

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Ma, D. Elaboration of 2-(Trifluoromethyl)indoles via a Cascade Coupling/Condensation/ Deacylation Process. Org. Lett., 2008, 10, 625 – 628. (8) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 2010, 53, 7902 – 7917. (9) (a) Burstein, H. J.; Sun, Y.; Dirix, L. Y.; Jiang, Z.; Paridaens, R.; Tan, A. R.; Awada, A.; Ranade, A.; Jiao, S.; Schwartz, G.; Abbas, R; Powell, C.; Turnbull, K.; Vermette, J.; Zacharchuk, C.; Badwe, R. Neratinib, an Irreversible ErbB Receptor Tyrosine Kinase Inhibitor, in Patients With Advanced ErbB2-Positive Breast Cance. J. Clin. Oncol. 2010, 28, 1301–1307. (b) Bose, P.; Ozer, H. Neratinib: an Oral, Irreversible Dual EGFR/HER2 Inhibitor for Breast and Non-small Cell Lung Cancer. Expert Opin. Invest. Drugs. 2009, 18, 1735–1751. (c) Erlichman, C.; Hidalgo, M.; Boni, J. P. Phase I Study of EKB-569, an Irreversible Inhibitor of the Epidermal Growth Factor Receptor, in Patients With Advanced Solid Tumors. J. Clin. Oncol. 2006, 24, 2252–2260. (d) Kwak, E. L.; Sordella, R.; Bell, D. W.; Godin-Heymann, N.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Driscoll, D. R.; Fidias, P.; Lynch, T. J.; Rabindran, S. K.; McGinnis, J. P.; Wissner, A.; Sharma, S. V.; Isselbacher, K. J.; Settleman, J.; Haber, D. A. Irreversible Inhibitors of the EGF Receptor may Circumvent Acquired Resistance to Gefitinib. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7665–7670. (e) Yin, W.; Tsutsumi, K. Lipoprotein Lipase Activator NO-1886. Cardiovasc. Drug Rev. 2003, 21, 133–142. (10) (a) Gu, Zhengxian. Hcv Inhibitor and Therapeutic Agent Combinations. WO 2010/118009 A1, 2010. (b) Rhoennstad, P.; Kallin, E.; Apelqvist, T.; Wennerstaal, M.; Cheng, A. Novel Estrogen Receptor Ligands. PCT Int. Appl, WO 2009127686 A1, 2009. (c) Enomoto, H.; Kawashima, K.; Kudou, K.; Yamamoto, M.; Murai, M.; Inaba, T.; Ishizaka, N. Novel Indole Derivative having Inhibitory Activity on I b Kinase. EP 2119703 A4, 2009. (d) Arnould, J. C.; Bird, T. G.; Boyle, F. T.; Blakey, D. C. Indole Derivative with Vascular Damaging Activity. WO 01/92224 A1, 2001. (11) (a) Zaware, N.; Kisliuk, R.; Bastian, A.; Ihnat, M. A.; Gangjee, A. Synthesis and Evaluation of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4- diamines as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents. Bioorganic Med. Chem. Lett., 2017, 27, 1602 - 1607. (b) Montagnani, M. M.; Moretti, R. M.; Limonta, P. Estrogen Receptor Ligand for use in Treating Melanoma. WO 2016/097036 A1. (c) Boyd, S.; Brookfield, J. L.; Critchlow, S. E.; Cumming, I. A.; Curtis, N. J.; Debreczeni, J.; Degorce, C. Donald, S. L.; Evans, N. J.; Groombridge, S.; Hopcroft, P.; Jones, N. P.;

