Crystallization of Zeolitic Aluminosilicates in the System Li2O-Na2O

Jul 22, 2009 - FLANIGEN and GROSE. Advances in Chemistry , Volume 101, pp 76–101. Abstract: Zeolites containing phosphorus in the tetrahedral site i...
0 downloads 0 Views 575KB Size
9 Crystallization of Zeolitic Aluminosilicates in the System Li O-Na O-Al O -SiO -H O at 100° C Downloaded by PRINCETON UNIV on August 26, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch009

2

2

2

3

2

2

H. BORER and W. M. MEIER Institut fürKristallographieund Petrographie, Eidgenössische Technische Hochschule, Sonneggstrasse 5, Zürich, Switzerland

Crystallization sequences have been determined for over 400 compositional points in the Li,Na-aluminosilicate system at 100°C and reaction times of up to 14 days. A total of 9 zeolitic species has been observed thereby. Crystallization times and the nature of the first appearing solid phase depend largely on the lithium and sodium concentrations. The same crystallization sequences occur within certain fields, and these sequences are nowhere reversed. A simple scheme illustrating the relative stabilities of the solid phases in the system is presented.

he most open zeolites crystallize at relatively low temperatures from highly reactive alkali aluminosilicate gels. These zeolitic phases are metastable, and usually several phases are formed in succession from a particular reaction mixture. This paper describes crystallization sequences observed in mixed Li,Na-alummosilicate gels at 100°C. The details of our investigation of this system at 100°C are reported elsewhere (8,9). A

Crystallization fields of zeolites growing from homocationic Na gels at around 100 °C have been studied extensively at a number of laboratories (cf. 3,11, 21). Sand and coworkers recorded the coexisting phases for different reaction times (19). The kinetics of zeolite crystallization in the Na system also has received attention (12, 14, 15). Studies of lowtemperature crystallizations from L i gels, on the other hand, have been much more limited (13). 122 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

9.

BORER

A N D

MEIER

Zeolitic

123

AluminosiUcates

Experimental Well-defined starting materials were chosen w h i c h were combined a c c o r d i n g to a s t a n d a r d p r o c e d u r e i n o r d e r to a s c e r t a i n m a x i m u m r e p r o ­ d u c i b i l i t y . H i g h l y r e a c t i v e gels w e r e p r e p a r e d thus f r o m reagent g r a d e l i t h i u m a n d sodium hydroxide, tetramethoxysilane, a n d analyzed s o d i u m a l u m i n a t e c o n t a i n i n g excess caustic. M e a s u r e d a m o u n t s of 2 M N a O H , 2 M freshly prepared Na-aluminate solution, deionized water, ( C H 0 ) S i , a n d 2 M L i O H w e r e c o m b i n e d i n t h i s o r d e r at r o o m t e m p e r a t u r e a n d v i g o r o u s l y s t i r r e d to p r o d u c e h o m o g e n e o u s gels. A n u m b e r of test e x p e r i ­ ments s h o w e d t h e r e w a s n o n e e d to r e m o v e t h e s m a l l a m o u n t s of m e t h a n o l w h i c h f o r m e d i n the r e a c t i o n m i x t u r e s . T h e d r y w e i g h t of the constituents w a s a b o u t 65 m g / m l i n a l l e x p e r i ­ ments. T h e m o l a r ratios of the c o m p o n e n t s w e r e b a s e d o n Downloaded by PRINCETON UNIV on August 26, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch009

3

n(Li 0) + 2

rc(Na 0)

4

+ n(Al 0 ) + n(Si0 ) = 1

2

2

3

2

T h e concentrations of a l l c o m p o n e n t s except w a t e r w e r e v a r i e d s y s t e m a t i ­ c a l l y i n steps of Δ η = 0.05 w i t h i n t h e f o l l o w i n g l i m i t s : n(Si0 )/n(Al 0 ) > 2

n(Na 0)/n(Al 0 ) > 2

2

3

2

3

0.5

1.25 a n d n ( A l 0 ) > 2

3

0.05.

A t o t a l of 448 c o m p o s i t i o n a l p o i n t s of t h e system h a d to b e e x a m i n e d as a consequence. A l l c r y s t a l l i z a t i o n s w e r e c a r r i e d out i n sealed p o l y p r o p y l e n e tubes of 3 0 - 4 0 - m l c a p a c i t y . G l a s s w a s a v o i d e d p u r p o s e l y i n a l l o u r experiments since i t is a t t a c k e d r e a d i l y b y the reactants u s e d a n d t h e crystals n u c l e a t e m o s t l y o n the glass w a l l s . I n p a r t i c u l a r , w e h a v e n o t e d t h a t r e p r o d u c i ­ b i l i t y of L i , N a - z e o l i t e c r y s t a l l i z a t i o n s is e x c e e d i n g l y p o o r w h e n c a r r i e d out i n b o r o s i l i c a t e glass e v e n at r e l a t i v e l y l o w t e m p e r a t u r e s . T h e p o l y ­ p r o p y l e n e tubes c o n t a i n i n g the reactants w e r e r o t a t e d s l o w l y ( a b o u t 8 r e v o l u t i o n s p e r m i n u t e ) at 1 0 0 ° C i n t h e r m o s t a t i c a l l y c o n t r o l l e d ovens. S a m p l e s of the r e a c t i o n m i x t u r e s w e r e t a k e n after 3 h r s , 18 h r s , 112 hrs, a n d 14 days. T h e s o l i d p r o d u c t s w e r e filtered off a n d w a s h e d t h o r ­ o u g h l y w i t h d i s t i l l e d w a t e r . T h e d r i e d solids w e r e a l l e x a m i n e d u n d e r t h e m i c r o s c o p e a n d i d e n t i f i e d b y means of x - r a y p o w d e r patterns u s i n g a G u i n i e r c a m e r a . S e l e c t e d samples w e r e c h a r a c t e r i z e d f u r t h e r b y means of c h e m i c a l analyses, d e n s i t y a n d s o r p t i o n m e a s u r e m e n t s , e l e c t r o n m i c r o s ­ c o p y , a n d t h e r m a l analyses ( D T A a n d T G A ) . Description

