Determination of the Activity Coefficients of LiCl in Polyhydric Alcohols

Feb 2, 2015 - Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, X...
1 downloads 7 Views 354KB Size
Article pubs.acs.org/jced

Determination of the Activity Coefficients of LiCl in Polyhydric Alcohols−Water Mixtures at 298.15 K Xuehong Zhao, Shu’ni Li,* Quanguo Zhai, Yucheng Jiang, and Mancheng Hu* Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. China S Supporting Information *

ABSTRACT: Thermodynamic properties of LiCl in mixed solvents composed of polyhydric alcohols and water are measured by using the potentiometric technique at 298.15 K. The polyhydric alcohols are 1,2-propanediol (PG), 1,2ethanediol (EG), and 1,2,3-propanetriol (GL). Pitzer and extended Debye−Hückel equations are applied to correlate the experimental data. The mean activity coefficients, the osmotic coefficients, and the excess Gibbs free energies were calculated. Meanwhile, the standard free energy of transference from water to the mixtures, the standard solubility product, and the primary LiCl hydration number are also obtained.



INTRODUCTION It has been several decades since activity coefficients came into use in the representation of the solute chemical potential in electrolyte solutions, together with the osmotic coefficient for the solvent chemical potential. Aqueous electrolyte and electrolytes in the other polar solvents have been investigated extensively both experimentally and theoretically with respect to their importance in chemical engineering, desalination, and so on.1 Because of being the lightest metal, thermodynamic properties of lithium containing systems are paid close attention to. For example, solubility isotherms of ternary LiCl + LiNO3 + H2O and LiCl + CaCl2 + H2O systems were elaborately determined by Zeng et al.2,3 Thermodynamic properties of systems Li2B4O7 + LiCl/MgCl2 + H2O,4,5 LiCl + KCl + NH4Cl + H2O,6 CsCl + LiCl/NaCl + H2O,7 LiBr + CH3COOK/CH3COONa + H2O,8 and LiBr + LiNO3 + LiI + LiCl + H2O9 were determined by different methods. Moreover, studies on lithium halide in mixed solvents were also reported. For instance, Park et al. determined densities and viscosities of LiBr in ethanolamine/1,3-propanediol + water.10,11 HernándezLuis et al. reported the mean activity coefficients of LiCl in polyethylene glycol 4000/ethanol + H2O.12,13 Vapor pressures and osmotic coefficients of binary systems LiCl/LiBr + N,Ndimethylacetamide under different temperatures were studied by Nasirzadeh et al.14 We have obtained the mean activity coefficients of LiCl/CsCl in methanol/ethanol−water mixtures in previous work.15,16 In this article, the ternary systems LiCl + 1,2-propanediol/1,2ethanediol/1,2,3-propanetriol + water are carried out at 298.15 K by potentiometric measurement. The mean activity coefficients (γ±), the osmotic coefficients (Φ), the excess Gibbs free energies (GE), the standard free energy of transference (ΔGt0), the standard solubility product (K0sp, m), © XXXX American Chemical Society

and the primary hydration number of the electrolyte (nhydr) for LiCl in polyhydric alcohols−water mixtures are presented. The mass fraction of polyhydric alcohol in the solvent mixtures was varied from 0 to 0.4.



EXPERIMENTAL SECTION LiCl·H2O, 1,2-propanediol, 1,2-ethanediol and 1,2,3-propanetriol were purchased from Sinopharm Chemical Reagent Co., Ltd. with mass fractions larger than 99.0 %. The concentration of lithium chloride was analyzed by Mohr method.17 Other reagents were used without further purification. The specific conductance of double distilled−deionized water used in this experiments was approximately (1.0 to 1.2) × 10−4 S·m−1. A chemical sample description is given in Table 1. The relative permittivity and density measurements were carried out by means of BI-870 Dielectric Constant Meter Table 1. Description of Chemical Samples Used in This Study chemical name (the CAS code) LiCl·H2O (16712-20-2) 1,2,3-propanetriol (56-81-5) 1,2-ethanediol (107-21-1) 1,2-propanediol (57-55-6)

source Sinopharm Chemical Reagent Co., Ltd. Sinopharm Chemical Reagent Co., Ltd. Sinopharm Chemical Reagent Co., Ltd. Sinopharm Chemical Reagent Co., Ltd.

mass fraction purity

purification method

≥ 99.0 %

none

≥ 99.0 %

none

≥ 99.0 %

none

≥ 99.0 %

none

Received: September 6, 2014 Accepted: January 21, 2015

A

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Values of Average Molecular Mass M, Dielectric Constant ε, Density ρ, Debye−Hückel Constants A, B, and Pitzer Constants Aφ for Polyhydric Alcohols−Water Mixtures at 298.15 Ka ρ

M −1

w

g·mol

ε

g·cm

A −3

kg

1/2

B −1/2

−1/2

kg ·mol 1/2

mol

Aφ −1

kg ·mol−1/2 1/2

Å

PG + H2O 0.00 0.10 0.20 0.30 0.40

18.02 19.50 21.26 23.36 24.91

78.4 74.2 69.9 65.2 62.2

0.99703 1.00430 1.01271 1.02110 1.02872

0.10 0.20 0.30 0.40

19.40 21.00 22.89 25.16

75.6 72.8 69.8 66.7

1.00965 1.02283 1.03611 1.04941

0.10 0.20 0.30 0.40

19.60 21.47 23.75 26.57

75.5 72.9 70.0 67.1

1.02075 1.04537 1.07068 1.09669

0.5100 0.5557 0.6103 0.6803 0.7328

0.3285 0.3388 0.3505 0.3645 0.3745

0.3915 0.4265 0.4685 0.5222 0.5625

0.5418 0.5771 0.6187 0.6665

0.3366 0.3452 0.3548 0.3653

0.4159 0.4430 0.4749 0.5116

0.5459 0.5822 0.6262 0.6753

0.3387 0.3488 0.3602 0.3723

0.4190 0.4469 0.4807 0.5183

EG + H2O

GL + H2O

a

Expanded uncertainties U(w) = ± 0.0018; U(ρ) = ± (5 × 10−5) g·cm−3; U(ε) = ± 0.02; U(T) = ± 0.02 K; U(P) = ± 3 kPa.

