DBU-promoted Cascade Annulation of Nitroarylcyclopropane-1,1

Nov 7, 2018 - A DBU-promoted cascade annulation of nitroarylcyclopropane-1,1-dicarbonitriles and 3-aryl-2-cyanoacrylates for the synthesis of highly ...
0 downloads 0 Views 1MB Size
Subscriber access provided by University of Winnipeg Library

Note

DBU-promoted Cascade Annulation of Nitroarylcyclopropane-1,1dicarbonitriles and 3-Aryl-2-cyanoacrylates: An Access to Highly Functionalized Cyclopenta[b]furan Derivatives Siran Qian, Zengyang Xie, Jiaming Liu, Mingshuang Li, Shan Wang, Naili Luo, and Cunde Wang J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02325 • Publication Date (Web): 07 Nov 2018 Downloaded from http://pubs.acs.org on November 7, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

DBU-promoted Cascade Annulation of Nitroarylcyclopropane-1,1-dicarbonitriles and 3-Aryl-2-cyanoacrylates: An Access to Highly Functionalized Cyclopenta[b]furan Derivatives Siran Qian,a,& Zengyang Xie,b,& Jiaming Liu,a Mingshuang Li,a Shan Wang,a Naili Luoa and Cunde Wang*a a

School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China. Fax: +86-514-8797-5244; Tel: +86-514-8797-5568; E-mail: [email protected] b

College of Basic Medicine, Jining Medical University, Jining 272067, P. R. China.

&

These authors contributed equally to this work and should be considered co-first authors

A DBU-promoted cascade annulation of nitroarylcyclopropane-1,1-dicarbonitriles and

3-aryl-2-cyanoacrylates

cyclopenta[b]furan

for

derivatives

is

the

synthesis

described.

of

High

highly

functionalized

stereoselectivity,

fused

cyclopentane and furan can be established in a single reaction, highlighting the high efficiency and step-economy of this protocol. This reaction offers a novel and straightforward protocol to the synthesis of cyclopenta[b]furans featuring the [3 + 2] cycloadditions

of

nitroarylcyclopropane-1,1-dicarbonitriles

with

3-aryl-2-cyanoacrylates.

Keywords: donor–acceptor cyclopropane; nitroarylcyclopropane-1,1-dicarbonitrile; cyclopenta[b]furan; [3 + 2] cycloaddition; cyclization 1

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Donor-acceptor cyclopropanes (D-A cyclopropanes) have emerged as important synthons for the construction of complex architectures in organic chemistry due to their stereoelectronic factors and intrinsic ring strain.1 D-A cyclopropanes generate easily the stabilised dipoles which can participate in a variety of the annulations and cycloadditions with nucleophiles and electrophiles to these cyclic compounds.2 Moreover, for quite some time the annulations and cycloadditions of D-A cyclopropanes with all-carbon partners have proved to be powerfully synthetic tools to form carbocyclic compounds. In this light, D-A cyclopropanes have emerged to have a prominent role, in recent years remarkable progress has been acquired which led to the development of highly substituted 5-membered carbocycles synthesis, based on the [3 + 2] annulation of functionalized D–A cyclopropanes with alkenes, alkynes, allenes, enol ethers, and enamines.3 As new type of D-A cyclopropanes with three-carbon building blocks, these 1-cyanocyclopropane-1-carboxylate derivatives were used widely in the construction of heterocycles and carbocycles. Because the synergistic effects of the strain and high polarization of the ring, the cyclopropane ring may be cleaved into two 1,3-dipoles in various conditions for the preparation of very important molecular scaffolds, providing a method that was diversity oriented.4 Recently, we have demonstrated the utility of the base-mediated opening ring of 1-cyanocyclopropane-1-carboxylates for the synthesis of densely functionalized and architecturally complex compounds.5 Like 1-cyanocyclopropane-1-carboxylates, 2-aroyl-3-arylcyclopropane-1,1-dicarbonitriles as appropriate D–A cyclopropane candidates can also participate as dipoles in a variety of cycloaddition reactions via rapid ring opening under appropriate conditions.6 As a result of continuing efforts from our research group in this field, an new

[3 + 3] annulation reaction of

2-aroyl-3-arylcyclopropane-1,1-dicarbonitriles was disclosed for the synthesis of fully substituted benzenes.5c The following fully substituted anilines also were successfully prepared via [4 + 2] annulation of 2-aroyl-3-arylcyclopropane-1,1-dicarbonitriles with 3-aryl-2-cyanoacrylate mediated by DBU.7 However, when we further explored the generality of this reaction with a variety of 2-aroyl-3-nitrophenylcyclopropane 2

ACS Paragon Plus Environment

Page 2 of 28

Page 3 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

-1,1-dicarbonitriles to the reaction conditions, quite unexpectedly, the corresponding fully

substituted

anilines

cyclopenta[b]furan-6-carboxylates

were were

not yielded

obtained, with

the

fused

complete

relative

stereoselectivity via simple DBU-mediated twice annulations. The pleasingly result promoted us to improve further the reaction conditions for the construction of cyclopenta[b]furan core. Functionalized cyclopenta[b]furans are important structural motifs of numerous biologically active natural products and synthetic pharmaceuticals (Figure 1).8-11 For example, (–)-rocaglamide (Scheme 1) is a potent inhibitor of P388 lymphocytic leukemia, a novel natural product isolated from Aglaiaelliptifolia Merr.8-11

Figure 1 Examples for cyclopenta[b]furan containing natural product and synthetic pharmaceuticals The cyclopenta[b]furan class of natural products also includes more complex polycyclic compounds incorporating further fused saturated or unsaturated rings. For instance, the marine alkaloid nakadomarin A9 contains a reduced pyridine and pyrrole core structure, whereas sessilifoliamide I10 can be seen as Stemona derived alkaloids, and the brazilide A,11 is characterized by core structures derived from furan-fused cyclopentanones and chromane, as well as the euphane triterpenes fused cyclopenta[b]furan core12 are a new class of natural products from Lantana Camara, and their simplified synthetic compounds including cyclopenta[b]furan core are used as potential inhibitors to treat thrombotic disorders.13 Synthetic GRL-06579A (Figure 1) is considered to be a powerful enzyme inhibitor and antiviral agents for treatment of HIV.14 Additionally, Strigolactones core structures derived from fused 3

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 28

cyclopentanfuran are important plant hormones, involved in several crucial processes like seed germination, plant growth and shoot branching.15 Therefore, efficient synthesis methods for cyclopenta[b]furan system should be of great importance. In spite of the importance of the cyclopenta[b]furans, only a few methods were reported for the synthesis of these cyclopenta[b]furan derivatives. The existing methods include oxidative cyclization of o-cyclopentenylphenol derivatives,8b [2+2] cycloaddition oxidation sequence,16 Iodine-catalyzed reaction of indandione/indanone and

aldehydes,17

’-bifunctionalization

hypervalent-iodine-mediated of

-ketoesters

and

direct

-diketones,18

dehydrogenative lactonization

of

2-substituted indanone,19 triphenylphosphine-mediated annulation from dialkyl acetylenedicarboxylates,20 Nazarov reactions of 2-furyl vinyl ketones and related enones,21 cobalt-catalyzed domino reaction between 2-bromoaryl aldehyde and dimethyl itaconate,22 ring-closing metathesis/ atom-transfer ring closure strategy,23 acid catalyzed double cyclization,24 intramolecular carboxypalladation of alkynoic acids followed by intramolecular olefin insertion.25 Recently, Vitale and co-workers reported that few compounds containing cyclopenta[b]furan moiety were prepared through formal [3+2] cycloadditions of 2-nitrobenzofurans with vinylcyclopropanes in the presence of palladium(0) catalyst.26 Despite several synthetic strategies to this cyclopenta[b]furan moiety have been researched, to the best of our knowledge, no example of this kind of base-promoted [3+2]/[3+2] cycloaddition reaction has been reported.

Table 1 Screening of reaction conditions for the synthesis of 3a

4

ACS Paragon Plus Environment

Page 5 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Entry

Base (eq.)

Solvent

T (oC)

t (h)

Yield (%)a

1

(-)

DCM

20

24

0

2

Et3N(1.0)

DCM

20

24

0

3

Et3N(1.0)

DCM

40

24

25

4

Piperidine(1.0)

DCM

40

24

11

5

DBU (1.0)

DCM

40

12

89

6

DABCO(1.0)

DCM

40

14

69

7

K2CO3(1.0)

DCM

40

12

trace

8

NaOH(1.0)

DCM

40

12

trace

9

DBU(1.0)

1,2-DCE

80

14

82

10

DBU(1.0)

THF

70

14

72

11

DBU (1.0)

toluene

110

14

78

12

DBU(1.0)

EtOH

80

16

65

13

DBU (1.0)

DMF

100

24

trace

14

DBU (1.25)

DCM

40

10

89

15

DBU (0.75)

DCM

40

14

83

14b

EtONa (1.0)

toluene

40

12

36

15b

Guanidine (1.0)

DCM

40

12

88

a

Isolated yields. bnitrogen atmosphere and dried solvent.

