2 Crystallography of the Ascorbates
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
JAN HVOSLEF University of Oslo, Department of Chemistry, Blindern, Oslo 3, Norway
A review of the various ascorbates is given in terms of the results from crystal structure determinations. The acid itself and the simple, monovalent salts consist of roughly planar γ-lactone rings with side-chains in a more or less staggered conformation. The acidity of the compound is associated with the proton at O3 because of the conjugated O1=C1—C2=C3—O3 system in the ring. By esterification the location of the ester group can be at either C2 or C3, but the C2 position is presumably the stabler site. By oxi dation of the vitamin dehydroascorbic acid is produced in different isomeric forms, depending on the solvent, on the time, and on a possible substituent in the lactone ring. The usual crystalline compound is a dimer comprising five fused rings, whereas monomeric derivatives are bicyclic, except in cases where the substituents induce sp hybridi zation at C3. 2
In the mid 1930s x-ray crystallographers (1) attempted to assist chemists (2) in the elucidation of the chemistry of vitamin C. The trial was destined to be unsuccessful, but could nevertheless support the brilliant chemical works that eventually lead to a correct chemical formula and to the synthesis of the vitamin (3). This relatively small and simple molecule, comprising only 20 atoms, has intrinsic properties that diversify its chemical behavior and mask its constitution. Features such as acidity without a carboxyl group, an unusually stable γ-lactone ring, reducing power, and two chiral carbon atoms form a combination with enigmatic biological functions that still puzzle chemists and biologists in the 1980s. With the advent of modern methods in crystallography the detailed geometries of ascorbates became accessible, and to date a number of crystal structures are known (Table I). The motivation for these investi gations was originally not any doubt about the gross structures of the ascorbates arrived at by chemical means; the x-ray results also generally 0065-2393/82/0200-0037$06.25/0 © 1982 American Chemical Society Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
38
ASCORBIC
Table I.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
Crystallographic D a t a on
Formula
Compound L-Ascorbic acid
CQHLSOQ
Sodium L-ascorbate
Na C H 0 -
Calcium L-ascorbate dihydrate
Ca
T h a l l i u m (I) - L - a s c o r b a t e
T1 C H 0 -
L-Serine-L-ascorbic acid
C H N0
L-Arginine L-ascorbate
C H N 0
Barium 2-0-sulfonato-Lascorbate d i h y d r a t e
Ba
3 - 0 [ (bismorpholino) phosphinyl]-5,6-0-isopropylideneL-ascorbate
C17H27N2O9P
Dehydroascorbic acid dimer
C12H12O12
+
6
(6-8)
7
6
7
7
7
6
5
2 +
(10)
6
6
+
3
Reference
(C H 0 ) " • 2H 0
2 +
6
2
(12-W
2
(11)
6
•C H 0
3
4
6
2
8
(9)
6
• C H 0 -
+
6
7
(15)
6
(C H 0 S) - • 2 H 0 6
6
2
9
(18)
2
(21)
(4)
p - B r o m o p h e n y l h y d r a z i n e of CiaHnOsN^r monomeric dehydro-L-ascorbic acid
(25)
M e t h y l g l y c o s i d e of 2 - C - b e n z y l 3-keto-L-fa/xo-hexulosonic a c i d lactone
CuHieOe
m)
D-Isoascorbic acid
CeHgOe
(26)
Sodium D-isoascorbate-monohydrate
Na C H 0«- •H 0 +
6
ACID
7
(27)
2
°The technique used is indicated b y : F, film; D , diffractometer; or N , neutron diffraction spectrometer. confirmed
the predicted
chemical
formulae
and bonding
properties.
Surprises came, however, w h e n the v i t a m i n s oxidation product,
dehydro
a s c o r b i c a c i d , w a s e x a m i n e d b y x - r a y a n d N M R m e t h o d s (4,5).
Virtually
a l l textbooks
are s h o w n
t o b e m i s l e a d i n g i n t h e i r assessment
s t r u c t u r e of t h i s c o m p o u n d .
of t h e
This should actually not be surprising, for
t h e f o r m u l a c o m m o n l y u s e d is u n a c c e p t a b l e f o r v a r i o u s reasons. details o f t h e o x i d a t i o n a r e s t i l l left to b e sorted o u t , b u t t h e y difficult tasks b e c a u s e of t h e c o m p l i c a t e d r e a c t i o n m e c h a n i s m .
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Many present
2.
HVOSLEF
39
Crystallography of the Ascorbates
L-Ascorbic A c i d and Some Derivatives
Space Group
Unit Cell Dimensions
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
P2i
P2t
Average e.s.d. in Bond Lengths [Method (A) and Angles (°)]*
a = 1 7 . 2 9 9 , b == 6.353, c = 6.411 A ; 0 = 102.18°
0.003 A
0.2°
F,N
a = 19.051, b == 4.490, c = 8.516 A
0.006
0.4
F
a = 8.335, b = 15.787, c = 6.360 A ; j8 = 107.48°
0.004
0.2
D
0.040
—
D
P2 2i2
1
a =
P2 2 2
1
a = 5.335, b = 8.769, c = 25.782 A
0.005
0.3
D
P2i
a = 5.060, b = 9.977, c = 0 = 97.5°
0.006
0.4
D
PI
a = 5 . 2 0 1 , 6 = 6.951, c = 8.732 A a= 9 9 . 5 4 ° , / ? == 93.92°, y = 109.12°
0.004
0.2°
D
—
—
D
a = 15.728, b == 5.530, c = 9.453 A ; y3 = 130.56°
0.006
0.5
F
0.008
0.6
D
0.004
0.3
D
a = 5.165, b = 14.504, c = 4.724 A ; 0 = 99.50°
0.005
0.3
D
a = 8.307, 6
0.007
0.4
D
1
1
P2
1
a =
X
C2
10.883, b == 18.598, c = 8.066 A
9.487, b = 13.570, c = 8.355 A
P2 2 2
1
a =
P2 2 2
1
a = 6.339, b = 9.739, c =
1
1
1
1
P2x P2 2 2 1
1
1
15.330,
18.020, b == 12.859, c = 5.754 A
= 9.049, c =
22.484 A
11.181
X - r a y analyses h a v e also p r o v e d u s e f u l i n u n r a v e l i n g o t h e r c o m p l e x s t r u c t u r a l p r o b l e m s i n this field, a n d w e s h a l l r e v i e w some w o r k d o n e o n ascorbates b y d i f f r a c t i o n m e t h o d s .