(Brookhaven Instruments Corporation) and Density Meter (Anton Paar DMA 4500). The resolution of relative permittivity and density is ± 0.02 and ± 0.00001 g·cm−3, respectively. The lithium ion-selective electrode and the thermal-electrolytic type Ag-AgCl electrode were prepared in our laboratory, and the preparation technique was described by Wu.18 The Li ion-selective electrode is a PVC membrane type based on valinomycin and was filled with 0.10 mol·L−1 LiCl as the internal liquid. The Ag-AgCl electrode needs to be activated for at least 24 h in a 0.1 mol·L−1 hydrochloric acid solution before use. Both the electrodes need to be calibrated and present a good Nernst response before the experiment. The cell vessel is double-walled glass and its temperature was controlled to 298.15 K (within an uncertainty of ± 0.2 K) with circulating water. The samples were weighed on an analytical balance (Mettler Toledo-AL204, Switzerland) with accuracy ± 0.0001g. All of the potentiometric measurements were achieved using a pH/mV meter (Orion-868, America) with resolution ± 0.1 mV. The whole experiment process was performed within 2 h.

and C γ = 1.5C φ (1)

Φ − 1 = f φ + mBφ + m2C φ

(2)

with f φ = −Aφ(I1/2/(1 + bI1/2))

(2a)

and Bφ = β (0) + β (1) exp( −αI1/2)

CORRELATION OF ACTIVITY COEFFICIENT DATA Pitzer Ion-Interaction Model. According to Pitzer, the mean activity coefficients γ±, the osmotic coefficients Φ, and the excess Gibbs free energies GE for 1−1 type electrolytes can be determined as19,20

(2b) E

The excess Gibbs free energies (G ) can be calculated as follows:21 GE = 2RTI(1 − Φ + ln γ±)

(3) −3

The values of dielectric constant (ε) and density (ρ/g·cm ) for the mixed solvents are measured and presented in Table 2 together with the values for M, A, B, and Aφ. Comparisons of the density and relative dielectric constant of solvent mixtures with the literature 22−27 are given in the Supporting Information, Figures S1 and S2. The mean activity coefficient (γ±), the osmotic coefficient (Φ), and the excess Gibbs free energies (GE) in mixed systems are listed in Table 3. All the symbols have their usual meaning. Extended Debye−Hü ckel equation. Extended Debye− Hückel equation can be considered as an ion-interaction model that involves electrolyte-specific regression parameters. According to the extended Debye−Hückel equation, the mean activity coefficient γ± for LiCl in the mixed solvent can be written as28,29

(1)

where f γ = −Aφ[I1/2/(1 + bI1/2) + (2/b) ln(1 + bI1/2)] (1a)

Aφ = 1.4006 ·106ρ1/2 (εT )3/2 kg1/2·mol−1/2 = 0.7676A (1b)

and Bγ = 2β (0) + 2β (1){[1 − exp(−αI1/2)(1 + αI1/2 − α 2I /2)]/(α 2I )}

φ

In the equations, β , β , and C are Pitzer’s ion-interaction parameters, which depend on temperature and pressure. It is known that the term Cφ makes a considerable contribution only at high concentrations of the electrolyte. Hence, we assumed Cφ = 0. Aφ is the Debye−Hückel constant for the osmotic coefficient on the molal scale. α and b are adjustable parameters and assumed to be constant with values of (2.0 and 1.2) kg1/2· mol−1/2, respectively. I represents the ionic strength. The osmotic coefficient (Φ) is expressed by



ln γ± = f γ + mBγ + m2C γ

(1d) (0)

(1c) B

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Experimental Electromotive Force E, Mean Activity Coefficients γ±, Osmotic Coefficients Φ, and Excess Gibbs Free Energies GE for LiCl in PG/EG/GL + H2O at 298.15 Ka m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

0.0028 0.0075 0.0120 0.0162 0.0258 0.0360 0.0450 0.0587 0.0730 0.0959 0.1181 0.1541 0.1889

−179.0 −131.7 −108.9 −94.1 −72.0 −56.5 −46.1 −33.4 −23.3 −10.3 −1.0 11.7 21.3

0.9443 0.9147 0.8967 0.8839 0.8624 0.8457 0.8340 0.8199 0.8083 0.7939 0.7834 0.7706 0.7618

0.9817 0.9723 0.9668 0.9630 0.9568 0.9524 0.9495 0.9463 0.9440 0.9417 0.9405 0.9401 0.9407

0.0033 0.0065 0.0100 0.0135 0.0204 0.0270 0.0336 0.0442 0.0545 0.0720 0.0892 0.1164 0.1429

−158.6 −125.0 −104.4 −90.0 −70.5 −57.3 −47.0 −34.1 −24.0 −10.8 −0.6 11.6 21.4

0.9363 0.9145 0.8986 0.8862 0.8677 0.8543 0.8434 0.8295 0.8187 0.8044 0.7934 0.7803 0.7705

0.9792 0.9724 0.9676 0.9640 0.9588 0.9553 0.9526 0.9494 0.9471 0.9445 0.9429 0.9415 0.9410

0.0028 0.0055 0.0084 0.0113 0.0175 0.0238 0.0302 0.0399 0.0495 0.0654 0.0812 0.1064 0.1309

−152.4 −119.5 −99.4 −85.0 −64.1 −49.8 −38.6 −25.5 −15.1 −2.0 8.0 20.7 30.3

0.9352 0.9130 0.8969 0.8839 0.8635 0.8482 0.8357 0.8205 0.8088 0.7934 0.7816 0.7671 0.7565

0.9788 0.9717 0.9668 0.9629 0.9570 0.9528 0.9496 0.9459 0.9434 0.9404 0.9385 0.9367 0.9360

0.0025 0.0049 0.0079 0.0104 0.0162 0.0217 0.0273 0.0364 0.0453 0.0598 0.0747 0.0982 0.1216

−141.5 −109.0 −86.5 −73.3 −52.4 −38.7 −27.9 −14.4 −4.2 8.4 18.6 31.3 41.1

0.9306 0.9075 0.8879 0.8749 0.8525 0.8364 0.8231 0.8061 0.7927 0.7757 0.7621 0.7456 0.7332

0.9771 0.9697 0.9635 0.9595 0.9528 0.9482 0.9446 0.9402 0.9369 0.9332 0.9307 0.9282 0.9268

GE/RT

m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

GE/RT

0.2411 0.2915 0.3670 0.4281 0.5577 0.6668 0.7712 0.8995 1.0492 1.1636 1.2854 1.4533 1.6071

32.9 42.0 53.6 61.1 73.9 83.3 91.0 99.3 108.3 114.3 120.2 127.7 134.5

0.7526 0.7469 0.7422 0.7407 0.7422 0.7469 0.7536 0.7641 0.7790 0.7920 0.8073 0.8307 0.8542

0.9428 0.9458 0.9514 0.9565 0.9685 0.9795 0.9906 1.0048 1.0221 1.0357 1.0506 1.0716 1.0914

−0.1094 −0.1385 −0.1831 −0.2197 −0.2974 −0.3618 −0.4218 −0.4927 −0.5704 −0.6257 −0.6802 −0.7474 −0.8002

0.1817 0.2204 0.2776 0.4260 0.5390 0.6418 0.8066 0.9405 1.0787 1.1905 1.4026 1.5854

32.7 41.8 52.7 73.1 84.4 93.0 104.3 112.1 119.1 124.2 132.8 139.5

0.7597 0.7517 0.7429 0.7297 0.7245 0.7218 0.7201 0.7203 0.7217 0.7235 0.7283 0.7337

0.9411 0.9418 0.9434 0.9487 0.9531 0.9572 0.9638 0.9693 0.9750 0.9797 0.9890 0.9973