At the outset of our experiment, the reaction between 1a and 2a in the mole ratio 1.0:1.0 was chosen as the model reaction (Table 1). Firstly, the solution of substrates 1a and 2a in dichloromethane was stirred at 20 oC without any promoter for 24 h, the conceivable annulation product was not obtained (Table 1, entry 1). Then when the experiment was performed with the reaction between 1a and 2a using 1 equiv. Et3N as a basic promoter at 20 oC for 24 h (Table 1, entry 2), no annulation product was observed. Under otherwise identical conditions, the annulation product 3a was obtained in 25% yield when the reaction was carried out at 40 oC (Table 1, entry 3). The following various bases, piperidine, DBU, DABCO, K2CO3 and NaOH were employed respectively for basic promoters evaluation (entries 4–8). 5

ACS Paragon Plus Environment

It seems that

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

more basic organic amines were beneficial to the reaction. With the use of DBU and DABCO as the catalyst, the reaction worked at 40 oC for 12 or 14 h to give the product 3a in 89% and 69% yield (entries 5-6), respectively. Compared with Et3N, DBU displayed much better catalytic activity, greatly shortening the reaction time to 12 h to afford the product 3a (entry 5). With the use of inorganic amines such as K2CO3 or NaOH instead of amines as the basic promoter, only trace product was observed under otherwise identical conditions (entries 7–8). In an attempt to improve yield, different solvents were employed to escalate the reaction temperature. When 1,2-DCE, THF, toluene or EtOH were used respectively in the reaction at different reaction temperatures, the product 3a was obtained in good yields (entries 9-12), however, with the use of DMF as the solvent, the reaction worked at 100 oC to give only trace product 3a even when the reaction time was prolonged to for 24 h (entry 13), the results support the important role that the solvent and the reaction temperature may play in the transition state of this opening ring of D-A cyclopropanes, the higher temperature and the polar aprotic solvents were propitious to the formation of the product 3a. Increasing the DBU loading to 1.25 equiv did not have a significant improvement under otherwise identical conditions (entry 14). Lowering the DBU loading to 0.75 equiv still resulted in 3a in 83% yield, albeit requiring a reaction time of 14 h (entry 15). Additionally, the organic bases EtONa and guanidine were used in the cascade [3+2]/[3+2] cycloaddition under nitrogen atmosphere in dried toluene and dichloromethane respectively (entries 16-17), a modest 36% yield of 3a was obtained with 1 equiv of EtONa in dried toluene (entry 16), EtONa performed worse than the bases DBU and DABCO studied due to both its nucleophilic ability to carry on conjugate addition more readily with acrylates.27 Guanidine (1 equiv) gave a 88% yield of 3a in dried DCM under nitrogen (entry 17), which promoted to catalyze the reaction similarly to DBU. The best result was obtained in the mole ratio 1.0:1.0 for 1a/2a using DBU (1.0 equiv.) as the base at 40 °C in dichloromethane under reflux for 12 h, whereby the yield of product 3a reached 89 % (Table 1, entry 5).

6

ACS Paragon Plus Environment

Page 6 of 28

Page 7 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Table 2. Synthesis of 6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylatesa

Entry

R1

R2

R3

Yield(%)a

1

p-NO2

m-CH3O

p-CH3

89(3a)

2

p-NO2

p-CH3O

p-CH3

89(3b)

3

p-NO2

p-CH3O

p-Br

87(3c)

4

p-NO2

m-CH3O

p-Cl

88(3d)

5

p-NO2

p-CH3O

p-Cl

88(3e)

6

p-NO2

p-CH3O

m-CH3

89(3f)

7

p-NO2

m-Cl

p-OCH3

89(3g)

8

p-NO2

p-CH3O

p-CH3O

87(3h)

9

p-NO2

m-CH3

m-CH3O

90(3i)

10

p-NO2

m-CH3O

p-Br

90(3j)

11

p-NO2

m-CH3

p-CH3O

91(3k)

12

p-NO2

m-CH3O

3,4-OCH2CH2O

88(3l)

13c,d

p-NO2

m-CH3O

thiophen-2-yl

89(3m)

14c

p-NO2

p-CH3O

m-Cl

84(3n)

15

p-NO2

p-Br

p-CH3

86(3o)

16

p-NO2

m-CH3O

m-CH3

89(3p)

17c

o-NO2

p-CH3O

p-Br

85(3q)

18c

o-NO2

p-CH3O

p-Cl

83(3r)

a

Reaction conditions: D-A cyclopropanes 1a-f (1 mmol), acrylates 2a-i (1

mmol), DBU ( 152 mg, 1 mmol), DCM (15 mL), 40 oC, 12 h. bisolated yield. creaction time: 16 h. dUsing ethyl 2-cyano-3-(thiophen-2-yl)acrylate 7

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

as a substrate.

After the optimal conditions were determined, various nitrophenylcyclopropanes 1a-f and acrylates 2a-i with different substituents were carefully investigated (Table 2). The results indicated that D-A cyclopropanes 1a-f and acrylates 2a-i bearing electron-withdrawing substituents or electron-donating substituents on the aromatic ring are suitable substrates, and the corresponding 3a-r were obtained with usually good to high yields. Substrate acrylates 2a-i at aromatic ring bearing chloro, bromo, methoxy or methyl did not have a remarkable influence on the reaction. Additionally, the substrate acrylates 2a-i with a heterocyclic core such as thiophene was also compatible substrates under the optimal reaction conditions and the corresponding product was obtained in excellent yield (Table 2, entry 13). Both electron-donating and electron withdrawing substituents on the aromatic aroyl group of D-A cyclopropanes 1a-f were well tolerated. The results revealed that a significant ortho site effect of the nitro group was observed. For example, the 2-nitro substituted on the nitrobenzene led to lower yields of the products compared with their 4-substituted counterparts even though the reaction time was prolonged to 16 h. However, the 3-nitro substituted on the nitrobenzene did not undergo annulation under the optimal reaction conditions. Meanwhile, when other electron-withdrawing groups such as p-CF3, m-nitro were used to replace the ortho- or para-nitro group of D-A cyclopropanes 1a-f, the reaction did not work either via cascade annulations, only gave the corresponding aniline derivates (See ESI).7 The relative configuration of 3h and 3p bearing an amine and a carboxylate contiguous substituents at C(2) and C(6), two cyano substituents at C(3) and C(6), three aryl contiguous substituents at C(4), C(5) and C(6a) of 5H-cyclopenta[b]furan core was determined by X-ray crystallography (Figure 2).28

8

ACS Paragon Plus Environment

Page 8 of 28

Page 9 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

3h

3p

Figure 2 Molecular structures of 3h and 3p, non-hydrogen atoms are shown at the 30% probability level.

On the basis of the above-described results and our previous work on organic base-mediated opening-ring/closing ring reactions of D-A cyclopropane compounds, we propose the mechanism outlined in Scheme 1. First, DBU-mediated deprotonation of D-A cyclopropane affords a cyclopropan-1-ide [A], which undergoes opening ring to produce prop-2-en-1-ide [B].5a In view of nitro group as a strong electron-withdrawing group of prop-2-en-1-ide [B], in addition to induced effects, ortho or para-nitro group promotes the charge separation of anion [B] by conjugation effects. Charge-separated resonance structures do contribute very much to stabilize anion [B] via the resonance hybrids anion [C], [D] and [E]. The Micheal addition of substituted benzyl anion [C] to the double bond of the substrate acrylate gave the adduct [F]. Subsequently, the intramolecular nucleophilic addition of intermediate [F] to C2-carbonyl group of aroyl forms the intermediate nitrophenylcyclopentan-1-olate, following the addition to C5-cyano group transfers easily to the dicyclo intermediate [G] again.5b,5f The 2-amino-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylates 3a-r are finally obtained through 1,5-H shift of the intermediate [G] in the presence of base DBU. Moreover, the above reactions are carried out under the optimized reaction conditions when the ortho or para-nitro group of D-A cyclopropanes is replaced by other analogously electron-withdrawing groups such as p-CF3 and m-nitro, the reactions do not afford the title cascade annulations, only gave the corresponding 9