of the Solid Phases

A t o t a l of 9 zeolites a n d 3 n o n z e o l i t i c solids c o u l d b e o b s e r v e d .

These

species, w h i c h are s u m m a r i z e d i n T a b l e I , c a n b e d i v i d e d i n t o the f o l l o w ­ i n g g r o u p s : species a p p e a r i n g i n the N a system ( A , P , S , T , X , Z ) , i n the L i system ( Η , Ι , Ν ) , a n d those r e q u i r i n g b o t h L i a n d N a ( C , E , 0 ) .

Species

X a n d Ζ w e r e o b t a i n e d o n l y i n r e l a t i v e l y f e w experiments i n the h i g h N a 0 / L i 0 region. 2

2

Ρ a n d Τ p i c k u p o n l y m i n o r a m o u n t s of h t h i u m . Ρ is a l w a y s s p h e r u l i t i c , w h e r e a s Τ n o r m a l l y forms v e r y s m a l l p r i s m s s h o w i n g w e l l - d e v e l o p e d

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

124

MOLECULAR SIEVE ZEOLITES

Table I.

Linde A Faujasite Na-Pl Na-P2 Sodalite hydrate Cancrinite hydrate Chabazite-like L i - A (Barrer) Li-metasilicate Li-aluminate K - F (Barrer) new

X

a

pa f a

s* C Z H I Ν E Ο a

a

a

a

Downloaded by PRINCETON UNIV on August 26, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch009

Crystalline Species and Notation Type

Symbol

1

Other Designations

and

References

A(10,16,19), Q(3) X ( J 7 ) , F(19), R(3) cubic P ( S ) , P I ( 4 ) , P ( J 0 ) , B(J«) tetrag. P(S), P2(4), Pt(ifl) 8(19), 1(3), Z\i(20) C(7,19) 8(3), Ε (00) A(6) (13) (13) Έ(2) e

Zeolite.

a

faces.

D T A - c u r v e s of Ρ a n d Τ ( o f s i m i l a r c o m p o s i t i o n )

a b l y different.

are also r e m a r k ­

S t r u c t u r a l l y , Ρ is a n i s o t y p e of g i s m o n d i t e a n d n o t t r u l y

cubic ( J ) . T h e fibrous crystals of C t a k e u p l i t h i u m p r e f e r a b l y . P u r e samples of C c a n b e o b t a i n e d r e a d i l y i n g o o d y i e l d f r o m L i , N a gels. E , a n i m p o r t a n t phase i n t h e L i , N a system, appears as n e e d l e - l i k e crystals or

aggregates

w i t h a constant S i / A l r a t i o of 1. T h e p o t a s s i u m - e x c h a n g e d f o r m is i d e n t i ­ c a l w i t h K - F , w h i c h w a s t h o u g h t to b e a t y p i c a l p r o d u c t i n the p o t a s s i u m field

(5).

U n e x c h a n g e d crystals of Ε c o n t a i n a p p r e c i a b l e amounts

of

both L i and N a . H i g h L i concentrations are r e q u i r e d f o r the f o r m a t i o n of Η a n d O . Species O , w h i c h crystallizes v e r y s l o w l y as t i n y needles, has not r e p o r t e d before.

A representative s a m p l e s o r b e d 4 . 8 %

been

H 0 reversibly 2

a n d c o n t a i n e d a l a r g e excess of a l k a l i ( m o s t l y L i ) w h i c h c o u l d n o t b e removed.

F o r this reason, Ο does not a p p e a r to b e a t y p i c a l zeolite.

Crystallization

Sequences

T y p i c a l examples of c r y s t a l l i z a t i o n sequences are g i v e n i n T a b l e I I . H i g h a l k a l i n i t y b r i n g s a b o u t faster c r y s t a l l i z a t i o n rates a n d t h e fastf o r m i n g A a n d / o r Ε are f r e q u e n t l y t h e first a p p e a r i n g phases. T h e n a t u r e of the phase f o r m i n g i n i t i a l l y d e p e n d s m o s t l y o n the H t h i u m a n d s o d i u m concentrations, as i n d i c a t e d i n T a b l e I I . A s a r u l e , Ε appears first a b o v e n ( L i 0 ) =0.35. 2

T h e o b s e r v e d c r y s t a l l i z a t i o n sequences are s h o w n i n F i g u r e 1.