−0.0784 −0.1002 −0.1335 −0.2247 −0.2968 −0.3635 −0.4714 −0.5593 −0.6498 −0.7225 −0.8584 −0.9731

0.1666 0.2027 0.2565 0.4205 0.5173 0.6376 0.8186 0.9535 1.0994 1.2095 1.4267 1.6088

41.6 50.8 61.9 85.1 95.2 105.4 117.8 125.6 132.8 137.3 146.3 153.0

0.7448 0.7358 0.7260 0.7093 0.7042 0.7003 0.6980 0.6980 0.6992 0.7009 0.7056 0.7108

0.9358 0.9363 0.9377 0.9439 0.9478 0.9528 0.9603 0.9660 0.9722 0.9769 0.9866 0.9951

−0.0768 −0.0985 −0.1323 −0.2416 −0.3089 −0.3940 −0.5237 −0.6208 −0.7254 −0.8040 −0.9570 −1.0827

0.1565 0.1909 0.2403 0.3963 0.4963 0.6195 0.7909 0.9297 1.0761 1.1907 1.3973 1.5842

52.8 62.0 72.7 96.1 106.9 117.7 129.8 137.9 145.4 150.5 159.0 165.9

0.7192 0.7088 0.6977 0.6777 0.6711 0.6663 0.6635 0.6634 0.6649 0.6670 0.6723 0.6786

0.9261 0.9262 0.9273 0.9334 0.9380 0.9440 0.9525 0.9595 0.9671 0.9732 0.9846 0.9953

−0.0800 −0.1033 −0.1381 −0.2555 −0.3344 −0.4337 −0.5738 −0.6877 −0.8075 −0.9008 −1.0666 −1.2133

LiCl + PG + H2O w = 0.00 −0.0002 −0.0009 −0.0018 −0.0028 −0.0054 −0.0086 −0.0118 −0.0170 −0.0229 −0.0331 −0.0436 −0.0618 −0.0804 w = 0.10 −0.0003 −0.0008 −0.0015 −0.0023 −0.0041 −0.0061 −0.0083 −0.0121 −0.0160 −0.0234 −0.0311 −0.0441 −0.0577 w = 0.20 −0.0003 −0.0007 −0.0013 −0.0020 −0.0036 −0.0056 −0.0078 −0.0115 −0.0154 −0.0225 −0.0300 −0.0430 −0.0563 w = 0.30 −0.0002 −0.0007 −0.0013 −0.0019 −0.0036 −0.0055 −0.0076 −0.0113 −0.0153 −0.0224 −0.0302 −0.0435 −0.0577

C

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

0.0022 0.0047 0.0070 0.0096 0.0150 0.0203 0.0255 0.0335 0.0420 0.0556 0.0692 0.0916 0.1127

−131.0 −95.1 −76.1 −61.5 −40.3 −26.2 −15.6 −2.8 7.4 20.4 30.5 43.4 52.9

0.9294 0.9024 0.8853 0.8699 0.8458 0.8282 0.8141 0.7968 0.7822 0.7636 0.7491 0.7308 0.7176

0.9766 0.9678 0.9624 0.9575 0.9501 0.9449 0.9409 0.9362 0.9324 0.9280 0.9250 0.9217 0.9199

0.0048 0.0093 0.0138 0.0184 0.0280 0.0376 0.0516 0.0655 0.0882 0.1106 0.1455 0.1803

−145.4 −113.0 −94.2 −80.4 −60.1 −46.4 −31.4 −20.1 −6.2 4.5 17.4 27.6

0.9295 0.9067 0.8908 0.8782 0.8582 0.8434 0.8268 0.8141 0.7983 0.7867 0.7733 0.7637

0.9769 0.9698 0.9650 0.9613 0.9557 0.9518 0.9478 0.9451 0.9423 0.9408 0.9401 0.9405

0.0033 0.0069 0.0103 0.0141 0.0220 0.0302 0.0424 0.0542 0.0743 0.0941 0.1253 0.1564

−153.2 −117.7 −98.4 −83.4 −62.0 −47.0 −31.0 −19.3 −4.5 6.5 20.1 30.6

0.9369 0.9139 0.8989 0.8859 0.8656 0.8499 0.8325 0.8196 0.8029 0.7905 0.7760 0.7653

0.9794 0.9722 0.9676 0.9637 0.9580 0.9538 0.9495 0.9466 0.9434 0.9415 0.9399 0.9395

0.0031 0.0069 0.0106 0.0142 0.0216 0.0289 0.0395 0.0505 0.0692 0.0870 0.1166 0.1484

−147.9 −109.5 −88.5 −74.8 −54.7 −40.7 −25.9 −14.3 0.4 11.1 25.0 36.3

0.9352 0.9096 0.8926 0.8801 0.8605 0.8460 0.8299 0.8169 0.8004 0.7885 0.7738 0.7623

0.9788 0.9708 0.9657 0.9621 0.9566 0.9528 0.9490 0.9462 0.9431 0.9414 0.9400 0.9396

0.0029 0.0059 0.0096 0.0131

−137.1 −102.0 −79.0 −64.2

0.9331 0.9090 0.8898 0.8759

0.9781 0.9705 0.9646 0.9605

GE/RT

m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

GE/RT

0.1451 0.1768 0.2234 0.3746 0.4792 0.5993 0.7720 0.9076 1.0520 1.1653 1.3843 1.5692

64.5 73.5 84.3 108.1 119.7 130.6 142.8 151.0 158.6 163.8 173.0 179.9

0.7022 0.6907 0.6780 0.6544 0.6459 0.6401 0.6363 0.6358 0.6369 0.6388 0.6445 0.6510

0.9185 0.9182 0.9188 0.9242 0.9292 0.9354 0.9447 0.9522 0.9605 0.9672 0.9805 0.9923

−0.0789 −0.1020 −0.1374 −0.2609 −0.3511 −0.4573 −0.6125 −0.7354 −0.8659 −0.9679 −1.1624 −1.3230

0.2296 0.2846 0.3941 0.5133 0.6229 0.7283 0.8712 1.0052 1.1898 1.3503 1.5091

39.0 49.5 65.3 78.7 88.2 96.4 106.5 114.2 124.0 131.7 138.6

0.7543 0.7476 0.7413 0.7411 0.7447 0.7507 0.7616 0.7744 0.7952 0.8161 0.8390

0.9423 0.9454 0.9536 0.9642 0.9750 0.9860 1.0017 1.0170 1.0389 1.0586 1.0787

−0.1030 −0.1345 −0.1993 −0.2709 −0.3360 −0.3974 −0.4774 −0.5482 −0.6378 −0.7073 −0.7675

0.2007 0.2442 0.3092 0.4128 0.5312 0.6444 0.7502 0.9016 1.0296 1.2481 1.4350 1.5923

42.3 51.8 63.0 76.8 89.0 98.6 106.2 115.6 122.5 133.2 140.8 146.7

0.7541 0.7462 0.7378 0.7297 0.7253 0.7238 0.7242 0.7269 0.7306 0.7394 0.7488 0.7580