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 28

aniline derivates via [4 + 2] annulations promoted by DBU (See ESI).7 Additionally, to understand further the proposed mechanism, the nitroarylcyclopropane-1,1dicarbonitrile was replaced with 1-cyanocyclopropane- carbonate for the reaction with 3-aryl-2-cyanoacrylate,

the

result

showed

that

the

reaction

of

1-cyanocyclopropanecarbonate and 3-aryl-2-cyanoacrylate afforded the simple [3 + 2] cycloaddition to yield a highly functionalized cyclopentane (See ESI). According to the experimental results, the strongly electron-withdrawing ortho or para-nitro group of D-A cyclopropanes plays a very crucial role in the title reactions by synergetic conjugation effects and induced effects. NO2

O

DBU

Ar2

-H NC

CN NC

O2N

CN

CN [A]

[B]

Ar2

O

CN

O2N

Ar

O

Ar3

C

Ar3

CO2Et

O

DBUH

CN CN [E]

O2N

CN Ar2

NC

Ar2

O

[D]

CN O2N

O

O N

CN

CO2Et

Ar3

2

CN

CN

[C]

Ar2

O

Ar2

CN

N

NO2 O N 2

O

O

CN Ar2

DBUH HN [F]

Ar3

CO2Et

DBU H NC

O2N

[G]

CO2Et NC

O

CN Ar2

H2 N

Scheme 1 Proposed Reaction Mechanism

Conclusion In summary, we have demonstrated that a range of fused cyclopenta[b]furan-6carboxylates can be successfully obtained with complete relative stereoselectivity via a simple DBU-mediated cascade annulation of D-A nitroarylcyclopropane and 3-aryl-2-cyanoacrylates. 10

ACS Paragon Plus Environment

Page 11 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

The reaction is simply promoted by DBU giving the final products in good yields via domino sequence including ring opening of D-A nitroarylcyclopropane, regioselective Micheal addition, twice intramolecular nucleophilic addition and 1,5-H shift. The developed procedure offers several advantages, including good yields, operational simplicity,

mild

reaction

conditions

and

easily

available

substrates

D-A

nitroarylcyclopropanes and 3-aryl-2-cyanoacrylate, which makes it a useful practical process for the synthesis of these cyclopenta[b]furan-6-carboxylate derivatives.

Experimental Melting points were measured on a Mel-Tem capillary melting point apparatus and are uncorrected. 1H NMR spectra are recorded at 400 or 600 MHz and

13

C

NMR were recorded at 100 or 150 MHz in DMSO-d6 referenced to TMS. 1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Chemical shifts are reported in parts per million relative to TMS (1H, δ 0.00;

13

C, δ 0.00). High-resolution mass spectra analysis was

performed using ESI (electrospray ionization) and a TOF analyzer. IR spectra were reported in frequency of absorption (cm−1) with KBr pellet. All reactions were monitored by thin layer chromatography (TLC). For thin-layer chromatography (TLC), silica gel plates (HSGF 254) were used and compounds were visualized by irradiation with UV light. Flash column chromatography was performed using silica gel (230-400 mesh). Acrylates 2a-i and other reagents were purchased from commercial suppliers and purified by standard techniques. Procedure for preparation of nitrophenylcyclopropanes 1a-f The nitrophenylcyclopropanes 1a-f were synthesized following a literature procedure method as described.29

(2S,3R/2R,3S)-2-(3-methoxybenzoyl)-3-(4-nitrophenyl)cyclopropane -1,1-dicarbonitrile (1a) Bright yellow solid, 812 mg, yield: 78%; m.p. 195.5-196.0 oC (EA/PE); IR (KBr, 11

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

cm-1): 3440, 2972, 2930, 2730, 2672, 2431, 2202, 1680, 1550, 1436, 1332, 1267, 1107, 1021; 1H NMR (600 MHz, DMSO-d6) δ (ppm): 8.30 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 7.2 Hz, 1H), 7.76 (s, 1H), 7.56 (dd, J = 8.4 and 7.2 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 5.20 (d, J = 8.4 Hz, 1H), 4.27 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H); 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 189.7, 159.6, 147.8, 138.2, 136.6, 130.7, 130.2, 123.5, 121.7, 120.8, 113.6, 112.5, 112.4, 55.6, 37.5, 34.8, 15.6; HR-MS (ESI) calcd. for C19H13N3NaO4 [(M+Na)+]: 370.0804; Found: 370.0802. (2S,3R/2R,3S)-2-(4-methoxybenzoyl)-3-(4-nitrophenyl)cyclopropane -1,1-dicarbonitrile (1b) Bright yellow solid, 844 mg, yield: 81%; m.p. 211.5-212.0 oC (EA/PE); IR (KBr, cm-1): 3432, 2980, 2932, 2730, 2672, 2422, 2209, 1686, 1552, 1450, 1332, 1289, 1092, 1008; 1H NMR (600 MHz, DMSO-d6) δ (ppm): 8.30 (d, J = 7.8 Hz, 2H), 8.29 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 9.0 Hz, 2H), 7.17 (d, J = 9.0 Hz, 2H), 5.16 (d, J = 8.4 Hz, 1H), 4.25 (d, J = 8.4 Hz, 1H), 3.91 (s, 3H); 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 187.8, 164.5, 147.8, 138.3, 131.8, 130.7, 128.2, 123.5, 114.3, 112.6, 112.5, 55.8, 37.2, 34.5, 15.3; HR-MS (ESI) calcd. for C19H13N3NaO4 [(M+Na)+]: 370.0804; Found: 370.0794. (2S,3R/2R,3S)-2-(3-chlorobenzoyl)-3-(4-nitrophenyl)cyclopropane-1,1dicarbonitrile (1c) Bright yellow solid, 876 mg, yield: 83%; m.p. 216.5-217.5 oC (EA/PE); IR (KBr, cm-1): 3428, 3130, 2980, 2922, 2730, 2674, 2426, 2221, 1682, 1555, 1438, 1330, 1270, 1096, 1001; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.43 (s, 1H), 8.30 (d, J = 8.0 Hz, 2H), 8.20 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 5.21 (d, J = 8.0 Hz, 1H), 4.25 (d, J = 8.0 Hz, 1H); 13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 189.7, 148.3, 138.7, 137.7, 134.7,

134.4, 131.3, 131.2, 129.6, 128.1, 123.9, 113.0, 112.1, 38.2, 34.8, 16.7; HR-MS (ESI) calcd. for C18H10ClN3NaO3 [(M+Na)+]: 374.0308; Found: 374.0302. (2S,3R/2R,3S)-2-(3-mehtylbenzoyl)-3-(4-nitrophenyl)cyclopropane-1,1dicarbonitrile (1d) Bright yellow solid, 756 mg, yield: 76%; m.p. 149.0-149.5 oC (EA/PE); IR (KBr, 12

ACS Paragon Plus Environment

Page 12 of 28

Page 13 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

cm-1): 3420, 3132, 2980, 2920, 2734, 2670, 2420, 2220, 1679, 1550, 1440, 1332, 1272, 1090, 898; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.73 (s, 1H), 8.43 (d, J = 8.0 Hz, 2H), 8.31 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 5.18 (d, J = 8.0 Hz, 1H), 4.27 (d, J = 8.0 Hz, 1H), 2.45 (s, 3H);

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 193.1, 138.3, 137.0, 134.2,

132.9, 130.0, 129.9, 129.1, 128.7, 126.8, 117.9, 112.9,112.1, 32.5, 31.3, 21.4, 16.1; HR-MS (ESI) calcd. for C19H13N3NaO3 [(M+Na)+]: 354.0855; Found: 354.0851. (2S,3R/2R,3S)-2-(4-bromobenzoyl)-3-(4-nitrophenyl)cyclopropane-1,1dicarbonitrile (1e) Bright yellow solid, 975 mg, yield: 82%; m.p. 247.2-247.0 oC (EA/PE); IR (KBr, cm-1): 3430, 2977, 2930, 2728, 2676, 2425, 2202, 1680, 1550, 1442, 1330, 1287, 1082, 998; 1H NMR (600 MHz, DMSO-d6) δ (ppm): 8.30 (d, J = 8.4 Hz, 2H), 8.23 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 9.0 Hz, 2H), 5.17 (d, J = 8.4 Hz, 1H), 4.26 (d, J = 8.4 Hz, 1H); 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 189.4, 147.8, 138.3, 134.5, 132.0, 131.1, 130.7, 129.1, 123.4, 112.5, 112.4, 37.6, 34.5, 15.9; HR-MS (ESI) calcd. for C18H10BrN3NaO3 [(M+Na)+]: 417.9803; Found: 417.9801. (2S,3R/2R,3S)-2-(4-methoxybenzoyl)-3-(2-nitrophenyl)cyclopropane -1,1-dicarbonitrile (1f) Bright yellow solid, 761 mg, yield: 73%; m.p. 210.3-211.3 oC (EA/PE); IR (KBr, cm-1): 3387, 2976, 2920, 2720, 2670, 2426, 2220, 1675, 1532, 1450, 1311, 1265, 1090, 898; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.30 (d, J = 7.2 Hz, 2H), 8.28 (t, J = 8.4 Hz, 1H), 7.89 (d, J = 6.6 Hz, 2H), 7.78-7.76 (m, 1H), 7.17 (d, J = 9.0 Hz, 2H), 5.13 (d, J = 8.4 Hz, 1H), 4.27 (d, J = 8.4 Hz, 1H), 3.91 (s, 3H);