Ascorbic Acid and Its Salts Ascorbic A c i d .
V i t a m i n C ( L - a s c o r b i c a c i d ) w a s the first ascorbate
t o b e s t u d i e d i n d e t a i l b y d i f f r a c t i o n m e t h o d s (6,7,8).
It crystallizes in
t h e m o n o c l i n i c space g r o u p P 2 i w i t h f o u r m o l e c u l e s i n t h e u n i t c e l l as
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
40
ASCORBIC
ACID
s h o w n i n F i g u r e 1. T h e r e are t w o m o l e c u l e s , A a n d B, i n t h e a s y m m e t r i c u n i t , b u t t h e y are r e l a t e d i n p a i r s b y p s e u d o s c r e w axes a l o n g [010] i n t h e p o s i t i o n s (x — 1/4, z =
5/8)
a n d (x — 3 / 4 , z — 3 / 8 ) .
I n the crys
tals t h e i n d e p e n d e n t m o l e c u l e s are s l i g h t l y different, m a i n l y b e c a u s e of a s m a l l difference i n t h e o r i e n t a t i o n of t h e a l m o s t i d e n t i c a l s i d e - c h a i n s . T h e d i s t i n c t i o n is d e f i n e d b y a + / — 7 . 9 ° t w i s t a b o u t t h e C 4 - C 5 b o n d to e a c h side of a n i d e a l l y s t a g g e r e d c o n f o r m a t i o n w h e r e 0 5
is s i t u a t e d
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
a b o v e t h e r i n g a n d w h e r e 0 6 is + 8 . 3 ° f r o m anti to 0 5 . T h e i n t e r a t o m i c distances a n d angles, h o w e v e r , are a l m o s t i d e n t i c a l i n t h e i n d e p e n d e n t m o l e c u l e s , w h i c h h a v e the a v e r a g e v a l u e s s h o w n i n F i g u r e 2. T h e C - C a n d C - O b o n d lengths s h o w some i n t e r e s t i n g v a r i a t i o n s , a n d explain i n a striking w a y the observed
chemical properties.
The
l o c a l i z a t i o n of t h e p r o t o l y t i c p r o t o n t o 0 3 w a s o b v i o u s f r o m t h e b o n d i n g p r o p e r t i e s of t h e c o n j u g a t e d 0 1 = C 1 — C 2 = C 3 — 0 3 — H
system, a n d i t
has l a t e r b e e n c o n f i r m e d b y t h e s t r u c t u r e of a n u m b e r of salts. W h e r e a s t h e e n e - d i o l i c g r o u p is e n t i r e l y p l a n a r , t h e l a c t o n e g r o u p shows m i n o r v a r i a t i o n s f r o m p l a n a r i t y . T h e s e d e v i a t i o n s are p r e s u m a b l y c a u s e d p a c k i n g effects b e i n g different i n the t w o i n d e p e n d e n t m o l e c u l e s . ever, t h e w h o l e
r i n g system c a n b e
adequately
described
by
How
as p l a n a r
b e c a u s e t h e best p l a n e s t h r o u g h the l a c t o n e a n d t h e e n e - d i o l g r o u p i n e a c h m o l e c u l e are at o n l y 0.6° to e a c h other.
Figure I . View of the structure of "L-ascorbic acid along [010] and the conesponding three-dimensional electron density. (Reproduced, with permission, from Ref. 7.)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
2.
HVOSLEF
Figure 2.
41
Crystallography of the Ascorbates
Average values of bonding distances and angles in L-ascorbic acid. (Reproduced, with permission, from Ref. 7.)
A l l t h e o x y g e n atoms, except 0 4 , are e n g a g e d i n h y d r o g e n
bonds,
a n d t h e i n t e r a c t i o n s i n v o l v i n g t h e e n e - d i o l o x y g e n atoms are p a r t i c u l a r l y s t r o n g a n d a b o u t 0.15 A shorter t h a n t h e u s u a l a l c o h o l i c i n t e r a c t i o n s . T h e h y d r o g e n b o n d s y s t e m f o r e a c h of t h e t w o i n d e p e n d e n t m o l e c u l e s is s h o w n i n F i g u r e 3, a n d i t is n o t e w o r t h y t h a t t h e p a t t e r n is s i m i l a r f o r A a n d B a l t h o u g h t h e e n v i r o n m e n t s are different a n d t h e d o n o r - a c c e p t o r sequence is r e v e r s e d , except for 0 3 . T h e a s c o r b i c a c i d m o l e c u l e has also b e e n s t u d i e d i n t h e c r y s t a l l i n e complex w i t h L-serine [ C H ( O H ) C H ( N H ) C O O H ] , recently reported 2
2
by Sudhakar, Bhat, and Vijayan
(9).
T h e crystals a r e
orthorhombic
w i t h Z = 4, a n d t h e m o l e c u l e s are m a i n l y h e l d t o g e t h e r b y bonds.
hydrogen
T h e i n d i v i d u a l c o m p o n e n t s are b o t h n e u t r a l , a n d t h e m o l e c u l a r
d i m e n s i o n s i n t h e a s c o r b i c a c i d m o l e c u l e are n o t s i g n i f i c a n t l y different f r o m those i n t h e p u r e a c i d .
T h e side-chain conformation varies
by
r o t a t i o n of 0 6 a b o u t the C 5 - C 6 b o n d to a n e a r gauche a r r a n g e m e n t , t h u s b r i n g i n g i t close to t h e s i t u a t i o n i n s o d i u m ascorbate
(10).