They

are a l l b a s e d o n r e c o r d e d changes i n t h e p o w d e r patterns. T h e f r e q u e n c y of a p a r t i c u l a r sequence is i n d i c a t e d b y the w i d t h of the respective a r r o w . Species w h i c h m a y a p p e a r first are e n c l o s e d i n circles.

I n some areas,

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

9.

Zeolitic

BORER AND MEIER

Table II. Composition

Downloaded by PRINCETON UNIV on August 26, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch009

Some T y p i c a l Crystallizations

of Reaction

Mixture

Products

n(Li 0)

n(Na 0)

n(Al O )

n(Si0 )

0.05 0.10 0.30 0.35 0.45 0.40 0.20 0.60 0.35 0.25 0.05 0.05 0.05 0.10 0.05 0.15

0.80 0.70 0.50 0.45 0.35 0.40 0.55 0.15 0.35 0.45 0.60 0.50 0.45 0.35 0.35 0.25

0.05 0.10 0.10 0.10 0.10 0.05 0.10 0.05 0.10 0.10 0.10 0.25 0.10 0.20 0.10 0.15

0.10 0.10 0.10 0.10 0.10 0.15 0.15 0.20 0.20 0.20 0.25 0.20 0.40 0.35 0.50 0.45

2

α

2

125

Aluminosilicates

2

s

2

of

3 hrs

18 hrs

A A ae ae Ε Ε ae

A A ce ce Ε Ε ae

ce A

ce aec at A Ρ A



— A

— — — —



— Ρ

Crystallization

11

112 hrs 14 days st A C C H ho E 0 ch ce Τ A Ρ ac pt Ρ

Τ as C ch H ho E O H C Τ A Pi ac Τ hp

Small letters denote components of mixture.

Figure 1.

Crystallization

sequences

phases I a n d Ν start f o r m i n g ( n o t a b l y i n l o n g r u n s ) w i t h o u t d i m i n i s h i n g the m a i n p r o d u c t .

T h e s e less significant changes

are r e p r e s e n t e d

by

d o t t e d lines i n F i g u r e 1. Well-established

sequences

A - E - C , A - S - T , and E - C - H .

i n v o l v i n g over

2 z e o l i t i c species

E a c h of t h e r e c o r d e d sequences

observed w i t h i n a certain composition

field.

are

can be

T h e s e fields are better d e ­

fined t h a n the " c r y s t a l l i z a t i o n fields" w h i c h d e p e n d o n factors c o n t r o l l i n g the r e l a t i v e rates of g r o w t h ( 1 5 ) .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

126

MOLECULAR SIEVE ZEOLITES

1

All reactions proceed in one direction; i.e., the sequences are never reversed and reactions such as A - C and A - T do not occur at the same time. Figure 1, therefore, represents a scheme of the relative stabilities of the species in the system. Acknowledgment This study was supported by the Schweizerische Nationalfonds and a grant from the Mobil Oil Corp.

Downloaded by PRINCETON UNIV on August 26, 2013 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch009

Literature Cited (1) Baerlocher, Ch., Meier, W. M., to be published. (2) Barrer, R. M., Baynham, J., J. Chem. Soc. 1956, 2882. (3) Barrer, R. M., Baynham, J., Bultitude, F. W., Meier, W. M., J. Chem. Soc. 1959, 195. (4) Barrer, R. M., Bultitude, F. W., Kerr, I. S.,J.Chem. Soc. 1959, 1521. (5) Barrer, R. M., Cole, J., Sticher, H.,J.Chem. Soc. (A) 1968, 2475. (6) Barrer, R. M., White, E. A. D.,J.Chem. Soc. 1951, 1267. (7) Ibid., 1952, 1561 (8) Borer, H., Ph.D. Thesis, ΕΤΗ Zurich, 1969. (9) Borer, H., Meier, W. M., to be published. (10) Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L., J. Am. Chem. Soc. 1956, 78, 5963. (11) Breck, D. W., Flanigen, E. M., S.C.I. Monograph Mol. Sieves 1968, 47. (12) Ciric, J.,J.Colloid Interface Sci. 1968, 28, 315. (13) Gusseva, I. V., Liliev, I. S., Zh. Neorgan. Khim. 1965, 10, 92. (14) Kerr, G. T.,J.Phys. Chem. 1966, 70, 1047. (15) Ibid., 1968, 72, 1385. (16) Milton, R. M., U. S. Patent 2,882,243 (1959). (17) Ibid., 2,882,244 (1959). (18) Ibid., 3,008,803 (1961). (19) Regis, A. J., Sand, L. B., Calmon, C., Gilwood, M . E., J. Phys. Chem. 1960, 64, 1567. (20) Zhdanov, S. P., Izv. Akad. Nauk SSSR, Ser. Khim. 1965, 950. (21) Zhdanov, S. P., S.C.I. Monograph Mol. Sieves 1968, 62. RECEIVED February 4, 1970.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.