13

C{1H} NMR (100

MHz, DMSO-d6) δ (ppm): 187.9, 164.5, 148.9, 134.4, 131.9, 131.8, 130.9, 128.3, 126.3, 125.5, 114.3, 112.9, 112.7, 55.8, 36.6, 35.0, 15.5; HR-MS (ESI) calcd. for C19H13N3NaO4 [(M+Na)+]: 370.0804; Found: 370.0801. General procedure for preparation of 4-nitrophenyl-6,6a-dihydro-5Hcyclopenta[b]furan-6-carboxylate 3a-r 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

To the mixture of nitrophenylcyclopropanes 1a-f (1.0 mmol), and ethyl 2-cyano-3-phenylacrylates 2a-i (1.0 mmol) in dichloromethane (15 mL) was added DBU (152 mg, 1.0 mmol), and the resulting mixture was slowly warmed up to 40 oC and stirred sequentially for ca 12 h until full conversion of the nitrophenylcyclopropanes was achieved (monitored by TLC, Hexanes/EtOAc, 3/1). Upon completion, the reaction mixture was diluted with 10 mL of H2O and extracted with dichloromethane (10 mL X 2). The combined organic layers were washed with water (10 mL) and brine (10 mL), and dried over anhydrous sodium sulphate, and concentrated under reduced pressure to yield a crude product. The crude product was purified by column chromatography (EtOAc/hexanes, 1/5, silica gel) to provide the desired products 3a-r.

Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-6a-(3-methoxyphenyl)-4-(4nitrophenyl)-5-(p-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3a) Bright yellow solid, 501 mg, yield: 89 %; m.p. 202.2-203.2 oC (EA/PE); IR (KBr, cm-1): 3410, 3320, 3170, 2999, 2206, 1554, 1513, 1442, 1337, 1237, 1109, 1023, 896, 786; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.19 (s, 2H), 8.10 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.43 (dd, J = 7.6 Hz, 1H), 7.07 (d, J = 6.1 Hz, 3H), 7.05 – 6.94 (m, 3H), 6.89 (s, 1H), 5.49 (s, 1H), 3.98 (s, 2H), 3.77 (s, 3H), 2.20 (s, 3H), 1.07 (t, J = 6.7 Hz, 3H);

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.3, 163.3,

159.8, 145.5, 142.9, 141.6, 137.8, 135.4, 132.7, 130.6, 129.1, 129.0, 123.6, 118.2, 116.0, 115.8, 115.2, 115.0, 112.3, 99.8, 66.6, 63.7, 59.1, 57.5, 55.6, 21.0, 14.0; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1748. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-6a-(4-methoxyphenyl)-4-(4nitrophenyl)-5-(p-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3b) Bright yellow solid, 501 mg, yield: 89 %; m.p. 197.1-197.6 oC (EA/PE); IR (KBr, cm-1): 3409, 3322, 3221, 3170, 2994, 2929, 2206, 1553, 1513, 1441, 1337, 1236, 1107, 1023, 851, 786; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.19 (s, 2H), 8.10 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 7.0 Hz, 1H), 7.07 (s, 3H), 7.05 – 6.95 (m, 3H), 6.90 (s, 1H), 5.49 (s, 1H), 3.98-3.95 (m, 2H), 3.77 (s, 3H), 2.20 (s, 3H), 1.08 (t, J = 6.6 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.3, 14

ACS Paragon Plus Environment

Page 14 of 28

Page 15 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

159.8, 145.5, 143.0, 141.6, 137.8, 135.4, 132.7, 130.5, 129.1, 128.8, 123.6, 123.5, 116.0, 115.8, 115.1, 112.3, 99.8, 66.6, 63.7, 59.1, 57.5, 55.7, 20.9, 14.1; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1745. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-bromophenyl)-3,6-dicyano-6a-(4methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3c) Bright yellow solid, 546 mg, yield: 87%; m.p. 222.3-223.3 oC (EA/PE); IR (KBr, cm-1): 3403, 3325, 3177, 2998, 2202, 1743, 1634, 1553, 1512, 1429, 1332, 1227, 1107, 1021; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.17 (s, 2H), 8.11 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 5.49 (s, 1H), 4.00 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.2, 160.8, 145.5, 143.6, 141.3, 135.2, 133.1, 132.7, 131.7, 131.2, 129.3, 128.8, 127.8, 127.3, 125.4, 123.7, 123.5, 122.0, 115.8, 115.1, 114.8, 114.6, 100.0, 66.4, 63.8, 58.6, 57.6, 55.6, 14.1; HR-MS (ESI) calcd. for C31H23BrN4NaO6 [(M+Na)+]: 649.0699; Found: 649.0706. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-chlorophenyl)-3,6-dicyano-6a-(3methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3d) Bright yellow solid, 513 mg, yield: 88%; m.p. 191.5-192.2 oC (EA/PE); IR (KBr, cm-1): 3364, 3178, 2930, 2838, 2202, 1742, 1634, 1558, 1502, 1446, 1377, 1249, 1106, 1025; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.22 (s, 2H), 8.11 (s, 2H), 7.60 (s, 2H), 7.44 (s, 1H), 7.31 (s, 2H), 7.22 (s, 2H), 7.11 (s, 1H), 7.02 (s, 1H), 6.91 (s, 1H), 5.60 (s, 1H), 4.01 (s, 2H), 3.78 (s, 3H), 1.09 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.1, 159.9, 145.6, 143.3, 141.2, 135.3, 134.8, 133.3, 132.8, 132.4, 131.0, 129.3, 128.8, 128.3, 123.7, 118.3, 115.7, 115.3, 114.9, 112.3, 99.8, 66.4, 63.8, 58.7, 57.6, 55.7, 14.1; HR-MS (ESI) calcd. for C31H23ClN4NaO6 [(M+Na)+]: 605.1204; Found: 605.1205. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-chlorophenyl)-3,6-dicyano-6a-(4methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox 15

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ylate (3e) Bright yellow solid, 513 mg, yield: 88%; m.p. 204.5-205.7 oC (EA/PE); IR (KBr, cm-1): 3385, 3168, 2933, 2835, 2201, 1742, 1635, 1549, 1443, 1369, 1248, 1106, 1029; 1

H NMR (400 MHz, DMSO-d6) δ (ppm): 9.18 (s, 2H), 8.12 (d, J = 7.8 Hz, 2H), 7.56

(d, J = 7.9 Hz, 2H), 7.33 (s, 4H), 7.20 (d, J = 7.3 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 5.52 (s, 1H), 4.01 (d, J = 6.6 Hz, 2H), 3.79 (s, 3H), 1.11 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.2, 160.8, 145.5, 143.6, 141.3, 134.8, 133.3, 132.6, 129.0, 128.6, 127.6, 125.4, 123.6, 115.9, 115.1, 114.9, 114.7, 100.0, 66.5, 63.8, 58.5, 57.6, 55.7, 14.0; HR-MS (ESI) calcd. for C31H23ClN4NaO6 [(M+Na)+]: 605.1204; Found: 605.1219. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-6a-(4-methoxyphenyl)-4-(4nitrophenyl)-5-(m-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3f) Bright yellow solid, 501 mg, yield: 89%; m.p. 218.4-219.2 oC (EA/PE); IR (KBr, cm-1): 3402, 3328, 3176, 2995, 2212, 1753, 1643, 1508, 1429, 1335, 1234, 1101, 1022; 1