The
h y d r o g e n b o n d s y s t e m is, of course, different, a n d i t is i n t e r e s t i n g to n o t e t h a t t h e c a r b o x y l g r o u p of L - s e r i n e is t i e d to t h e e n e - d i o l g r o u p of L - a s c o r bic a c i d ( F i g u r e 4)
t h r o u g h r a t h e r short h y d r o g e n b o n d s
(2.542 a n d
2.642 A ) . Salts o f A s c o r b i c A c i d .
I n salt f o r m a t i o n t h e i o n i z a t i o n of L - a s c o r b i c
a c i d is c l o s e l y associated w i t h t h e b e h a v i o r of t h e e n e - d i o l g r o u p a n d t h e conjugated 0 1 = C 1 — C 2 = C 3 — 0 3
system. A l l t h e salts w e k n o w so f a r
are f o r m e d b y d i s s o c i a t i o n of t h e p r o t o n at 0 3 monovalent.
o n l y , a n d are
hence
B i v a l e n t anions p r e d i c t e d f r o m studies of solutions h a v e
not been isolated a n d characterized. C o m m o n to t h e i n v e s t i g a t e d ascorbate
anions a r e t h e s i g n i f i c a n t
l e n g t h e n i n g of t h e d o u b l e , s h o r t e n i n g of t h e s i n g l e b o n d s i n t h e c o n j u -
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
42
ASCORBIC
ACID
Figure 3. Environment and hydrogen bonding for molecules A and B. Oxygen atoms in neighboring molecules are indicated by triple circles. (Reproduced, with permission, from Ref. 7.) g a t e d s y s t e m , a n d changes i n t h e a n g u l a r d i s t r i b u t i o n , e s p e c i a l l y at C 2 and C3. S e l e c t e d v a l u e s of b o n d lengths a n d angles i n t h e ascorbate a n i o n are g i v e n i n T a b l e I I a n d are c o m p a r e d w i t h those of t h e free a c i d . T a k i n g t h e b o n d i n g p r o p e r t i e s of the l a c t o n e g r o u p i n t o a c c o u n t also, t h e observations s u p p o r t t h e v i e w t h a t t h e a n i o n m a y b e t h o u g h t of as a resonance h y b r i d of I, II, a n d III, b u t w i t h a d o m i n a t i n g c o n t r i b u t i o n f r o m I.
(XII)
0(16) Figure 4. The hydrogen-bonded interaction between the ene-diol group of ascorbic acid and the carboxylate group of serine. The primed atom belongs to a neighboring molecule. (Reproduced, with permission, from Ref. 9.)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
107.8 109.5 124.6 133.5 117.1 112.7 114.8
1.216 1.361 1.326 1.355 1.444 1.427 1.431 1.338 1.452 1.493 1.521 1.521 109.5 105.8 121.6 131.3 122.9 110.1 116.1
109.8 107.5 124.4 130.7 121.7 110.9 115.3
1.200 1.340 1.329 1.365 1.437 1.416 1.428 1.331 1.446 1.493 1.531 1.520
107.1 110.1 124.5 132.8 116.3 112.5 114.0
1.222 1.364 1.301 1.381 1.465 1.420 1.441 1.362 1.418 1.516 1.521 1.513
1.233 1.384 1.287 1.358 1.448 1.410 1.423 1.373 1.416 1.516 1.536 1.503
D-Isoascorbic Acid (26)
(°)
109.4 106.9 121.1 131.9 121.7 115.6 119.6
1.229 1.366 1.288 1.374 1.451 1.431 1.425 1.370 1.421 1.518 1.528 1.508
1.231 1.375 1.275 1.365 1.453 1.436 1.422 1.371 1.417 1.516 1.533 1.514 109.8 106.2 120.1 130.9 122.8 114.6 112.4
(B)
(A)
(14:)
in Ascorbate
Ca L-Ascorbate
and Angles
Na Isoascorbate (27)
(A)
Na L Ascorbate no;
Selected Bond Distances a
109.2 106.9 125.9 130.8 122.1 111.9 113.6
1.218 1.364 1.275 1.361 1.440 1.424 1.401 1.364 1.423 1.499 1.510 1.497
Arginine L Ascorbate (15)
Anions
111.2 ( ° ) 105.7 122.2 131.4 122.8 111.2 112.4
1.218 1.389 1.265 1.376 1.455 1.421 1.422 1.367 1.422 1.515 1.523 1.524
(W
(A)
Ba 2-0SulfonatoL-ascorbate
• The mean values of the L-ascorbic acid molecules and of D-isoascorbic acid are given for comparison. The values for C a L-ascorbate hydrate are weighed means of Refs. 12 and 18.
C l — C 2 - -C3 C 2 — C 3 - -C4 C 1 — C 2 - -02 C 2 — C 3 - -03 0 3 — C 3 - -C4 C 4 — C 5 - -C6 C3—C4—C5
Cl=01 C2—02 C3—03 Cl—04 C4—04 C5—05 C6—06 C2=C3 Cl—C2 C3—C4 C4—C5 C5—C6
L-Ascorbic Acid (7)
Table II.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
44
ASCORBIC
ACID
T h e effect of a n i m p a i r e d sp h y b r i d i z a t i o n a t C 2 a n d C 3 is c o n f o r m a
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
2
tional lability i n the y-lactone ring.
A s a result, t h e p r o x i m i t y o f a
m e t a l l i c c a t i o n causes t h i s r i n g t o d e v i a t e f r o m p l a n a r i t y ; i t also increases 02—C2=C3—03 N a ascorbate
d i h e d r a l angles.
(10), Tl(I)-ascorbate
T y p i c a l is t h e effect o n salts l i k e (11)
a n d C a ascorbate
dihydrate
(13,14) w h e r e t h e a n g l e b e t w e e n t h e m e a n p l a n e s d e f i n e d b y t h e l a c t o n e group ( 0 4 , C 4 , C 1 , 0 1 , C 2 ) a n d the e n e - d i o l group ( C 2 , 0 2 , C 3 , 0 3 )
occa
s i o n a l l y is as h i g h as 8 ° . A s o m e w h a t s m a l l e r a n g l e ( 5 ° ) is o b s e r v e d i n L - a r g i n i n e ascorbate
( 1 5 ) w h e r e t h e i n f l u e n c e o f a m e t a l l i c c a t i o n is
avoided. W h e r e a s t h e c o n f o r m a t i o n a l differences i n t h e r i n g s a r e m o d e r a t e , the side-chains are f o u n d to be more susceptible to t h e influence of packing, metal coordination, a n d hydrogen bonding.