ACS Paragon Plus Environment

Page 32 of 36

Page 33 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Kettle, J. G.; Lamont, S.; Lewis, H. J.; MacFaull, P.; McLoughlin, S. B.; Rigoreau, L. J. M.; Smith, J. M.; St-Gallay, S.; Stock, J. K.; Turnbull, A. P.; Wheatley, E. R.; Winter, J.; Wingfield, J. Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3. J. Med. Chem. 2015, 58, 3611 - 3625. (d) Li, B; Guo, S.; Zhang, J.; Zhang, X.; Fan, X. Selective Access to 3-Cyano-1H-indoles, 9H-Pyrimido[4,5-b]indoles, or 9H-Pyrido[2,3-b]indoles through Copper-Catalyzed One-Pot Multicomponent Cascade Reactions. J. Org. Chem. 2015, 80, 5444 – 5456 (e) Bensen, D.; Borchardt, A.; Chen, Z.; Finn, J. M.; Lam, T. T.; Lee, S. J.; Li, X.; Tari, L. W.; Teng, M.; Trzoss, M., Zhang, J.; Jung, M. E.; Lightstone, F. C.; Wong, S. E.; Nguyen, T. B. Tricyclic Gyrase Inhibitors for use as Antibacterial Agents. WO 2014/043272 A1, 2014. (f) Bensen, D.; Finn, J. M.; Lee, S. J.; Chen, Z.; Lam, T. T.; Li, X.; Trzoss, M.; Jung, M.; Nguyen, T. B.; Lightstone, F.; Tari, L. W.; Zhang, J.; Aristoff, P.; Phillipson, D. W.; Wong, S. E. Tricyclic Gyrase Inhibitors. WO 2012/125746 A1, 2012. (g) Sadovoy, A. V.; Golubeva, G. A. Interaction of

2-Aminoindoles

with

Tetracyanoethylene:

2,

3



Dicyano-Methylene-2-

iminoindolines. Chem. Heterocycl. Compd., 2005, 41, 1267 – 1272. (h) Horvath, R. F.; Darrow, J. W.; Maynard, G. D. Aminoalkyl Substituted 9H-Pyridino[2,3-b]indole and 9HPyrimidino[4,5-b]indole Derivatives. US 6362186 B1, 2002. (i) Sadovoy, A. V.; Golubeva, G. A.; Nasakin, O. E. Interaction of 2-Aminoindoles with Tetracyanoethylene: 1. 2-Amino-3,4-Dicyano-α-Carbolines and Related Compounds. Chem. Heterocycl. Compd., 2001, 37, 1145 – 1449. (12) (i) Synthesis of 2-Amino indoles from Ynamides: (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Gold-Catalyzed C–H Annulation of Anthranils with Alkynes: A Facile, Flexible, and Atom-Economical Synthesis of Unprotected 7Acylindoles. Angew. Chem. Int. Ed., 2016, 55, 794 – 797. (b) Shu, C.; Wang, Y. H.; Zhou, B.; Li, X. L.; Ping, Y. F.; Lu, X.; Ye, L. W. Generation of α-Imino Gold Carbenes through Gold-Catalyzed Intermolecular Reaction of Azides with Ynamides. J. Am. Chem. Soc., 2015, 137, 9567 – 9570. (c) Kiruthika, S. E.; Perumal, P. T. CuI-Catalyzed Coupling of gem-Dibromovinylanilides and Sulfonamides: An Efficient Method for the Synthesis of 2-Amidoindoles and Indolo[1,2-a]quinazolines. Org. Lett., 2014, 16, 484 – 487. (d) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. Application of Ynamides in the Synthesis of 2-Amidoindoles. Org. Lett., 2009, 11, 221 – 224. (e) Yao, P. Y.; Zhang, Y.; Hsung, R. P.; Zhao, K. A Sequential Metal-Catalyzed C-N Bond Formation in the Synthesis of 2Amido-indoles. Org. Lett., 2008, 10, 4275 – 4278. (f) Witulski, B.; Alayrac, C.; Saeftel, L. T. Palladium-Catalyzed Synthesis of 2-Aminoindoles by a Heteroanulation Reaction.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 36

Angew. Chem. Int. Ed., 2003, 42, 4257 – 4260. (ii) Synthesis of 2-Amino indoles via Nucleophilic amination of indole: (g) Moriyama, K.; Ishida, K.; Togo, H. Regioselective Csp2–H Dual Functionalization of Indoles Using Hypervalent Iodine(III): BromoAmination via 1,3-Migration of Imides on Indolyl(phenyl)iodonium Imides. Chem. Comm., 2015, 51, 2273 – 2276 and cited therein (h) (iii) Other Methods: (l) Zhang, L.; Lu, P.; Wang, Y. Copper-Mediated Cyanation of Indoles and Electron Rich Arenes Using DMF as a Single