0.9398 0.9409 0.9433 0.9481 0.9543 0.9606 0.9667 0.9757 0.9835 0.9973 1.0096 1.0202

−0.0891 −0.1142 −0.1530 −0.2173 −0.2927 −0.3657 −0.4341 −0.5312 −0.6123 −0.7470 −0.8575 −0.9467

0.1874 0.2344 0.3016 0.3912 0.4919 0.5956 0.7297 0.8484 1.0022 1.2034 1.3833 1.5428

47.5 58.1 70.1 82.5 93.5 102.9 113.1 120.7 129.1 138.7 146.5 152.3

0.7520 0.7430 0.7341 0.7265 0.7216 0.7188 0.7175 0.7179 0.7199 0.7246 0.7303 0.7364

0.9400 0.9412 0.9437 0.9476 0.9522 0.9570 0.9633 0.9690 0.9764 0.9863 0.9955 1.0038

−0.0843 −0.1117 −0.1525 −0.2089 −0.2740 −0.3422 −0.4310 −0.5098 −0.6113 −0.7424 −0.8569 −0.9559

0.1831 0.2291 0.3087 0.4088

59.8 70.4 84.7 98.5

0.7386 0.7291 0.7182 0.7101

0.9361 0.9374 0.9405 0.9452

−0.0875 −0.1161 −0.1676 −0.2351

w = 0.40 −0.0002 −0.0007 −0.0012 −0.0019 −0.0035 −0.0054 −0.0075 −0.0109 −0.0149 −0.0220 −0.0296 −0.0431 −0.0568 LiCl + EG + H2O w = 0.00 −0.0005 −0.0013 −0.0022 −0.0034 −0.0061 −0.0092 −0.0142 −0.0197 −0.0296 −0.0400 −0.0574 −0.0757 w = 0.10 −0.0003 −0.0009 −0.0015 −0.0024 −0.0045 −0.0070 −0.0113 −0.0158 −0.0242 −0.0332 −0.0485 −0.0648 w = 0.20 −0.0003 −0.0009 −0.0017 −0.0025 −0.0046 −0.0069 −0.0107 −0.0150 −0.0229 −0.0311 −0.0458 −0.0626 w = 0.30 −0.0003 −0.0008 −0.0016 −0.0024 D

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

0.0200 0.0271 0.0383 0.0494 0.0679 0.0863 0.1148 0.1422

−44.0 −29.5 −13.4 −1.1 13.6 24.9 38.2 48.3

0.8553 0.8394 0.8209 0.8068 0.7892 0.7761 0.7611 0.7504

0.9546 0.9504 0.9459 0.9428 0.9395 0.9375 0.9361 0.9356

0.0037 0.0071 0.0108 0.0144 0.0215 0.0289 0.0395 0.0504 0.0685 0.0858 0.1135 0.1446

−117.0 −85.3 −65.4 −51.5 −32.6 −18.6 −3.8 7.4 21.7 32.2 45.3 56.6

0.9203 0.8952 0.8767 0.8624 0.8415 0.8252 0.8072 0.7931 0.7754 0.7626 0.7473 0.7348

0.9739 0.9660 0.9604 0.9562 0.9503 0.9460 0.9417 0.9386 0.9353 0.9335 0.9320 0.9317

0.0043 0.0085 0.0128 0.0170 0.0256 0.0348 0.0435 0.0569 0.0699 0.0915 0.1139 0.1489 0.1818

−158.8 −125.7 −106.3 −92.8 −72.9 −58.0 −47.5 −34.8 −25.0 −12.5 −1.9 10.7 20.0

0.9326 0.9100 0.8942 0.8820 0.8628 0.8474 0.8357 0.8215 0.8106 0.7964 0.7852 0.7722 0.7634

0.9779 0.9708 0.9660 0.9624 0.9569 0.9528 0.9499 0.9466 0.9444 0.9420 0.9407 0.9401 0.9405

0.0035 0.0067 0.0098 0.0130 0.0205 0.0284 0.0359 0.0478 0.0594 0.0791 0.1001 0.1330 0.1721

−162.6 −131.3 −113.1 −99.9 −77.8 −62.4 −51.1 −37.5 −27.1 −13.6 −2.4 10.7 22.8

0.9344 0.9138 0.8995 0.8879 0.8668 0.8506 0.8384 0.8230 0.8110 0.7952 0.7822 0.7669 0.7537

0.9785 0.9720 0.9676 0.9641 0.9579 0.9535 0.9503 0.9465 0.9438 0.9406 0.9384 0.9365 0.9356

0.0037 0.0068 0.0103 0.0138 0.0220 0.0305 0.0385

−153.7 −125.0 −105.0 −91.0 −69.4 −53.9 −42.8

0.9282 0.9074 0.8901 0.8769 0.8533 0.8355 0.8221

0.9764 0.9697 0.9643 0.9602 0.9532 0.9481 0.9445

GE/RT

m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

GE/RT

0.5062 0.6488 0.7512 0.9004 1.0320 1.2363 1.4166 1.5645

108.8 121.0 128.3 137.3 144.5 154.0 161.3 166.8

0.7056 0.7025 0.7019 0.7029 0.7051 0.7104 0.7166 0.7226

0.9500 0.9572 0.9623 0.9699 0.9767 0.9874 0.9971 1.0054

−0.3025 −0.4027 −0.4751 −0.5806 −0.6730 −0.8143 −0.9361 −1.0335

0.1898 0.2321 0.3275 0.4216 0.5254 0.6418 0.7550 0.8851 1.0386 1.2144 1.3941 1.5704

69.5 79.0 95.2 107.2 118.0 127.9 135.9 144.0 152.2 160.6 168.3 174.7

0.7219 0.7133 0.7008 0.6939 0.6896 0.6873 0.6869 0.6880 0.6908 0.6956 0.7021 0.7097

0.9325 0.9339 0.9384 0.9434 0.9490 0.9553 0.9615 0.9686 0.9770 0.9869 0.9972 1.0077

−0.0981 −0.1262 −0.1925 −0.2604 −0.3370 −0.4239 −0.5089 −0.6065 −0.7208 −0.8496 −0.9785 −1.1014

0.2308 0.2788 0.3577 0.4661 0.5682 0.7014 0.8250 0.9883 1.0334 1.2223 1.3859 1.5528

31.8 40.8 52.8 65.9 75.9 87.5 96.3 106.3 108.8 118.7 126.2 133.6

0.7541 0.7482 0.7426 0.7406 0.7426 0.7490 0.7577 0.7726 0.7773 0.7992 0.8210 0.8457

0.9423 0.9450 0.9506 0.9598 0.9695 0.9832 0.9965 1.0150 1.0203 1.0428 1.0631 1.0843

−0.1036 −0.1311 −0.1776 −0.2425 −0.3036 −0.3819 −0.4520 −0.5395 −0.5625 −0.6526 −0.7215 −0.7825

0.2118 0.3083 0.4137 0.5208 0.6209 0.7489 0.8716 1.0135 1.1252 1.2507 1.4440 1.6013