I n m o s t cases t h e
ascorbate ions h a v e 0 5 i n a r o u g h l y s t a g g e r e d p o s i t i o n , b u t w i t h a p p r e ciable tolerance.
0 6 has e i t h e r a n e a r anti o r n e a r gauche o r i e n t a t i o n
as i l l u s t r a t e d i n F i g u r e 5.
* V Figure 5.
Dihedral angles (parentheses) U (gauche) and V (anti) for C6-O6 in ascorbates.
05-C5-
The gauche orientation occurs in: ascorbic acid in serine complex (66°), sodium ascorbate (70°), thallium ascorbate A (71.7°), arginine ascorbate (56°), barium 2-O-sulfonato-L-ascorbate dihydrate (73.3°). The anti orientation occurs in: ascorbic acid (8.3°), thallium ascorbate B (1°), p-bromophenylhydrazine of dehydroascorbic acid (1.2°).
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
HVOSLEF
45
Crystallography of the Ascorbates
I n c e r t a i n cases, exceptions t o these r u l e s are o b s e r v e d . I n o n e of t h e t w o i n d e p e n d e n t a n i o n s ( B ) of C a a s c o r b a t e d i h y d r a t e , 0 5 ( F i g u r e 6 ) a d o p t s a r a r e , u n f a v o r a b l e ( p e r i ) i n t e r a c t i o n (16)
with 0 3 . In addi
t i o n , 0 6 is r o t a t e d a b o u t C 5 - C 6 to p e r m i t t h e t h r e e o x y g e n atoms 0 3 , 0 5 a n d 0 6 to f o r m a n i n t e r e s t i n g t r i d e n t a t e c o m p l e x w i t h C a .
Mole-
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
2 +
Figure 6. Perspective drawing of the independent ascorbate anions A and B. Distances and angles for the nonhydrogen atoms are included in the drawing. (Reproduced, with permission, from Ref. 13.)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
46
ASCORBIC
cule A can be derived f r o m B b y rotating the side-chain b y a r o u n d C 4 - C 5 , a n d the o c t a h e d r a l c o o r d i n a t i o n a r o u n d C a
2 +
ACID
—117° is
com
pleted b y 0 5 a n d 0 6 f r o m A , t w o water molecules, a n d O l f r o m a s y m m e t r y e q u i v a l e n t of B . T h e s t r u c t u r e of C a ascorbate d i h y d r a t e w a s s i m u l t a n e o u s l y d e t e r m i n e d b y t w o i n d e p e n d e n t g r o u p s (12,13), were subsequently compared
a n d t h e i r d a t a a n d results
a n d a n a l y z e d b y A b r a h a m s et a l .
(14).
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
S o m e g e n e r a l c o n c l u s i o n s c o u l d b e d r a w n f r o m this i n v e s t i g a t i o n w i t h respect to the g i v e n values of s t a n d a r d d e v i a t i o n s , to t h e effect of a n o m a lous s c a t t e r i n g o n a t o m i c c o o r d i n a t e s , a n d to the a b s o l u t e c o n f i g u r a t i o n of the m o l e c u l e i n q u e s t i o n . A m o n g t h e salts i n t h e ascorbate series is also B a 2 - O - s u l f o n a t o - L ascorbate d i h y d r a t e t h a t is d e r i v e d f r o m t h e a s c o r b i c a c i d 2-sulfate ester. This biologically important compound
(17)
was m u c h debated because
i t w a s difficult t o d e c i d e w h e t h e r the sulfate g r o u p w a s a t t a c h e d t o C 2 o r C 3 . T h e s t r u c t u r a l a n a l y s i s b y M c C l e l l a n d (18)
p r o v e d t h e site t o
b e at C 2 as s h o w n i n F i g u r e 7. T h e b o n d l e n g t h s , angles, a n d resonance f o r m s are c l e a r l y s i m i l a r to those of t h e s i m p l e ascorbate anions i r r e s p e c t i v e of t h e effect of t h e sulfate g r o u p a t t a c h e d to C 2 . A s i m i l a r a n d e v e n m o r e c o m p l e x p r o b l e m arose for the
phosphate
ester of a s c o r b i c a c i d , a n d a g a i n x - r a y m e t h o d s p r o v e d u s e f u l i n u n r a v e l i n g t h e d i l e m m a of w h e r e to a s s i g n t h e p h o s p h a t e g r o u p . a s s i g n e d b y the o r i g i n a l authors (19)
T h e position
w a s at C 3 , b u t L e e et a l .
(20)
a n d others c o n t e n d e d t h a t w a s at C 2 . I n a recent, i n t e r e s t i n g p a p e r b y
Figure 7. Configuration, bond lengths (A), and bond angles (°) of the 2 - 0 sulfonato-L-ascorbate anion. (Reproduced, with permission, from Ref. IS.)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
47
Crystallography of the Ascorbates
HVOSLEF
J e r n o w et a l . (21) d e r i v a t i v e of
a b r i e f c r y s t a l l o g r a p h i c a n a l y s i s demonstrates t h a t a
t h i s ester, t h e
(3-0-(bismorpholino)phosphinyl)
5,6-iso-
p r o p y l i d e n e - L - a s c o r b a t e , i n d e e d has its p h o s p h a t e g r o u p a t t a c h e d to C 3 . T h e m o l e c u l a r s t r u c t u r e is s h o w n i n F i g u r e 8, b u t u n f o r t u n a t e l y n o d e tails of t h e s t r u c t u r e are g i v e n u n d e r t h e c i r c u m s t a n c e s ; o n l y t h e gross s t r u c t u r e w a s r e q u i r e d . N o i n f o r m a t i o n is therefore a v a i l a b l e w i t h respect to t h e state of c o n j u g a t i o n , b u t i t is e x p e c t e d to b e different f r o m t h a t i n
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
t h e s i m p l e salts a n d i n the 2-O-esters.