Surrogate. Org. Biomol. Chem., 2015, 13, 8322–

8329. (13) (a) Wang, K.; Herdtweck, E.; Domling, A. One-Pot Synthesis of 2-Amino-indole-3carboxamide and Analogous. ACS Comb. Sci., 2011, 13, 140 – 146. (b) Belley, M.; Sauer, E.; Beaudoin, D.; Duspara, P.; Trimble, L. A.; Dube, P. Synthesis and Reactivity of NHydroxy-2-Aminoindoles. Tetrahedron Lett., 2006, 47, 159 – 162. (14) (a) Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konishi, H. Synthesis of 2-Aminoindole-3carboxylic Acid Derivatives by the Copper(I) Iodide Catalyzed Reaction of N-(2Iodophenyl)formamides with Malononitrile or Cyanoacetates Synthesis of 2Aminoindole-3-carboxylic Acid Derivatives. Synthesis, 2011, 764 - 768. (b) Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. A Simple Copper-Catalyzed Cascade Synthesis of 2Amino-1Hindole-3-carboxylate Derivatives. Adv. Synth. Catal., 2010, 352, 1033 – 1038. (15) (a) Landwehr, J.; George, S.; Karg, E. M.; Poeckel, D.; Steinhilber, D.; Troschuetz, R.; Werz, O. Design and Synthesis of Novel 2-Amino-5-hydroxyindole Derivatives That Inhibit Human 5-Lipoxygenase. J. Med. Chem. 2006, 49, 4327 – 4332. (b) Landwehr, J.; Troschütz, R. Synthesis of 3-EWG-Substituted 2-Amino-5-hydroxyindoles via Nenitzescu Reaction. Synthesis, 2005, 2414 – 2420. (16) Jing, M.; Xiang, H.; Zhu, F.; Xu, X.; Deng, L.; Yang, C. Efficient Pd-Catalyzed Domino Synthesis

of

1-Phenyl-1H-indol-2-amine

and

5-Aminoindolo[1,2-a]quinazoline

Derivatives. Org. Biomol. Chem., 2015, 13, 10122- 10126. (17) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Copper Catalysis in the Construction of Indole and Benzo[b]furan Rings. Org. Biomol. Chem., 2011, 9, 641- 652. (18) (a)Li, B.; Zhang, B.; Zhang, X.; Fan, X.; Synthesis of 3-Cyano-1H-indoles and Their 2′Deoxyribonucleoside Derivatives through One-Pot Cascade Reactions. J. Org. Chem. 2016, 81, 9530 – 9538. (b) Kumar, S. V.; Parameshwarappa, G.; Ila, H.; Verma, G. K. Synthesis

of

N-Functionalized/NH-Multisubstituted

Indoles,

Thienopyrroles,

Pyrroloindoles, and Pyrazolopyrroles via Sequential One-Pot Base-Mediated and CopperCatalyzed Inter- and Intramolecular Amination of 2-[2-Bromo(het)aryl]-3-(het)aryl-3-

ACS Paragon Plus Environment

Page 35 of 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(methylthio)acrylonitriles. J. Org. Chem. 2014, 79, 7961 - 7978. (c) Melkonyan, F. S.; Kuznetsov, D. E.; Yurovskaya, M. A.; Karchava, A. V. One-Pot Synthesis of Substituted Indoles via Titanium (IV) Alkoxide Mediated Imine Formation – Copper-Catalyzed NArylation. RSC Adv., 2013, 3, 8388 – 8397. (d) Jin, H.; Zhou, B.; Wu, Z.; Shen, Y.; Wang, Y. One-pot Synthesis of Substituted Indolines via a Copper-Catalyzed Sequential Multicomponent/C−N Coupling Reaction. Tetrahedron, 2011, 67, 1178 – 1182. (e) Hodgkinson, R. C.; Schulz, J.; Willis, M. C. Tandem Copper-Catalysed Aryl and Alkenyl Amination Reactions: The Synthesis of N-Functionalised Indoles. Org. Biomol. Chem., 2009, 7, 432- 434. (f) Melkonyan, F. S.; Karchava, A. V.; Yurovskaya, M. A. Synthesis of