H NMR (400 MHz, DMSO-d6) δ (ppm): 9.12 (s, 2H), 8.09 (d, J = 8.6 Hz, 2H), 7.51

(d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.13-6.96 (m, 5H), 6.92 (d, J = 7.5 Hz, 1H), 5.40 (s, 1H), 4.07 – 3.87 (m, 2H), 3.78 (s, 3H), 2.16 (s, 3H), 1.10 (t, J = 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 180.1, 168.1, 165.5, 150.1, 148.1, 146.4, 142.24, 140.5, 136.2, 133., 133.7, 133.0, 132.6, 132.3, 130.3, 128.2, 120.7, 120.2, 119.9 119.4, 104.8, 71.4, 68.4, 63.9, 62.3, 60.5, 26.1, 18.8; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1761. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-6a-(3-chlorophenyl)-3,6-dicyano-5-(4methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3g) Bright yellow solid, 519 mg, yield: 89%; m.p. 158.6-159.6 oC (EA/PE); IR (KBr, cm-1): 3394, 3179, 2945, 2208, 1548, 1356, 1248, 1108, 1021, 886, 789, 506; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.17 (s, 2H), 8.11 (s, 2H), 7.56 (s, 2H), 7.32 (s, 4H), 7.20 (s, 2H), 7.06 (s, 2H), 5.51 (s, 1H), 4.01 (s, 2H), 3.79 (s, 3H), 1.11 (s, 3H); 13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.2, 160.8, 145.5, 143.6,

141.3, 134.8, 133.3, 132.6, 129.0, 128.6, 127.6, 125.4, 123.6, 115.9, 115.1, 114.9, 16

ACS Paragon Plus Environment

Page 16 of 28

Page 17 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

114.7, 100.0, 66.5, 63.8, 58.5, 57.6, 55.7, 14.0; HR-MS (ESI) calcd. for C31H23ClN4NaO6 [(M+Na)+]: 605.1204; Found: 605.1201. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-5,6a-bis(4-methoxyphenyl)-4(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3h) Bright yellow solid, 503 mg, yield: 87%; m.p. 197.1-197.8 oC (EA/PE); IR (KBr, cm-1): 3426, 3306, 3221, 3170, 2925, 2211, 1744, 1635, 1549, 1432, 1330, 1239, 1106, 1029; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.14 (s, 2H), 8.09 (s, 2H), 7.53 (s, 2H), 7.30 (s, 2H), 7.07 (d, J = 9.0 Hz, 4H), 6.79 (s, 2H), 5.40 (s, 1H), 3.99 (s, 2H), 3.78 (s, 3H), 3.67 (s, 3H), 1.10 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.4, 160.7, 159.2, 145.4, 143.1, 141.7, 131.9, 129.0, 127.5, 125.5, 123.5, 116.0, 115.7, 115.3, 114.7, 113.9, 99.9, 66.8, 63.6, 58.7, 57.5, 55.7, 55.3, 14.0; HR-MS (ESI) calcd. for C32H26N4NaO7 [(M+Na)+]: 601.1699; Found: 601.1701. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-5-(3-methoxyphenyl)-4-(4nitrophenyl)-6a-(m-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3i) Bright yellow solid, 506 mg, yield: 90%; m.p. 183.5-184.3 oC (EA/PE); IR (KBr, cm-1): 3412, 3307, 3217, 3172, 2926, 2201, 1753, 1643, 1558, 1509, 1446, 1334, 1237, 1105, 1032; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.15 (s, 2H), 8.06 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 7.40 (dd, J = 7.9 Hz, 1H), 7.05 (d, J = 6.2 Hz, 2H), 7.03-6.93 (m, 3H), 6.90 (d, J = 7.2 Hz, 1H), 6.85 (s, 1H), 5.45 (s, 1H), 4.08 – 3.84 (m, 2H), 3.73 (s, 3H), 2.13 (s, 3H), 1.04 (t, J = 6.9 Hz, 3H); 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 174.9, 162.8, 159.4, 145.0, 142.6, 141.2, 137.0, 135.2, 135.0, 131.0, 130.2, 128.7, 128.4, 127.8, 127.3, 123.1, 117.8, 115.4, 114.7, 114.5, 111.8, 99.4, 66.1, 63.2, 58.8, 57.1, 26.3, 20.9, 13.5; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1747. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-bromophenyl)-3,6-dicyano-6a-(3methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3j) Bright yellow solid, 565 mg, yield: 90%; m.p. 163.1-164.0 oC (EA/PE); IR (KBr, cm-1): 3398, 3182, 2926, 2207, 1743, 1642, 1588, 1369, 1242, 1107, 1028; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.21 (s, 2H), 8.10 (s, 2H), 7.58 (s, 2H), 7.44 (s, 3H), 17

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 28

7.11 (s, 3H), 6.99 (s, 1H), 6.88 (s, 1H), 5.57 (s, 1H), 3.99 (s, 2H), 3.77 (s, 3H), 1.07 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.1, 159.8, 145.6, 143.3, 141.2, 135.2, 132.9, 131.5, 130.7, 129.0, 123.6, 122.0, 118.2, 115.7, 115.3, 114.9, 112.3, 99.8, 66.3, 63.9, 58.8, 57.5, 55.6, 14.0; HR-MS (ESI) calcd. for C31H23BrN4NaO6 [(M+Na)+]: 649.0699; Found: 649.0693. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-5-(4-methoxyphenyl)-4-(4nitrophenyl)-6a-(m-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3k) Bright yellow solid, 512 mg, yield: 91%; m.p. 197.0-197.8oC(EA/PE); IR (KBr, cm-1): 3410, 3318, 3170, 2996, 2935, 2208, 1554, 1512, 1441, 1336, 1236, 1107, 1023, 971, 893, 749, 462; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.18 (s, 2H), 8.09 (d, J = 7.1 Hz, 2H), 7.54 (d, J = 7.1 Hz, 2H), 7.42 (s, 1H), 7.25-6.89 (m, 6H), 6.88 (s, 1H), 5.48 (s, 1H), 3.97 (s, 2H), 3.76 (s, 3H), 2.18 (s, 3H), 1.06 (s, 3H);

13

C{1H} NMR (100

MHz, DMSO-d6) δ (ppm): 175.3, 163.3, 159.8, 145.5, 142.9, 141.6, 137.8, 135.4, 132.7, 130.7, 130.6, 129.1, 129.0, 123.6, 118.2, 116.0, 115.8, 115.2, 115.0, 112.3, 99.8, 66.6, 63.7, 59.1, 57.4, 55.6, 21.0, 14.0; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1753. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-5-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)-6a-(3-methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta [b]furan-6-carboxylate (3l) Bright yellow solid, 534 mg, yield: 88%; m.p. 159.1-159.8 oC (EA/PE); IR (KBr, cm-1): 3356, 3179, 2934, 2205, 1747, 1647, 1566, 1509, 1444, 1387, 1338, 1290, 1242, 1113, 1057, 1031; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.17 (s, 2H), 8.12 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.42 (dd, J = 8.1 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.85 (s, 1H), 6.68 (d, J = 8.5 Hz, 2H), 6.59 (d, J = 8.6 Hz, 1H), 5.40 (s, 1H), 4.15 (s, 4H), 3.98 (q, J = 5.2 Hz, 2H), 3.76 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.3, 163.3, 159.8, 145.5, 143.5, 143.0, 142.8, 141.6, 135.4, 130.7, 128.9, 128.5, 123.7, 123.6, 119.3, 118.2, 117.0, 115.9, 115.8, 115.2, 115.1, 112.3, 99.7, 66.5, 64.3, 63.7, 58.7, 57.4, 55.6, 55.3, 14.0; HR-MS (ESI) calcd. for C33H26N4NaO8 [(M+Na)+]: 629.1648; Found: 18

ACS Paragon Plus Environment

Page 19 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

629.1645. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-6a-(3-methoxyphenyl)-4-(4nitrophenyl)-5-(thiophen-2-yl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylat e (3m) Bright yellow solid, 494 mg, yield: 89%; m.p. 127.6-128.2 oC (EA/PE); IR (KBr, cm-1): 3451, 3339, 3160, 2942, 2838, 2205, 1731, 1636, 1594, 1560, 1518, 1340, 1254, 1110, 1026; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.21 (s, 2H), 8.13 (s, 2H), 7.60 (s, 2H), 7.41 (s, 2H), 7.09 (s, 1H), 6.97 (s, 1H), 6.87 (s, 2H), 6.79 (s, 1H), 5.80 (s, 1H), 4.00 (s, 2H), 3.76 (s, 3H), 1.08 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.2, 163.1, 159.9, 145.7, 142.7, 141.5, 138.0, 135.0, 130.8, 129.6, 129.0, 127.4, 127.2, 123.5, 118.2, 115.7, 115.6, 115.3, 115.0, 112.2, 99.3, 67.1, 63.9, 57.2, 55.6, 55.0, 14.0; HR-MS (ESI) calcd. for C29H22N4NaO6S [(M+Na)+]: 577.1158; Found: 577.1152. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(3-chlorophenyl)-3,6-dicyano-6a-(4methoxyphenyl)-4-(4-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3n) Bright yellow solid, 490 mg, yield: 84%; m.p. 184.6-185.8 oC (EA/PE); IR (KBr, cm-1): 3429, 3326, 3179, 2985, 2204, 1753, 1634, 1558, 1508, 1323, 1231, 1100, 1019; 1