U p o n a c i d h y d r o l y s i s of t h e c o m
p o u n d , t h e authors c l a i m t h a t a n u n s t a b l e 3 - O - p h o s p h a t e
is i n i t i a l l y
f o r m e d , b u t t h a t i t r a p i d l y isomerizes t o t h e s t a b l e r 2 - O - p h o s p h a t e .
It
is c o n c l u d e d that t h e tris ( c y c l o h e x y l ) a m m o n i u m salt of the a s c o r b i c a c i d p h o s p h a t e , first p r e p a r e d b y C u t o l o a n d L o r i z z a (19)
a n d assigned t h e
3 - O - p h o s p h a t e , is i n fact the 2 - O - p h o s p h a t e as p r o p o s e d b y L e e et a l . (20). A l l the compounds
mentioned above have common
features
with
respect to m o l e c u l a r a n d c r y s t a l structures, a n d t h e results a r r i v e d at b y different authors are h e a r t e n i n g l y u n a n i m o u s . F o r t h e h y d r o g e n b o n d s y s t e m , f o r e x a m p l e , i t is e s t a b l i s h e d t h a t t h e distances associated w i t h t h e e n e - d i o l i c h y d r o x y l s are s i g n f i c a n t l y shorter t h a n t h e others
(Table
I I I ) . A v a l u e w e l l b e l o w 2.6 A f o r a 0 2 — H • • • 0 3 i n t e r a c t i o n is u s u a l , a n d i f 0 3 is a n a c c e p t o r e v e n a n a l c o h o l i c h y d r o x y l g r o u p p r o d u c e s
a
s t r o n g i n t e r a c t i o n . T h i s a t o m has a n u n u s u a l l y h i g h c a p a c i t y for h y d r o gen bonding. T h e o r i e n t a t i o n a n d c o n f o r m a t i o n s of t h e s i d e - c h a i n h a v e o n l y m i n o r
Figure 8.
Drawing showing the conformation of the ascorbate 3-O-phosphinate. (Refffj^^f^^^^^on, from Ref. 21.)
Society Library 1155 16th St. N. W. Seib and Tolbert; Ascorbic Acid: Metabolism, and Uses Washington, D. Chemistry, C. 20036 Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
0 6 ' : 2.612 0 5 ' : 2.645
01:2.656 0 1 ' : 2.666
0 2 : 2.786 0 6 : 2.707
0 2 ' : 2.935 0 5 : 2.769
Donor
02—H 02— H '
03— H 03—H'
05—H 05— H '
06— H 06—H'
02 :
06 :
2.766
2.709
0 2 ( S ) : 2.542
0 1 ( S ) : 2.642
Ascorbic Acid in Serine Complex (9)
05:2.777
02:2.827
01:2.643
06:2.584
Isoascorbic Acid (26)
01:2.820
02:2.709
03:2.546
Na Ascorbate (10)
0 3 : 2.828 0 3 : 2.785
03:2.993
03:2.801
W : 2.699
Na Isoascorbate (27)
05': 02': 03 : 01:
02: 01:
2.972 2.921 2.707 2.782
2.715 2.786
03:
04: 01:
2.622
2.921 2.913
0 1 ( A ) : : 2.676
0 3 ' : 2.549 0 3 : 2.571
0 4 ' : 2.862 0 4 : 2.742 0 2 : 2.793
Arginine Ascorbate (15)
i n Ascorbates*
Ca Ascorbate Dihydrate (13)
Examples of H y d r o g e n Bond Distances ( A )
* If two independent molecules A and B are involved B is indicated by: S, serine; A, arginine; W, water.
0—H ) i n water I
Ascorbic Acid (7)
Table III.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
W:
2.899
0 3 : 2.693
Ba 2-0-Suljo nato ascorbate (18)
2.
49
Crystallography of the Ascorbates
HVOSLEF
i n f l u e n c e o n t h e b o n d lengths i n t h e r i n g , b u t h a v e s o m e effect o n its planarity.
T h i s is reflected i n t h e a n g u l a r d i s t r i b u t i o n a r o u n d C 4 a n d
C 5 , p a r t i c u l a r l y i n C a - a s c o r b a t e d i h y d r a t e w h e r e d e v i a t i o n s u p to
7.2°
are o b s e r v e d .
Dehydroascorbic Acid and Derivatives
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
O x i d a t i o n of L - a s c o r b i c a c i d p r o d u c e s a v a r i e t y of c h e m i c a l species d e p e n d i n g o n t h e n a t u r e of t h e solvent, the t i m e , a n d t h e s t r e n g t h of t h e o x i d a t i o n agent.
B y c a r e f u l , m i l d o x i d a t i o n t w o h y d r o g e n atoms
are
g i v e n off i n successive steps. I n t h e first step, a n u n s t a b l e r a d i c a l " s e m i dehydroascorbic
a c i d " is f o r m e d .
I n the second, the biologically active
d e h y d r o a s c o r b i c a c i d results. T h e c o m m e r c i a l l y a v a i l a b l e i s o m e r of
dehydroascorbic
a c i d is a
c r y s t a l l i n e , s y m m e t r i c d i m e r c o m p r i s i n g a system of five f u s e d r i n g s 22),
(4,
I V , a n d n o t the t r a d i t i o n a l "textbook c o m p o u n d " w i t h t h e f o r m u l a
V . T h e l a t t e r has not b e e n i s o l a t e d a n d c h a r a c t e r i z e d , a n d is p r e s u m a b l y not present i n significant a m o u n t w h e n the v i t a m i n is o x i d i z e d .
I f the
o x i d a t i o n of L - a s c o r b i c a c i d takes p l a c e i n i n e r t solvents s u c h as d i m e t h y l formamide
or d i m e t h y l s u l f o x i d e , it has b e e n
shown by Hvoslef
and
P e d e r s e n ( 5 ) , u s i n g N M R m e t h o d s , t h a t at l o w t e m p e r a t u r e s a d i m e r i d e n t i c a l to t h e c r y s t a l l i n e c o m p o u n d is f o r m e d .