N-Substituted

Indole-3-carboxylic

Acid

Derivatives

via

Cu(I)-Catalyzed

Intramolecular Amination of Aryl Bromides. J. Org. Chem. 2008, 73, 4275 – 4278. (g) Melkonyan, F.; Topolyan, A.; Yurovskaya, M.; Karchava, A. Synthesis of 1-Amino-1Hindole-3-carboxylates by Copper(I)-Catalyzed Intramolecular Amination of Aryl Bromides. Eur. J. Org. Chem. 2008, 5952 – 5956. (h) Barberis, C.; Gordon, T. D.; Thomas, C.; Zhang, X.; Cusack, K. P. Cu(I)-Catalyzed Intramolecular Cyclization of EneCarbamates: Synthesis of Indoles and Pyrrolo[2,3-c]Pyridines. Tetrahedron Lett., 2005, 46, 8877 - 8880. (19) (a) Wang, K. –N.; Yan, S. –J.; Lin, J. Heterocyclic Ketene Aminals: Scaffolds for Heterocycle Molecular Diversity. Eur. J. Org. Chem, 2014, 1129-1145. (b) Nayak, S.; Ghosh, N.; Sahoo, A. K. Access to Cyclobutene-Fused Azepines through Au-Catalyzed Cycloisomerization of Stable Alkyne Tethered Ketene N, N-Acetals. Org. Lett., 2014, 16, 2996-2999. (c) Li, M.; Sha, P.; Wang, S. –W.; Kong, W.; Wen, L. –R. Four-Component Cascade Heteroannulation of Heterocyclic Ketene Aminals: Synthesis of Functionalized Tetrahydroimidazo[1,2-a]pyridine Derivatives. J. Org. Chem. 2012, 77, 8956- 8967. (d) Li, M.; Zhou, Z. –M.; Wen, L. –R.; Qiu, Z. –X. Chemistry of Heterocyclic Ketene Aminals: Construction of Imidazo(pyrido)[1,2-a]pyridines and Imidazo(pyrido)[3,2,1ij][1,8]- naphthyridines via DABCO-Catalyzed Tandem Annulations. J. Org. Chem. 2011, 76, 3054 - 3063. (e) Schirok, H.; Alonso-Alija, C.; Benet-Buchholz, J.; Goeller, A. H.; Grosser, R.; Michels, M.; Paulsen, H. Efficient Regioselective Synthesis of 6-Amino5-benzoyl-1-Substituted 2(1H)-Pyridinones. J. Org. Chem. 2005, 70, 9463-9469 and cited therein. (f) Chakrabarti, S.; Panda, K.; Misra, N. C.; Ila, H.; Junjappa, H. Aza-Annulation of Polarized N,S- and N,N-Ketene Acetals with Itaconic Anhydride: Synthesis of Novel Functionalized 1,2,3,4-Tetrahydro-2-pyridones and Related Azabicycles. Synllet 2005, 9, 1437–1441.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(20) Janni, M.; Thirupathi, A.; Peruncheralathan, S. Chemoselective Ullmann Coupling at Room Temperature: A Facile Access to 2-Aminobenzo[b]thiophenes. Chem. Commun., 2017, 53, 8439 – 8442. (21) (a) Janni, M.; Arora, S.; Peruncheralathan, S. Double Heteroannulation of S,N-Acetals: A Facile Access to Quinolone Derivatives. Org. Biomol. Chem., 2016, 14, 8781– 8788. (b) Mukherjee, S.; Salini, P. S.; Srinivasan, A.; Peruncheralathan, S. AIEE Phenomenon: Tetraaryl vs. Triaryl Pyrazoles. Chem. Commun., 2015, 51, 17148 –17151. (22) AlCl3 is used. The reaction was performed under reflux conditions for 1-8 days. (a) Benek, O.; Soukup, O.; Pasdiorova, M.; Hroch, L.; Sepsova, V.; Jost, P.; Hrabinova, M.; Jun, D.; Kuca, K.; Zala, D.; Ramsay, R. R.; Contelles, J. M.; Musilek, K. Design, Synthesis and in vitro Evolution of Indolotacrine analogues as Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease. ChemMedChem, 2016, 11, 1264 – 1269. (b) Martins, C.; Carreiras, M. C.; Leon, R.; Rios, C. D.; Bartolini, L M.; Andrisano, V.; Iriepa, I.; Moraleda, I.; Galvez, E.; Garcia, M.; Egea, J.; Samadi, A.; Chioua, M.; Contelles, J. M. Synthesis and Biological Assessment of Diversely Substituted Furo[2,3-b]quinolin-4amine and Pyrrolo[2,3-b]quinolin-4-amine Derivatives, as Novel Tacrine Analogues. Eur. J. Med. Chem., 2011, 46, 6119 – 6130.

ACS Paragon Plus Environment

Page 36 of 36