H NMR (400 MHz, DMSO-d6) δ (ppm): 9.17 (s, 2H), 8.11 (d, J = 7.1 Hz, 2H), 7.56

(d, J = 7.0 Hz, 2H), 7.42-7.15 (m, 5H), 7.10 (s, 1H), 7.05 (s, 2H), 5.52 (s, 1H), 3.99 (s, 2H), 3.78 (s, 3H), 1.10 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.4, 163.2, 160.8, 145.5, 143.8, 141.3, 138.2, 132.9, 130.8, 130.3, 129.5, 129.0, 128.6, 127.5, 125.3, 123.6, 115.8, 115.0, 114.7, 99.9, 66.4, 63.9, 58.6, 57.5, 55.7, 14.0; HR-MS (ESI) calcd. for C31H23ClN4NaO6 [(M+Na)+]: 605.1204; Found: 605.1212. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-6a-(4-bromophenyl)-3,6-dicyano-4-(4nitrophenyl)-5-(p-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3o) Bright yellow solid, 526 mg, yield: 86%; m.p. 195.1-195.9 oC (EA/PE); IR (KBr, cm-1): 3384, 3222, 3153, 2926, 2837, 2200, 1743, 1636, 1526, 1450, 1343, 1287, 1162, 1106; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.20 (s, 2H), 8.10 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.05-7.02 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(m, 4H), 5.44 (s, 1H), 3.99 (q, J= 6.8, 2H), 2.19 (s, 3H), 1.08 (t, J = 7.0 Hz, 3H); 13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.1, 163.2, 145.5, 142.4, 141.4,

137.8, 133.3, 132.5, 130.6, 129.2, 128.3, 123.9, 123.5, 116.3, 115.7, 114.9, 99.5, 66.6, 63.9, 59.0, 57.3, 21.0, 14.0; HR-MS (ESI) calcd. for C31H23BrN4NaO5 [(M+Na)+]: 633.0750; Found: 633.0749. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-3,6-dicyano-6a-(3-methoxyphenyl)-4-(4nitrophenyl)-5-(m-tolyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carboxylate (3p) Bright yellow solid, 501 mg, yield: 89%; m.p. 170.3-171.4 oC (EA/PE); IR (KBr, cm-1): 3408, 3309, 3171, 2995, 2202, 1742, 1633, 1552, 1510, 1444, 1336, 1234, 1107, 1020; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.18 (s, 2H), 8.09 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.43 (dd, J = 8.0 Hz, 1H), 7.09 (dd, J = 8.3, 4.8 Hz, 2H), 7.06 – 7.00 (m, 2H), 6.98 (d, J = 7.8 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 6.88 (s, 1H), 5.47 (s, 1H), 4.05 – 3.90 (m, 2H), 3.77 (s, 3H), 2.16 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); 13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 175.3, 163.3, 159.8, 145.5, 143.0,

141.6, 137.5, 135.7, 135.4, 131.4, 130.7, 129.1, 128.9, 128.3, 127.8, 123.5, 118.2, 115.9, 115.8, 115.2, 115.0, 112.3, 99.9, 66.6, 63.7, 59.3, 57.5, 55.6, 26.7, 14.0; HR-MS (ESI) calcd. for C32H26N4NaO6 [(M+Na)+]: 585.1750; Found: 585.1737. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-bromophenyl)-3,6-dicyano-6a-(4methoxyphenyl)-4-(2-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox ylate (3q) Bright yellow solid, 533 mg, yield: 85%; m.p. 172.6-173.3 oC (EA/PE); IR (KBr, cm-1): 3358, 3230, 3184, 2919, 2846, 2208, 1732, 1652, 1517, 1452, 1346, 1298, 1171, 1102, 1017; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.09 (s, 2H), 7.87 (s, 1H), 7.80 (s, 2H), 7.51 (s, 3H), 7.35 (s, 2H), 7.11 (s, 2H), 6.89 (s, 2H), 5.07 (s, 1H), 3.98 (s, 2H), 3.82 (s, 3H), 1.08 (s, 3H);

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 174.6,

163.1, 160.9, 147.1, 134.1, 132.9, 131.4, 129.4, 129.0, 127.7, 125.5, 124.7, 122.3, 115.3, 114.7, 114.3, 99.7, 67.9, 63.8, 55.7, 55.3, 14.0; HR-MS (ESI) calcd. for C31H23BrN4NaO6 [(M+Na)+]: 649.0699; Found: 649.0697. Ethyl (5R,6R,6aS/5S,6S,6aR)-2-amino-5-(4-chlorophenyl)-3,6-dicyano-6a-(4methoxyphenyl)-4-(2-nitrophenyl)-6,6a-dihydro-5H-cyclopenta[b]furan-6-carbox 20

ACS Paragon Plus Environment

Page 20 of 28

Page 21 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

ylate (3r) Bright yellow solid, 484 mg, yield: 83%; m.p. 187.6-188.2 oC (EA/PE); IR (KBr, cm-1): 3376, 3236, 3165, 2935, 2846, 2203, 1731, 1654, 1528, 1458, 1341, 1286, 1169, 1102; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.09 (s, 2H), 7.81 (s, 3H), 7.52 (s, 3H), 7.23 (s, 2H), 7.12 (s, 2H), 6.97 (s, 2H), 5.10 (s, 1H), 3.99 (s, 2H), 3.83 (s, 3H), 1.09 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 174.6, 163.1, 160.9, 147.1, 143.8, 134.20, 133.6, 132.9, 132.7, 129.4, 129.0, 128.5, 127.7, 125.4, 124.7, 115.3, 114.7, 114.4, 99.7, 67.8, 63.8, 58.4, 55.7, 14.0; HR-MS (ESI) calcd. for C31H23ClN4NaO6 [(M+Na)+]: 605.1204; Found: 605.1206.

Associated Content * Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc. 1

H NMR and 13C NMR Spectra of all the products and X-ray Structure of 3h and 3p.

Acknowledgements Financial support of this research by the National Natural Science Foundation of China (NNSFC 21173181) is gratefully acknowledged by authors. A project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B112).

References 1 For reviews, see: (a) Reissig, H.U.; Zimmer, R. Donor−acceptor-substituted cyclopropane derivatives and their application in organic synthesis, Chem. Rev. 2003, 103, 1151-1196; (b) Yu, M.; Pagenkopf, B. L. Recent advances in donor–acceptor (DA) cyclopropanes. Tetrahedron 2005, 61, 321-347; (c) Carson, C. A.; Kerr, M. A. 21

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Heterocycles from cyclopropanes: applications in natural product synthesis, Chem. Soc. Rev. 2009, 38, 3051-3060; (d) Schneider, T.; Kaschel, J.; Werz, D. A new golden age for donor–acceptor cyclopropanes, Angew. Chem., Int. Ed. 2014, 53, 5504-5523; (e) O’Connor, N. R.; Wood, J. L.; Stoltz, B. M. Synthetic applications and methodological developments of donor−acceptor cyclopropanes and related compounds. Isr. J. Chem. 2016, 56, 431-444; (f) Wang, L.; Tang, Y. Asymmetric ring‐opening reactions of donor‐acceptor cyclopropanes and cyclobutanes. Isr. J. Chem. 2016, 56, 463-475 and references cited therein. 2 For selected examples on cycloadditions of D-A cyclopropane, see: (a) Kaschel, J.; Schneider, T.F.; Kratzert, D.; Stalke, D.; Werz, D.B. Domino reactions of donor–acceptor‐substituted cyclopropanes for the synthesis of 3,3′‐linked oligopyrroles and pyrrolo[3,2‐e]indoles, Angew. Chem. Int. Ed. 2012, 51, 11153-11156; (b) Kaschel, J.; Schmidt, C.D.; Mumby, M.; Kratzert, D.; Werz, D.; Stalke, D.B. Donor–acceptor cyclopropanes with Lawesson's and Woollins' reagents: formation of bisthiophenes and unprecedented cage-like molecules, Chem. Commun. 2013, 49, 4403-4405; (c) Kaschel, J.; Schneider, T.F.; Kratzert, K.; Stalke, D.; Werz, D.B. Symmetric and unsymmetric 3,3′-linked bispyrroles via ring-enlargement reactions of furan-derived donor–acceptor cyclopropanes, Org. Biomol. Chem. 2013, 11, 3494-3509; (d) Grave, L.K.B.; Barkawitz, P.; Jones, P.G.; Werz, D.B. Ring-opening 1,3-dichlorination of donor–acceptor cyclopropanes by iodobenzene dichloride, Org. Lett. 2014, 16, 5804-5807; (e) Racine, S.; Nanteuil, F.D.; Serrano, E.; Waser, L. Synthesis of (carbo)nucleoside analogues by [3+2] annulation of aminocyclopropanes, Angew. Chem. Int. Ed. 2014, 53, 8484-8487; (f) Gupta, A.; Kholiya, R.; Rawat, D. S. BF3⋅OEt2‐mediated highly stereoselective synthesis of trisubstituted‐tetrahydrofuran via [3+2] cycloaddition reaction of 2‐arylcyclopropyl ketones with aldehydes, Asian J. Org. Chem. 2017, 6, 993-997; (g) Sasazawa, K.; Takada, S.; Yubune, T.; Takaki, N.; Ota, R.; Nishii, Y. Stereochemical courses and mechanisms of ring-opening cyclization of donor–acceptor cyclopropylcarbinols and cyclization of 7-benzyloxy dibenzyl lignan lactones, Chem. Lett. 2017, 46, 524-526. 22