W h e n the t e m p e r a t u r e
IV
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
50
ASCORBIC
ACID
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
OH
VI
rises, this dimer gradually transforms to another dimer, V I , which is unsymmetrical, but closely related to the first. However, i n water a hydrated bicyclic monomer is the prime result. This is unstable in water, and with time the furanose ring opens to give a monocyclic molecule with an open side-chain. T h e Dehydroascorbic A c i d Dimer.
O f the possible versions of pure
dehydroascorbic acid, only the symmetric dimer has been obtained in crystalline state and investigated by diffraction methods.
However,
derivatives of monomers are known and will be discussed below. Monoclinic crystals of the symmetric dimer can be precipitated by successive addition of formic acid and solid oxalic acid (23)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
to a d i -
2.
HVOSLEF
51
Crystallography of the Ascorbates
m e t h y l f o r m a m i d e s o l u t i o n of t h e u s u a l m i x t u r e of s y m m e t r i c a n d a s y m metric dimers.
T h e s o l u b i l i t y of t h e f o r m e r is s t r o n g l y d e c r e a s e d
by
these reagents, b u t leaves t h e l a t t e r i n s o l u t i o n . T h e space g r o u p
C 2 imposes t w o f o l d
symmetry on the dimeric
m o l e c u l e w i t h t h e d i m e n s i o n s s h o w n i n F i g u r e 9. T h e t w o h a l v e s are j o i n e d b y the 0 3 atoms o r i g i n a l l y associated b y the e n e - d i o l g r o u p , a n d establish a c e n t r a l d i o x a n r i n g i n the t w i s t e d b o a t c o n f o r m a t i o n .
The
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
f o u r t h v a l e n c e at C 3 closes t h e s i d e - c h a i n t o f o r m a n i r r e g u l a r f u r a n o s e m o i e t y w i t h C 6 0.55 A f r o m t h e best p l a n e t h r o u g h t h e o t h e r atoms. L o o k i n g at t h e l a c t o n e r i n g one observes t h a t t h e l a c t o n e g r o u p
(C4,04,
C 1 , 0 1 , C 2 ) is a l m o s t p l a n a r , b u t t h a t C 3 deviates b y 0.192 A , w h i c h is m o d e r a t e f o r f u r a n o s e o r f u r a n o i d l a c t o n e r i n g s . T h e g e o m e t r y of t h i s m o d e r a t e l y s t r a i n e d r i n g s y s t e m is n o r m a l f o r a c o m p o u n d w i t h c o v a l e n t bonds.
O n e m a y , h o w e v e r , n o t i c e t h a t t h e C 2 - 0 2 b o n d is v e r y s h o r t
(1.352 A ) a n d t h a t t h e t w o C - O b o n d lengths i n t h e d i o x a n r i n g are u n e q u a l . O n r e a c t i o n w i t h w a t e r t h e d i o x a n r i n g is s p l i t a t t h e l o n g e r C 2 - 0 3 b o n d , a n d t w o b i c y c l i c , h y d r a t e d monomers are f o r m e d ( 5 ) .
It
is n o t u n l i k e l y t h a t t h e short C 2 - 0 2 b o n d is r e s p o n s i b l e f o r t h e a c i d i t y of t h e c o m p o u n d . T h e r e a l l y i n t e r e s t i n g a s p e c t of this s t r u c t u r e is t h a t i t is d i m e r i c . T h i s f a c t o b v i o u s l y has r e l e v a n c e t o t h e c o m p l i c a t e d r e a c t i o n m e c h a n i s m a s s o c i a t e d w i t h t h e o x i d a t i o n of t h e v i t a m i n i n i n e r t solvents.
Whether
t h e d i m e r is f o r m e d as a s h o r t - l i v e d i n t e r m e d i a t e b y o x i d a t i o n i n w a t e r is s t i l l a n o p e n q u e s t i o n . A t t e m p t s t o d e t e r m i n e t h e c r y s t a l s t r u c t u r e of t h e a s y m m e t r i c d i m e r are n o w b e i n g m a d e i n o u r l a b o r a t o r y .
Figure 9.
Bonding distances and angles in dehydroascorbic acid. (Reproduced, with permission, from Ref. 4)
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
52
ASCORBIC ACID
D e r i v a t i v e s of Dehydroascorbic
Monomers.
Monomeric
dehydro
a s c o r b i c a c i d p r e s u m a b l y is f o r m e d o n l y i n solvents t h a t p r e v e n t t h e f o r m a t i o n of
dimers, for example, water a n d alcohols.
T h e unstable
e v a s i v e n a t u r e of t h e c o m p o u n d i m p e d e s its c r y s t a l l i z a t i o n , a n d i n t r a c t a b l e s y r u p s are o f t e n t h e r e s u l t . H o w e v e r , d e r i v a t i v e s of t h e c o u l d be
monomer
o b t a i n e d w i t h satisfactory c r y s t a l l i n e q u a l i t y f o r a r e g u l a r
x-ray study.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
T h e q u e s t i o n of w h e t h e r a b i - o r m o n o c y c l i c m o l e c u l e is p r e s e n t i n these crystals w a s of m a j o r interest, b u t w e h a v e also s o u g h t
possible
factors t h a t w o u l d cause a n o p e n s i d e - c h a i n i n t h e m o n o m e r . I n t h e m e t h y l g l y c o s i d e of 2 - C - b e n z y l - 3 - k e t o - L - & / x o - h e x u l o s o n i c a c i d l a c t o n e ( F i g u r e 10) a b i c y c l i c ascorbate i s o m e r w a s f o u n d (24). s u g a r m o i e t y bears great r e s e m b l a n c e t o t h e a s y m m e t r i c u n i t of crystalline dimeric dehydroascorbic acid. B o t h
five-membered
The the
rings have
irregular envelope conformations w i t h the c o m m o n C 3 atom deviating f r o m t h e best p l a n e s t h r o u g h t h e f o u r o t h e r atoms i n t h e r i n g s .