32.6 50.4 64.4 75.5 84.2 93.6 101.4 109.1 114.5 120.2 127.9 133.5

0.7436 0.7274 0.7170 0.7108 0.7074 0.7054 0.7053 0.7068 0.7090 0.7123 0.7188 0.7253

0.9355 0.9374 0.9410 0.9454 0.9498 0.9559 0.9620 0.9693 0.9753 0.9821 0.9931 1.0024

−0.0982 −0.1577 −0.2264 −0.2987 −0.3675 −0.4565 −0.5423 −0.6411 −0.7183 −0.8041 −0.9335 −1.0360

0.2116 0.2564 0.3230 0.4692 0.5758 0.6856 0.8473

36.8 45.9 56.9 74.8 84.9 93.5 104.2

0.7223 0.7127 0.7025 0.6895 0.6849 0.6828 0.6830

0.9277 0.9283 0.9302 0.9365 0.9423 0.9487 0.9589

−0.1071 −0.1369 −0.1830 −0.2893 −0.3694 −0.4529 −0.5764

w = 0.30 −0.0044 −0.0068 −0.0110 −0.0156 −0.0239 −0.0330 −0.0480 −0.0634 w = 0.40 −0.0004 −0.0011 −0.0020 −0.0030 −0.0053 −0.0080 −0.0123 −0.0172 −0.0260 −0.0351 −0.0507 −0.0694 LiCl + GL + H2O w = 0.00 −0.0004 −0.0011 −0.0020 −0.0030 −0.0053 −0.0082 −0.0113 −0.0163 −0.0216 −0.0311 −0.0416 −0.0591 −0.0765 w = 0.10 −0.0003 −0.0008 −0.0014 −0.0022 −0.0041 −0.0066 −0.0091 −0.0135 −0.0182 −0.0268 −0.0368 −0.0537 −0.0751 w = 0.20 −0.0004 −0.0009 −0.0017 −0.0025 −0.0049 −0.0078 −0.0108 E

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

0.0506 0.0630 0.0836 0.1034 0.1350 0.1666

−30.0 −19.8 −6.5 3.3 15.7 25.7

0.8059 0.7927 0.7755 0.7627 0.7470 0.7351

0.9404 0.9373 0.9336 0.9313 0.9291 0.9280

0.0031 0.0065 0.0092 0.0123 0.0196 0.0266 0.0334 0.0450 0.0561 0.0755 0.0942 0.1260 0.1599

−149.5 −114.0 −96.8 −83.4 −61.6 −47.2 −36.5 −22.7 −12.4 1.2 11.5 25.0 36.0

0.9289 0.9025 0.8872 0.8732 0.8488 0.8311 0.8172 0.7985 0.7843 0.7648 0.7503 0.7316 0.7168

0.9765 0.9679 0.9630 0.9586 0.9511 0.9459 0.9419 0.9368 0.9331 0.9285 0.9255 0.9224 0.9206

0.0038 0.0074 0.0112 0.0149 0.0224 0.0305 0.0372 0.0484 0.0601 0.0789 0.0970 0.1276 0.1558

−132.5 −99.7 −80.4 −67.0 −47.5 −33.7 −24.5 −12.6 −2.6 9.6 19.1 31.6 40.8

0.9162 0.8881 0.8679 0.8520 0.8275 0.8077 0.7942 0.7757 0.7603 0.7405 0.7255 0.7059 0.6919

0.9721 0.9629 0.9563 0.9512 0.9435 0.9375 0.9335 0.9282 0.924 0.9191 0.9156 0.9118 0.9097

GE/RT

m

E

mol·kg−1 of mixed solvent

mV

γ±

Φ

GE/RT

0.9808 1.1187 1.2294 1.4401 1.6210

111.8 119.0 124.3 132.2 138.9

0.6854 0.6895 0.6937 0.7038 0.7143

0.9678 0.9773 0.9852 1.0008 1.0147

−0.6778 −0.7812 −0.8629 −1.014 −1.1386

0.2086 0.2610 0.3333 0.4232 0.5270 0.6515 0.7690 0.8866 1.0531 1.1613 1.2862 1.4659 1.6363

48.4 59.0 70.4 81.9 92.7 103.1 111.5 118.4 127.6 132.8 138.6 146.0 152.0

0.7012 0.6892 0.6777 0.6684 0.6621 0.6587 0.6582 0.6597 0.6644 0.6688 0.6749 0.6854 0.6972

0.9199 0.9206 0.9228 0.9270 0.9330 0.9411 0.9495 0.9584 0.9716 0.9805 0.9910 1.0068 1.0221

−0.1147 −0.1528 −0.2080 −0.2792 −0.3640 −0.4674 −0.5656 −0.6639 −0.8013 −0.8891 −0.9885 −1.1271 −1.2530

0.2007 0.2437 0.3046 0.4565 0.5592 0.6738 0.8365 0.9730 1.1125 1.2241 1.4354 1.6182

52.3 61.2 71.5 90.8 100.8 110.0 120.8 129.0 136.1 141.0 149.7 156.8

0.6751 0.6631 0.6505 0.6323 0.6263 0.6233 0.6234 0.6265 0.6317 0.6372 0.6502 0.6638

0.9082 0.9081 0.9093 0.9165 0.9233 0.9319 0.9455 0.9577 0.9709 0.9818 1.0032 1.0224

−0.1209 −0.1555 −0.2068 −0.3422 −0.4375 −0.5454 −0.6993 −0.8278 −0.9572 −1.0587 −1.2451 −1.3988

w = 0.20 −0.0158 −0.0214 −0.0314 −0.0418 −0.0596 −0.0786 w = 0.30 −0.0003 −0.0009 −0.0015 −0.0023 −0.0045 −0.0070 −0.0096 −0.0146 −0.0198 −0.0297 −0.0401 −0.0592 −0.0811 w = 0.40 −0.0005 −0.0012 −0.0022 −0.0033 −0.0060 −0.0092 −0.0122 −0.0176 −0.0238 −0.0346 −0.0459 −0.0664 −0.0867

w is the weight fraction of polyhydric alcohols in mixed solvent. m is the molality of LiCl in pure water or mixtures. U(m) = ± 0.0001 mol·kg−1; U(E) = ± 0.1 mV; U(γ) = ± 0.0002; U(T) = ± 0.2 K; U(P) = ± 3 kPa.

a



RESULTS AND DISCUSSION Calibration of the Electrode Pair. Mean activity coefficients of LiCl in polyhydric alcohols−water mixtures were investigated based on the following galvanic cells without liquid junction:

log γ± = −Am1/2 /(1 + Bam1/2) + cm + dm2 − log(1 + 0.002mM )

(4)

Here a is the ion size parameter, c and d represent the ioninteraction parameters, and M is the average molecular mass of mixed solvent systems. It was not necessary to consider the term d in extended Debye−Hü c kel equation at low concentration. A and B are the Debye−Hückel constants given by A = 1.8247·106ρ1/2 /(εT )3/2 kg1/2·mol−1/2

(4a)

B = 50.2901ρ1/2 /(εT )1/2 kg1/2·mol−1/2·Å−1

(4b)

Li − ISE|LiCl(m), H 2O|Ag − AgCl

(I)

Li − ISE|LiCl(m), PG/EG/GL(w), H 2O(1 − w)|Ag − AgCl

(II)

where m is the molality of LiCl in mixtures and w (w = 0.00, 0.10, 0.20, 0.30, and 0.40) is the mass fraction of polyhydric alcohol in mixed solvent. The calibration of the cells is based on the following Nernstian equation:

By an iteration minimization procedure, the adjustable parameters of Pitzer or extended Debye−Hückel equation as well as the corresponding standard deviation are obtained and shown in Tables 4 and 5. All the symbols have their usual meaning.