ACS Paragon Plus Environment

Page 22 of 28

Page 23 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

3 For reviews, see: (a) Melnikov, M.Y.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V. Recent advances in ring-forming reactions of donor–acceptor cyclopropanes, Mendeleev Commun. 2011, 21, 293-301; (b) Wang, Z.W. Polar intramolecular cross-cycloadditions of cyclopropanes toward natural product synthesis, Synlett 2012, 2311-2327; (c) Tang, P.; Qin, Y. Recent applications of cyclopropane-based strategies to natural product synthesis, Synthesis 2012, 44, 2969-2984; (d) Mack, D.; Njardarson, J. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings, ACS Catal. 2013, 3, 272-286; (e) Cavitt, M.A.; Phun, L.H.; France, S. Intramolecular donor–acceptor cyclopropane ring-opening cyclizations, Chem. Soc. Rev. 2014, 43, 804-818; (f) Grover, H.K.; Emmett, M.R.; Kerr, M.A. Carbocycles from donor–acceptor cyclopropanes, Org. Biomol. Chem. 2015, 13, 655-671; (g) Gharpure, S.J.; Nanda, L.N. Application of oxygen/nitrogen substituted donor-acceptor cyclopropanes in the total synthesis of natural products, Tetrahedron Lett. 2017, 58, 711-720 and references cited therein. 4 Liu, J. M.; Liu, X. Y.; Qing, X. S.; Wang, T.; Wang, C. D. I2/K2CO3-promoted ring-opening/cyclization/rearrangement/ aromatization sequence: A powerful strategy for the synthesis of polysubstituted furans, Chinese Chem. Lett. 2017, 28, 458-462. 5 (a) Liu, J.; Zhou, L.; Ye, W.; Wang, C. Formal [3+2] cycloaddition of 1-cyanocyclopropane 1-ester with pyridine, quinoline or isoquinoline: a general and efficient strategy for construction of cyano -indolizine skeletons, Chem. Commun. 2014, 50, 9068-9071; (b) Tan, C.; Ye, W.; Yao, J.; Wang, C. Efficient strategy for construction of 6-carbamoylfulvene-6-carboxylate skeletons via[3 + 2] cycloaddition of 1-cyanocyclopropane-1-ester with -nitrostyrenes, RSC Adv. 2015, 5, 26491-26495; (c) Ye, W.; Zhou, L.; Xue, S.; Li, Y.; Wang, C. Bimolecular intermolecular-Michael/intramolecular-Michael/aromatization reaction of 1-cyanocyclopropane 1-esters or 1,1-dicyanocyclopropanes: A straightforward approach to fully substituted benzenes, Synlett 2015, 26, 1769-1773; (d) Ye, W.; Tan, C.; Yao, J.; Xue, S.; Li, Y.; Wang, C. Iodine-promoted domino reactions of 1-cyanocyclopropane 1-esters: A straightforward approach to fully substituted 2-aminofurans, Adv. Synth. Catal. 2016, 358, 426-434; (e) Xue, S.; Liu, J.; Wang, C. 23

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

DBU-mediated [3+2] cycloaddition reactions of donor–acceptor cyclopropanes with nitromethane: Efficient strategy for the construction of isoxazole skeletons, Eur. J. Org. Chem. 2016, 2450-2456; (f) Liu, J.; Ye, W.; Qing, X.; Wang, C. Solvent-Free DABCO-mediated [3 + 2] cycloadditions of donor−acceptor cyclopropanes with aldehydes: strategy for synthesis of fully substituted furans, J. Org. Chem. 2016, 81, 7970−7976; (g) Su, Z.; Qian, S.; Xue, S.; Wang, C. DBU-mediated [4 + 1] annulations of donor– acceptor cyclopropanes with carbon disulfide or thiourea for synthesis of 2-aminothiophene3-carboxylates, Org. Biomol. Chem. 2017, 15, 7878-7886. 6 (a) Cao, W.; Zhang, H.; Chen, J.; Deng, H.; Shao, M.; Lei, L.; Qian, J.; Zhu, Y. A facile preparation of trans-1,2-cyclopropanes containing ptrifluoromethylphenylgroup and its application to the construction of pyrazole and cyclopropane ring fused pyridazinone derivatives, Tetrahedron 2008, 64, 6670-6674; (b) Han, Y.; Tang, W.-Q.; Guo, L.-Y.; Yan, C.-G. Convenient synthesis of 1,1,2,5-tetrahydro-1H-5a-aza-cyclopropa[a]indenes by base promoted cyclodimerization of 1,1-dicyano-2-aryl-3-benzoylcyclopropanes,Tetrahedron 2014, 70, 6663-6668; (c) Zhou, D.; Yu, H.; Liu, Y.; Chen, J.; Deng, H.; Shao, M.; Ren, Z.; Cao, W. A new stereoselective approach for the synthesis of substituted 3-cyclopropylmethylene-1,3-dihydro-indol-2-one via the condensation reaction of cis-1-aryl-2-benzoyl-3,3-dicyanocyclopropanes with oxindole in water, Tetrahedron Lett. 2010, 51, 5473-5475 and references cited therein. 7 Liu, J.; Qian, S.; Su, Z.; Wang, C. DBU-mediated [4 + 2] annulations of donor–acceptor cyclopropanes with 3-aryl-2-cyanoacrylates for the synthesis of fully substitutedanilines, RSC Adv. 2017, 7, 38342-38349. 8 (a) King, M. L.; Chiang, C.-C.; Ling, H.-C.; Fujita, E.; Ochiai, M.; McPhail, A. T. X-Ray crystal structure of rocaglamide, a novel antileulemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J. Chem. Soc., Chem. Commun. 1982, 1150-1151; (b) Trost, B.M.; Greenspan, P.D.; Yang, B.V.; Saulnier, M.G. An unusual oxidative cyclization. A synthesis and absolute stereochemical assignment of (-)-rocaglamide. J. Am. Chem. Soc. 1990, 112, 9022-9024; (c) Malona, J. A.; Cariou, 24