The
u n i q u e r o l e of C 3 is p r e s u m a b l y c a u s e d b y r e p u l s i o n b e t w e e n t h e b e n z y l a n d m e t h o x y g r o u p s , w h e r e b y a n e c l i p s e d c o n f o r m a t i o n for 0 3 a n d C 8 is a v o i d e d b y a + 3 8 . 8 ° t w i s t a b o u t t h e C 2 - C 3 b o n d .
T h e free
OH
g r o u p at C 2 has t h e same o r i e n t a t i o n r e l a t i v e t o t h e l a c t o n e r i n g as i t has i n t h e d i m e r , b u t t h e C - O b o n d is s o m e w h a t l o n g e r .
Besides this,
t h e b o n d lengths a n d angles are g e n e r a l l y s i m i l a r t o those i n t h e d i m e r , e x c e p t for t h e c o n f o r m a t i o n a l angles i n t h e furanose m o i e t y . O n the other h a n d , a monocyclic derivative was obtained w h e n a s o l u t i o n of
dehydroascorbic
acid and p-bromophenylhydrazine i n d i -
m e t h y l a c e t a m i d e w a s a l l o w e d t o s t a n d o v e r n i g h t at r o o m t e m p e r a t u r e (25).
The compound
was precipitated w i t h water a n d recrystallized
f r o m a b s o l u t e a l c o h o l ; its m o l e c u l a r s t r u c t u r e is s h o w n i n F i g u r e 11. T h e l a c t o n e r i n g is of t h e e n v e l o p e t y p e w i t h C 4 d e v i a t i n g b y 0.126 A f r o m the plane defined b y C l , O l , C 2 , a n d 0 4 .
T h e s i d e - c h a i n is v e r y
n e a r l y s t a g g e r e d a n d w i t h 0 5 a n d C 6 anti. A s i g n i f i c a n t feature of this c o m p o u n d is t h e p r o p e r t y of t h e C 7 N 2 - N 1 - C 2 - C 3 m o i e t y w i t h its p l a n a r , e x t e n d e d c h a i n of atoms a n d its b o n d l e n g t h s a n d angles t y p i c a l of sp
2
hybridization. The
resonance
structures t h a t c o u l d d e s c r i b e t h e ^ - e l e c t r o n d e r e a l i z a t i o n a r e :
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Figure 10.
ORTEP
plot of the methyl glycoside of the 2-C-benzyl-3-keto-L-\yxo-hexulosonic acid lactone molecule. (Reproduced, with permission, from Ref. 24.)
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Figure 11.
ORTEP
plot of the p-bromophenylhydrazone of dehydroascorbic acid. (Reproduced, with permission, from Ref. 25.)
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
5
w o >
8
o
2.
HVOSLEF
55
Crystallography of the Ascorbates
O b v i o u s l y these are p r e f e r r e d to a s y s t e m w i t h a b i c y c l i c r i n g as i n d i cated b y
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
O H
T h e c o n c l u s i o n f o l l o w s t h a t a n y s u b s t i t u e n t at C 2 t h a t i n d u c e s ^ - e l e c t r o n d e r e a l i z a t i o n into the region w i l l open the furanoid ring. is s i m p l y t h a t sp
2
T h e reason
h y b r i d i z a t i o n at C 3 p r e c l u d e s t h e necessary f o u r t h
valence for r i n g formation.
It has r e c e n t l y b e e n s h o w n t h a t solutions
c o n t a i n t w o isomers i n e q u i l i b r i u m w i t h 180° difference i n o r i e n t a t i o n of the hydrazine group.
T h e N - H group hence can establish hydrogen
b o n d s to e i t h e r O l or 0 3
(26).
Ascorbate Isomers O f substances c l o s e l y r e l a t e d to v i t a m i n C are isomers w i t h i n v e r t e d substituents at C 4 a n d C 5 . T h e so c a l l e d D-isoascorbic a c i d is a stereo i s o m e r w i t h i n v e r s i o n of t h e O H g r o u p at C 5 o n l y . A n x - r a y i n v e s t i g a t i o n b y A z a r n i a , B e r m a n , a n d R o s e n s t e i n (27)
revealed that i n this c o m p o u n d
t h e distances a n d angles are q u i t e s i m i l a r to those f o u n d i n L - a s c o r b i c a c i d ( T a b l e I I ) . T h e p l a n e r e l a t i o n s h i p is also c o n g r u o u s , b u t t h e p r o p e r t i e s of t h e s i d e - c h a i n are, of course, different as a r e s u l t of t h e i n v e r s i o n at C 5 . C 4 - C 5 - C 6 - 0 6 f o r m a roughly planar z i g z a g c h a i n where C 6 adopts a p o s i t i o n a p p r o x i m a t e l y c o r r e s p o n d i n g t o t h a t of 0 5 i n L - a s c o r b i c a c i d . T h e d i h e d r a l C 3 - C 4 - C 5 - C 6 a n g l e is + 7 8 ° vs. + 5 8 ° f o r t h e C 3 - C 4 - C 5 0 5 a n g l e i n the v i t a m i n . R e l a t i v e to 0 5 , 0 6 is i n t h e gauche c o n f o r m a t i o n t h a t takes i t farthest a w a y f r o m t h e r i n g ; 0 6 is t i e d t o 0 2 i n a n e i g h b o r i n g m o l e c u l e b y a short h y d r o g e n b o n d (2.584 A ) .
A l s o , the hydrogen
b o n d s y s t e m d u p l i c a t e s one of t h e schemes f o u n d i n the L - a s c o r b i c a c i d . K a n t e r s , R o e l o f s e n , a n d A l b l a s (28)
have compared
D-isoascorbic
a c i d a n d L - a s c o r b i c a c i d w i t h respect t o t h e i r b e h a v i o r o n i o n i z a t i o n . T h e y o b s e r v e d t h a t a l m o s t t h e same changes i n b o n d l e n g t h s a n d angles o c c u r i n t h e t w o c o m p o u n d s , e x e m p l i f i e d b y t h e i r s o d i u m salts ( T a b l e I I ) . E v e n the d i s t o r t i o n s i n t h e r i n g s are s i m i l a r ( K a n t e r s et a l / s a d v e r sary c o n c l u s i o n w a s b a s e d u p o n a m i s p r i n t i n T a b l e I of R e f . 1 0 ) . is i l l u s t r a t e d b y t h e a l m o s t i d e n t i c a l angles b e t w e e n
This
t h e best p l a n e s
t h r o u g h t h e l a c t o n e a n d e n e - d i o l groups ( 1 . 4 ° vs. 0 . 6 ° ) . T h e s i d e - c h a i n c o n f o r m a t i o n is n e a r l y r e t a i n e d f r o m t h e a c i d , b u t i t is m o r e (by + 3 1 ° )
staggered
by a rotation about C 4 - C 5 .