E = E 0 + 2k ln(mγ±)

(5)

Here E is the cell potential difference of the cell (I) or cell (II). k = RT/ F, which represents the Nernst theoretical slope, and R, F, and T are the universal gas constant, Faraday constant, F

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Summary of Both Standard Potential E0 and the Parameter Value Obtained from the Pitzer Equation for Polyhydric Alcohols−Water Mixtures at 298.15 K

(LiCl + EG + H2O), and 0.17 (LiCl + GL + H2O), respectively. The comparison of the activity coefficient of LiCl in water in this work and ref 30 was depicted in Figure S4 in the Supporting Information. Then, it can be concluded that the electrode pairs have a good Nernstian response in our experiment. Activity Coefficients. Figure S5 in the Supporting Information presents the variation of the LiCl mean activity coefficients γ± against the molality m in PG/GL + H2O systems at 298.15 K. It can be observed that the mean activity coefficient γ± decreases first and then gradually increases with the increasing of m of LiCl at a given w of cosolvent. The corresponding explanation is that the ion−ion interactions (association) may be dominant for ε-decreasing cosolvent.31,32 In addition, the relative permittivity of mixed solvent exerts certain influence on the mean activity coefficients. Figure 1

Pitzer β w

β

(0)

kg·mol

(1)

−1

0.10 0.20 0.30 0.40

0.0854 0.0907 0.1059 0.1156

0.10 0.20 0.30 0.40

0.1046 0.0943 0.1006 0.1080

0.10 0.20 0.30 0.40

0.0957 0.1145 0.1296 0.1465

E0 −1

kg·mol

mV

LiCl + PG + H2O 0.5924 131.7 0.6660 145.9 0.6993 162.1 0.7207 178.7 LiCl + EG + H2O 0.4884 137.1 0.6155 145.7 0.6672 160.5 0.7347 169.1 LiCl + GL + H2O 0.4683 125.9 0.4264 131.8 0.4146 145.6 0.3640 153.5

SD 0.17 0.22 0.15 0.16 0.16 0.16 0.14 0.16 0.16 0.26 0.24 0.29

Table 5. Standard Potential E0 and the Debye−Hückel Parameters of LiCl in Polyhydric Alcohols−Water Mixtures at 298.15 K a

c

E0

w

Å

kg· mol−1

mV

0.00 0.10 0.20 0.30 0.40

4.3905 6.4134 6.3187 5.7254 5.3861

0.00 0.10 0.20 0.30 0.40

4.5962 5.6270 6.3136 6.1769 6.1569

0.00 0.10 0.20 0.30 0.40

4.3563 5.3791 4.6261 4.2190 3.6607

LiCl + PG + H2O 0.1128 118.4 0.0513 131.5 0.0537 145.7 0.0638 161.9 0.0701 178.4 LiCl + EG + H2O 0.1080 126.9 0.0681 136.9 0.0585 145.5 0.0629 160.3 0.0676 168.8 LiCl + GL + H2O 0.1143 119.9 0.0604 125.8 0.0777 131.8 0.0903 145.6 0.1060 153.6

SD 0.09 0.13 0.19 0.10 0.13 0.17 0.14 0.11 0.12 0.10 0.17 0.14 0.26 0.25 0.27

and absolute temperature, respectively. γ± and m are the mean ionic activity coefficient and the molality of LiCl in pure water or mixtures. E0 is the standard potential difference of the cell (I) or cell (II). E was plotted against ln a so as to check the Nernst response of the electrodes and the linear correlation coefficient (R2). Figure S3 in the Supporting Information shows the Nernst response results of Li-ISE and Ag-AgCl electrode pair for LiCl in water at 298.15 K. E0 and k can be evaluated by a linear regression method, and the values are obtained as 118.4 ± 0.1 mV and 25.05 ± 0.04 for LiCl + PG + H2O, 127.0 ± 0.1 mV and 25.13 ± 0.04 for LiCl + EG + H2O, and 119.9 ± 0.1 mV and 25.27 ± 0.04 for LiCl + GL + H2O. The linear correlation coefficients (R2) of polyhydric alcohols−water systems are all 0.9999, and the standard deviations (SD) of the corresponding systems are 0.22 (LiCl + PG + H2O), 0.19

Figure 1. Mean activity coefficients γ± versus the molality m of LiCl in 1,2-ethanediol + H2O system and comparison of the mean activity coefficients of LiCl in polyhydric alcohols−water systems at 298.15 K.

compares the activity coefficients of LiCl in different polyhydric alcohols−water systems, and γ± vs m of LiCl in the 1,2ethanediol−water mixture is also depicted. For a given 10 % of cosolvent, the order of the mean activity coefficients γ± is 1,2ethanediol−water >1,2-propanediol−water > 1,2,3-propanetriol−water. This may be related to the length of the carbon chain and the number of alcohol hydroxyl. The excess Gibbs free energies GE has a similar tendency as depicted in Figure 2 and Figure S6 of the Supporting Information. G

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

ln K sp0 ,m = ln K sp0 ,m − ΔGt0 /RT

(8)

where, the subscript “m” refers to mixed solvent and “w” to water. K0sp, w and K0sp, m are the standard solubility product for water and polyhydric alcohol - water mixed solvent, respectively. All the other symbols have their usual meaning. The corresponding ΔG0t and ln K0sp, m for different polyhydric alcohols−water mixtures are presented in Table 6. As shown in Figure 3, it can be found that the values of ΔG0t for polyhydric

Figure 2. Excess Gibbs free energies GE versus the molality m of LiCl in 1,2,3-propanetriol + water system and comparison of GE of LiCl in polyhydric alcohols−water mixtures at 298.15 K.

Standard Free Energy of Transference and the Standard Solubility Product. The standard free energy of transference ΔGt0 is used to measure the difference between the standard Gibbs energy per mol of electrolyte in water and another pure or mixed solvent and can be easily calculated as follows:33,34 ΔGt0 = F(Em0 − Ew0 ) + 2RT ln(ρw /ρm )

Figure 3. Relationship of the standard free energy of transference ΔG0t or the standard solubility product ln K0sp, m for LiCl vs the dielectric constant ε of polyhydric alcohols−water mixtures at 298.15 K.