ACS Paragon Plus Environment

Page 24 of 28

Page 25 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

K.; Spencer III, W. T.; Frontier, A. J. Total synthesis of (±)-rocaglamide via oxidation-initiated Nazarov cyclization, J. Org. Chem. 2012, 77, 1891-1908. 9 Kobayashi, J. i.; Watanabe, D.; Kawasaki, N.; Tsuda, M. Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon Sponge. J. Org. Chem. 1997, 62, 9236-9239. 10 Takeya, K.; Hitotsuyanagi, Y.; Hikita, M.; Nakada, K.; Fukaya, H. Sessilifoliamide I, a new alkaloid from Stemona sessilifolia. Heterocycles 2007, 71, 2035-2040. 11 Yang, B. O.; Ke, C.-Q.; He, Z.-S.; Yang, Y.-p.; Ye, Y. Brazilide A, a novel lactone with an unprecedented skeleton from Caesalpinia sappan. Tetrahedron Lett. 2002, 43, 1731-1733. 12 (a) Ohno, K.; Nagase, H.; Matsumoto, K.; Nishiyama, H.; Nishio, S. In Advances in Prottaglandin, Thromboxane, and Leukotriene Research; Hayashi, O., Yamamoto, S. Eds.; Ravan Press: New York, 1985; Vol. 15. (b) Jhoti, H.; Cleasby, A.; Reid, S.; Thomas, J. P.; Weir, M.; Wonacott, A. Crystal structures of Thrombin complexed to a novel series of synthetic inhibitors containing a 5,5-trans-lactone template. Biochemistry 1999, 38, 7969-7977. 13 (a) Weir, M. P.; Bethell, S. S.; Cleasby, A.; Campbell, C. J.; Dennis, R. J.; Dix, C. J.; Finch, H.; Jhoti, H.; Mooney, C. J.; Patel, S.; Tang, C-M.; Ward, M.; Wonacott, A. J.; Wharton, C.W. Novel natural product 5,5-trans-lactone inhibitors of human α-Thrombin:  mechanism of action and structural studies. Biochemistry 1998, 37, 6645-6657; (b) Kelly, H. A.; Bolton, R.; Brown, S. A.; Coote, S. J,; Dowle, M.; Dyer, U.; Finch, H.; Golding, D.; Lowdon, A.; McLaren, J.; Montana, J. G.; Owen, M. R.; Pegg, N. A.; Ross, B. C.; Thomas, R.; Walker, D. A. Synthesis of trans-fused [5,5] bicyclic lactones/lactams as templates for serine protease inhibition. Tetrahedron Lett. 1998, 39, 6979-6982; (c) Finch, H.; Pegg, N. A.; McLaren, J; Lowdon, A.; Bolton, R.; Coote, S. J.; Dyer, U.; Montana, J. G.; Owen, M. R.; Dowle, M.; Buckley, D.; Ross, B. C.; Campbell, C.; Dix, C. J.; Mooney, C. J.; Tang, C. M.; Patel, C. 5,5-Trans lactone-containing inhibitors of serine proteases: Identification of a novel, acylating thrombin inhibitor. Bioorg. Med. Chem. Lett. 1998, 8, 2955-2960. (d) Pass, M.; 25

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Bolton, R. E.; Coote, S. J.; Finch, H.; Hindley, S.; Lowdon, A.; McDonald, E.; McLaren, J.; Owen, M.; Pegg, N. A.; Mooney, C. J.; Tang, C.-M.; Parry, S.; Patel, C. Synthetic [5,5] trans-fused indane lactones as inhibitors of thrombin. Bioorg. Med. Chem. Lett. 1999, 9, 431-436. 14 Ghosh, A. K.; Sridhar, P. R.; Leshchenko, S.; Hussain, A. K.; Li, J.; Kovalevsky, A. Y.; Walters, D. E.; Wedekind, J. E.; Grum-Tokars, V.; Das, D.; Koh, Y.; Maeda, K.; Gatanaga, H.; Weber, I. T.; Mitsuya, H. Structure-based design of novel HIV-1 protease inhibitors to combat drug resistance. J. Med. Chem. 2006, 49, 5252-5261. 15 (a) Gomez-Roldan, V.; Fermas, S.; Brewer, P. B.; Puech-Pags, V.; Dun, E. A.; Pillot, J. P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J. C.; Bouwmeester, H.; Bcard, G.; Beveridge, C. A.; Rameau, C.;

Rochange, S. F. Strigolactone inhibition

of shoot branching. Nature 2008, 455, 189-U22; (b) Humphrey, A. J.; Galster, A. M.; Beale, M. H. Nat. Prod. Rep. Strigolactones in chemical ecology: waste products or vital allelochemicals? 2006, 23, 592-614; (c) Dun, E. A.; Brewer, P. B.; Beveridge, C. A. Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci. 2009, 14, 364-372; (d) Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.; Kamiya, Y.; Shirasu, K.; Yoneyama, K.; Kyozuka, J.; Yamaguchi, S. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455, 195-U29. 16 Lachia, M.; Jung, P.M.J.; Mesmaeker, A.D. A novel approach toward the synthesis of strigolactones through intramolecular [2+2] cycloaddition of ketenes and ketene-iminiums to olefins. Application to the asymmetric synthesis of GR-24. Tetrahedron Lett. 2012, 53, 4514-4517. 17 Dutta, L.; Bhuyan, P.J. Synthesis of highly functionalized indeno[1,2-b]furans. Tetrahedron Lett. 2017, 58, 3545-3548. 18 Duan, Y. N.; Cui, L. Q.; Zuo, L. H.; Zhang, C. Recyclable hypervalent-iodine-mediated dehydrogenative alpha,β '-bifunctionalization of β-keto esters under metal-free conditions. Chem. Eur. J. 2015, 21, 13052-13057. 19 Malik, H.; Rutjes, F.P.J.T.; Zwanenburg, B. A new efficient synthesis of GR24 and dimethyl A-ring analogues, germinating agents for seeds of the parasitic weeds Striga 26

ACS Paragon Plus Environment

Page 26 of 28

Page 27 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

and Orobanche spp. Tetrahedron 2010, 66, 7198-7203. 20 (a) Salmanpour1, S.; Ramazani, A.; Ahmadi, Y. Synthesis of stabilized phosphorus ylides from electron-poor alcohols and their applications in the preparation of 2,5-dihydrofuran derivatives, Bull. Chem. Soc. Ethiop. 2012, 26, 153-158; (b) Mourie, C.; Deguin, B.; Koch, M.; Tillequin, F. Stereoselective conversion of aucubin into polyfunctionalized tetrahydro-1H-cyclopenta[c]furan glucosides, Helv. Chim. Acta 2003, 86, 147-156. 21 Ashley, W. L.; Timpy, E. L.; Coombs, T. C. Flow photo-Nazarov reactions of 2-furyl vinyl ketones: cyclizing a class of traditionally unreactive heteroaromatic enones, J. Org. Chem. 2018, 83, 2516-2529. 22 Floch, C. L.; Laymand, K.; Gall, E. L.; Leonel, E.A. Cobalt‐catalyzed domino route to the ABC tricyclic core of strigolactones and analogues, Adv. Synth. Catal. 2012, 354, 823-827. 23 (a) Chen, V.X.; Boyer, F.D.; Rameau, C.; Pillot, J.P.; Vorsand, J.P.; Beau, J.M. New synthesis of A‐ring aromatic strigolactone analogues and their evaluation as plant hormones in Pea (Pisum sativum), Chem. Eur. J. 2013, 19, 4849-4857; (b) Clive, D. L. J.; Cheng, H.Tandem ring-closing metathesis–radicalcyclization based on 4-(phenylseleno)butanal and methyl 3-(phenylseleno)propanoate - a route to bicyclic compounds, Chem. Commun. 2001, 605-606. 24 Chojnacka, K.; Santoro, S.; Awartani, R.; Richards, N.G.J.; Himo, F.; Aponick, A. Synthetic

studies

on

the

solanacol

ABC

ring

system

by cation-initiated

cascade cyclization: implications for strigolactonebiosynthesis, Org. Biomol. Chem. 2011, 9, 5350-5353. 25 Perumal, V.; Thavaraj, V.; Padmakar, A.; Suryavanshi, J.; Carlos, M.; Hiroaki, S.V.S. Palladium(II)-catalyzed intramolecular carboxypalladation–olefin insertion cascade: direct access to indeno[1,2-b]furan-2-ones, Org. Biomol. Chem. 2015, 13, 5175-5181. 26 Ling, J.; Laugeois, M.; Michelet, V.; Ratovelomanana-Vidal, V.; Vitale, M. R. (3+2) Palladium(0)-catalyzed dearomatization of 2-nitrobenzofurans through formal (3+2) cycloadditions with vinylcyclopropanes: A straightforward access to 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

cyclopenta[b]benzofurans, Synlett 2018, 29, 928-932. 27 (a) Wu, J. S.; Zhang, X.; Zhang, Y. L.; Xie, J. W. Synthesis and antifungal activities of novel polyheterocyclic spirooxindole derivatives, Org. Biomol. Chem. 2015, 13, 4967-4975; (b) Gowrisankar, S.; Park, D. Y.; Kim, J. N. Synthesis of 2,3,4-trisubstituted 2,5-dihydrofuran derivatives, Bull. Korean Chem. Soc. 2005, 26, 1826-1828. 28 CCDC 1588435 (for 3h), and 1570783 (for 3p) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. 29 Wang, Q.; Song, X.; Chen, J.; Yan, C. Pyridinium ylide-assisted one-pot two-step tandem synthesis of polysubstituted cyclopropanes, J. Comb. Chem. 2009, 11, 1007–1010.

28

ACS Paragon Plus Environment

Page 28 of 28