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
56
ASCORBIC ACID
W h e r e a s m o s t b o n d l e n g t h s a n d angles agree w e l l w i t h those o f other ascorbate anions ( T a b l e I I ) , t h e h y d r o g e n b o n d i n t e r a c t i o n asso c i a t e d w i t h 0 3 is u n i q u e : i t accepts n o less t h a n f o u r b o n d s r a n g i n g f r o m 2.785 t o 2.993 A . T w o of these a r e f r o m w a t e r m o l e c u l e s .
This unusually
l a r g e n u m b e r of b o n d s e x p l a i n s t h e fact t h a t n o short h y d r o g e n
bonds,
w h i c h a r e u s u a l l y e n c o u n t e r e d i n t h e e n e - d i o l g r o u p , a r e present i n these crystals.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
T h e fate of D-isoascorbic a c i d o n o x i d a t i o n has n o t y e t b e e n s t u d i e d b y d i f f r a c t i o n m e t h o d s , b u t N M R results (29) s h o w t h a t i n i n e r t solvents a n a s y m m e t r i c d i m e r is p r e f e r e n t i a l l y f o r m e d .
I n water, however,
a
m i x t u r e of t w o a n o m e r i c p y r a n o s e r i n g s results, a n d t h e s i m p l e , r e v e r s i b l e D-isoascorbic
acid/dehydroisoascorbic
acid
e q u i l i b r i u m is lost.
This
m a y p o s s i b l y b e o n e of t h e factors t h a t reduces t h e b i o l o g i c a l a c t i v i t y of D-isoascorbic a c i d . T h e l a t t e r has a n effect t h a t is o n l y 5% of t h a t of v i t a m i n C (30).
Literature Cited 1. Cox, E. G.; Goodwin, T. H. J. Chem. Soc. 1936, 769. 2. Herbert, R. W.; Hirst, E. L.; Percival, E. G. V.; Reynolds, R. J. W.; Smith, F. J. Chem. Soc. 1933, 1275. 3. Haworth, W. N.; Hirst, E. L.; Tones, J. K. N.; Smith, F. J. Chem. Soc. 1934, 1192. 4. Hvoslef, J. Acta Crystallogr., Sect. B 1972, 28, 916. 5. Hvoslef, J.; Pedersen, B. Acta Chem. Scand., Ser. B 1979, 33, 503. 6. Hvoslef, J. Acta Chem. Scand. 1964, 18, 841. 7. Hvoslef, J. Acta Crystallogr., Sect. B 1968, 24, 23. 8. Ibid., 1431. 9. Sudhakar, V.; Bhat, T. N.; Vijayan, M. Crystallogr., Sect. B 1980, 36, 125. 10. Hvoslef, J. Acta Crystallogr., Sect. B 1969, 25, 2214. 11. Hughes, D. L. J. Chem. Soc., Dalton Trans. 1973, 2209. 12. Hearn, R. A.; Bugg, C. E. Acta Crystallogr., Sect. B 1974, 30, 2705. 13. Hvoslef, J.; Kjellevold, K. E. Acta Crystallogr., Sect. B 1974, 30, 2711. 14. Abrahams, S. C.; Bernstein, J. L.; Bugg, C. E.; Hvoslef, J. Acta Crystal logr., Sect. B 1978, 34, 2981. 15. Sudhakar, V.; Vijayan, M. Acta Crystallogr., Sect. B 1980, 36, 120. 16. Jeffrey, G. A.; Kim, H. S. Carbohydr. Res. 1970, 14, 207. 17. Tolbert, B. M.; Isherwood, D. J.; Atchely, R. W.; Baker, E. M. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1971, 30, 529. 18. McClelland, B. W. Acta Crystallogr., Sect. B 1974, 30, 178. 19. Cutolo, E.; Lorizza, A. Gazz. Chim. Ital. 1961, 91, 964. 20. Lee, C. H.; Seib, P.; Hoseney, R. C.; Liang, Y. T.; Deyoe, C. W. Cereal Chem. 1975, 20, 456. 21. Jernow, J.; Blount, J.; Oliveto, E.; Perotta, A.; Rosen, P.; Toome, V. Tetrahedron, 1979, 35, 1483. 22. Albers, H.; Müller, E.; Dietz, H. Hoppe-Seyler's Z. Physiol. Chem. 1963, 334, 243. 23. Müller-Mulot, W. Hoppe-Seyler's Z. Physiol. Chem. 1970, 351, 50. 24. Hvoslef, J.; Nordenson, S. Acta Crystallogr., Sect. B 1976, 32, 1665. 25. Ibid., 448.
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2. HVOSLEF Crystallography of the Ascorbates
57
26. Pedersen, B. Acta Chem. Scand., Ser. B 1980, 34, 429. 27. Azarnia, N.; Berman, H.; Rosenstein, R. D. Acta Crystallogr., Sect. B 1971, 27, 2157. 28. Kanters, J. A.; Roelofsen, G.; Alblas, B. P. Acta Crystallogr., Sect. B 1977, 33, 1906. 29. Hvoslef, J.; Pedersen, B. Carbohydr. Res. 1981, 92, 9. 30. Brubacher, G.; Vuilleumier, J. P. Wiss. Veröff. Dtsch. Ges. Ernähr. 1965, 14, 61.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 4, 2018 | https://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch002
Received for review January 22, 1981. ACCEPTED April 8, 1981.
Seib and Tolbert; Ascorbic Acid: Chemistry, Metabolism, and Uses Advances in Chemistry; American Chemical Society: Washington, DC, 1982.