(6)

0 sp,

The standard solubility product, K is related to the standard free energy of transference ΔG0t suggested by Kalidas et al. and can be calculated according to the expression:35 ΔGt0 = RT ln(K sp0 ,w /K sp0 ,m)

alcohols−water systems have the following tendency: ΔG0t (1,2propanediol−water) > ΔG0t (1,2-ethanediol−water) > ΔG0t (1,2,3-propanetriol−water). And the positive value of ΔG0t indicates that the process of ion transfer is nonspontaneous in this condition. The standard solubility product ln K0sp, m presents an opposite tendency. Also, the results illustrate that it

(7)

and

Table 6. Average Values of Standard Potential E0*, the Standard Solubility Product ln K0sp,m, the Standard Free Energy of Transference ΔG0t of LiCl from Water to the Mixtures at 298.15 K E0* w

mV

0.00 0.10 0.20 0.30 0.40

118.4 131.6 145.8 162.0 178.6

ΔG0t

ΔG0t

E0* −1

kJ·mol

LiCl + PG + H2O 0.0000 1.2376 2.5666 4.0890 5.6493

ln

K0sp,m

14.046 13.547 13.011 12.396 11.767

−1

mV 127.0 137.0 145.6 160.4 169.0

kJ·mol

LiCl + EG + H2O 0.0000 0.9075 1.6731 3.0373 3.7992 H

E0*

ΔG0t

lnK0sp,m

mV

kJ·mol−1

lnK0sp,m

14.046 13.680 13.371 12.821 12.513

119.9 125.8 131.8 145.6 153.5

LiCl + GL + H2O 0.0000 0.4576 0.9136 2.1267 2.7749

14.046 13.861 13.677 13.188 12.927

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

volume fraction (RT/F) ln φw in polyhydric alcohols−water systems at 298.15 K. This material is available free of charge via the Internet at http://pubs.acs.org.

may be due to the difference of the dielectric constant of nonaqueous solvents. Primary Hydration Number. Feakins and French36,37 deduced an equation for evaluation of the primary hydration numbers of electrolyte in water-rich solvent mixtures. Later, Mussini et al.38−40 discussed in detail the results calculated in terms of Feakins−French. However, it is worth stating that Hernandez−Luis et al.12,13,31,34,41,42 applied the equation to systems of alkali halide in different aqueous−organic solvent mixture. Good results were obtained up to 50 wt % of organic solvents in the mixture. Thus, for 1:1 electrolyte, the primary hydration number, nhydr (moles of water firmly bound to one mole of electrolyte) can be calculated according to 0 (ΔGt0)c /F = ΔEc0 = Ecs0 − Ecw = nhydr(RT /F ) ln φw



Corresponding Authors

*Tel: +86-29-81530767. Fax: +86-29-81530727. E-mail: [email protected]. *E-mail: [email protected]. Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21171111 and 21301114) and Natural Science Foundation of Shaanxi Province (No. 2013JQ2009).

(9)

Notes

φw = (ww /d w )/(ww /d w + wPA /dPA )

(10)

Ec0 = Em0 + 2k log ds

(11)

The authors declare no competing financial interest.



In these equations, the subscripts “s”, “w”, and “PA” refer to mixed solvent, water, and polyhydric alcohols, respectively. φw represents the volume fraction of water in mixed solvent. w and d are the mass fraction and density of water or polyhydric alcohols. E0c is the standard electromotive force in molal concentration scale and E0m is the standard electromotive force in molal scale (usually denoted as E0 for simplicity). All the other symbols have their usual meaning. Figure S7 in the Supporting Information shows the relationships ΔE0c vs (RT/F) ln φw, where linear correlations are observed for LiCl in cosolvent polyhydric alcohols−water systems. The values of the LiCl ion hydration number nhydr in the PG/EG/GL + H2O mixtures were 5.7 (r = 0.9975), 3.5 (r = 0.9869), and 3.7 (r = 0.9860), respectively. Many factors including polarization, dipole distance, structure, and dielectric constant of solvent may affect the primary hydration number.

REFERENCES

(1) Pitzer, K. S., Ed.; Activity Coefficients in Electrolyte Solutions, 2nd ed.; CRC Press: Boca Raton, FL, 1991. (2) Zeng, D. W.; Ming, J. W.; Voigt, W. Thermodynamic Study of the System (LiCl + LiNO3 + H2O). J. Chem. Thermodyn. 2008, 40, 232−239. (3) Zeng, D. W.; Xu, W. F.; Voigt, W.; Yin, X. Thermodynamic Study of the System (LiCl + CaCl2 + H2O). J. Chem. Thermodyn. 2008, 40, 1157−1165. (4) Tian, H. B.; Yao, Y.; Song, P. S. Studies of Activity Coefficients of LiCl and Association Equilibrium in LiCl + Li2B4O7 + H2O System at 298.15 K. Chem. Res. Appl. 2000, 12, 403−408. (5) Yang, J. Z.; Song, P. S.; Wang, D. B. Thermodynamic Study of Aqueous Borates III. The Standard Association Constant of the Ion Pair Li+B(OH)4−. J. Chem. Thermodyn. 1997, 29, 1343−1351. (6) Dinane, A. Thermodynamic Properties of Aqueous Mixtures LiCl + KCl + NH4Cl + H2O. Water Activity and Osmotic and Activity Coefficients at 298.15 K. J. Chem. Eng. Data 2009, 54, 574−580. (7) El Guendouzi, M.; Benbiyi, A.; Azougen, R.; Dinane, A. Thermodynamic Properties of Two Ternary Systems {yCsCl + (1 − y)LiCl}(aq) and {yCsCl + (1 − y)NaCl}(aq) at Temperature 298.15 K. Calphad 2004, 28, 435−444. (8) De Lucas, A.; Donate, M.; Rodriguez, J. F. Vapour Pressures, Densities, and Viscosities of the (Water + Lithium Bromide + Potassium Acetate) System and (Water + Lithium Bromide + Sodium Lactate) System. J. Chem. Thermodyn. 2006, 38, 123−129. (9) Koo, K. K.; Lee, H. R.; Jeong, S.; Oh, Y. S.; Park, D. R.; Baek, Y. S. Solubilities, Vapor Pressures, and Heat Capacities of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride System. Int. J. Thermophys. 1999, 20, 589−600. (10) Park, Y.; Kim, J. S.; Lee, H. Physical Properties of the Lithium Bromide + 1,3-propanediol + Water System. Int. J. Refrig. 1997, 20, 319−325. (11) Kim, J. S.; Park, Y.; Lee, H. Densities and Viscosities of the Water + Lithium Bromide + Ethanolamine System. J. Chem. Eng. Data 1996, 41, 678−680. (12) Morales, J. W.; Galleguillos, H. R.; Graber, T. A.; Hernández Luis, F. Activity coefficients of LiCl in (PEG 4000 + water) at T = (288.15, 298.15, and 308.15) K. J. Chem. Thermodyn. 2010, 42, 1255− 1260. (13) Hernández - Luis, F.; Galleguillos, H. R.; Graber, T. A.; Taboada, M. E. Activity Coefficients of LiCl in Ethanol - Water Mixtures at 298.15 K. Ind. Eng. Chem. Res. 2008, 47, 2056−2062. (14) Nasirzadeh, K.; Neueder, R.; Kunz, W. Thermodynamic Properties of (LiCl + N,N-dimethylacetamide) and (LiBr + N,Ndimethylacetamide) at Temperatures from (323.15 to 423.15) K. J. Chem. Thermodyn. 2005, 37, 331−341. (15) Hu, M. C.; Tang, J.; Li, S. N.; Xia, S. P.; Jiang, Y. C. Activity Coefficients of Lithium Chloride in ROH/Water Mixed Solvent (R =



CONCLUSION In this article, a study of thermodynamic properties of the ternary LiCl in kinds of polyhydric alcohols−water systems is reported by electromotive force method at T = 298.15 K. The modeling of this system was made based on the Pitzer model and the extended Debye−Hückel equation. The mean activity coefficient γ±, the osmotic coefficient Φ, the standard thermodynamic functions of transfer ΔG0t and the standard solubility product K0sp,m for LiCl in mixtures are calculated and discussed for the whole studied systems. In addition, the primary LiCl hydration number is also predicted. The properties obtained have been analyzed considering the structure and composition in the mixture.



AUTHOR INFORMATION

ASSOCIATED CONTENT

S Supporting Information *

Figures for the density ρ vs the weight percentage w of the three binary systems PG/EG/GL + H2O and the relative dielectric constant ε vs the weight percentage w for EG/GL− water mixtures at 298.15 K; the Nernst response of Li-ISE and Ag-AgCl electrode pair in the water and comparison of both this work and the reference data for mean activity coefficients of LiCl in water at 298.15 K; the mean activity coefficients γ± versus the molality m of LiCl in PG/GL + H2O systems and excess Gibbs free energies GE for LiCl in PG/EG + H2O systems at 298.15 K; variation of ΔE0c vs a function of water I

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Me, Et) Using the Electromotive Force Method at 298.15 K. J. Chem. Eng. Data 2008, 53, 508−512. (16) Hu, M. C.; Cui, R. F.; Li, S. N.; Jiang, Y. C.; Xia, S. P. Determination of Activity Coefficients for Cesium Chloride in Methanol-Water and Ethanol-Water Mixed Solvents by Electromotive Force Measurements at 298.15 K. J. Chem. Eng. Data 2007, 52, 357− 362. (17) Yoder, L. Adaptation of the Mohr Volumetric Method to General Determinations of Chlorine. Ind. Eng. Chem. 1919, 11, 755. (18) Wu, G.; Gao, S.; Lu, C.; Wang, F. Construction and Application of Valinomycin Potassium Electrodes. Chem. World (Chin.) 1981, 10, 291−295. (19) Pitzer, K. S. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equation. J. Phys. Chem. 1973, 77, 268−277. (20) Pitzer, K. S.; Simonson, J. M. Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations. J. Phys. Chem. 1986, 90, 3005−3009. (21) Domańska, U.; Królikowski, M.; Acree, W. E., Jr Thermodynamics and Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-butyl-1methylpyrrolidinium Tetracyanoborate. J. Chem. Thermodyn. 2011, 43, 1810−1817. (22) Geyer, H.; Ulbig, P.; Görnert, M. Measurement of Densities and Excess Molar Volumes for (1, 2-ethanediol, or 1, 2-propanediol, or 1, 2-butanediol + water) at the Temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2,3-butanediol + Water) at the Temperatures (308.15, 313.15, and 318.15) K. J. Chem. Thermodyn. 2000, 32, 1585−1596. (23) Romero, C. M.; Páez, M. S.; Pérez, D. A Comparative Study of the Volumetric Properties of Dilute Aqueous Solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, And 1,2,3-propanetriol at Various Temperatures. J. Chem. Thermodyn. 2008, 40, 1645−1653. (24) Kuila, D. K.; Lahiri, S. C. Comparison of Macroscopic Molecular Properties in Understanding the Structural Aspects of Mixed AquoOrganic Binary Mixtures. Z. Phys. Chem. 2004, 218, 803−828. (25) Sengwa, R. J.; Madhvi; Sankhla, S.; Sharma, S. Characterization of Heterogeneous Interaction Behavior in Ternary Mixtures by a Dielectric Analysis: Equi-Molar H-bonded Binary Polar Mixtures in Aqueous Solutions. J. Solution Chem. 2006, 35, 1037−1055. (26) George, J.; Sastry, N. V. Partial Excess Molar Volumes, Partial Excess Isentropic Compressibilities and Relative Permittivities of Water + Ethane - 1,2-diol Derivative and Water + 1,2 - Dimethoxyethane at Different Temperatures. Fluid Phase Equilib. 2004, 216, 307−321. (27) Corradini, F.; Marcheselli, L.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. A Non-Linear Correlation Model for the Relative Permittivity of Ternary Amphiprotic (Solvent) Mixtures. Aust. J. Chem. 1993, 46, 1545−1555. (28) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworth: London, 1959. (29) Harned, H. S.; Owen, B. B. The Physical Chemistry of Electrolytic Solutions, 3rd ed.; Reinhold Publishing Corporation: New York, 1958. (30) Pitzer, K. S.; Mayorga, G. Thermodynamics of Electrolytes. II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent. J. Phys. Chem. 1973, 77, 2300−2308. (31) Hernández-Luis, F.; Galleguillos, H. R.; Fernández-Mérida, L.; González-Díaz, O. Activity coefficients of NaCl in Aqueous Mixtures with ε-increasing Co-Solvent: Formamide - Water Mixtures at 298.15 K. Fluid Phase Equilib. 2009, 275, 116−126. (32) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751−767. (33) Feakins, D.; Voice, P. J. Studies in Ion Solvation in Nonaqueous Solvents and Their Aqueous Mixtures: Part 14. Free Energies of Transfer of the Alkali-metal Chlorides from Water to 10 - 99% (w/ w) Methanol - Water Mixtures at 25 °C. J. Chem. Soc., Faraday Trans. 1 1972, 68, 1390−1405. (34) Hernández-Luis, F.; Rodríguez-Raposo, R.; Ruiz-Cabrera, G. Activity Coefficients of NaCl in Aqueous Mixtures with ε-increasing

Co-Solvent: N - methylformamide - Water Mixtures at 298.15 K. Fluid Phase Equilib. 2011, 310, 182−191. (35) Kalidas, C.; Hefter, G.; Marcus, Y. Gibbs Energies of Transfer of Cations from Water to Mixed Aqueous Organic Solvents. Chem. Rev. 2000, 100, 819−852. (36) Feakins, D.; French, C. M. Standard Potentials in Aqueous Organic Media: a General Discussion of the Cell H2 (Pt) |HCl|AgClAg. J. Chem. Soc. 1957, 2581−2589. (37) Feakins, D.; French, C. M. EMF Measurements in Ethyl Methyl Ketone-Water Mixtures with the Cell H2 (Pt) |HCl| AgCl-Ag with an Appendix on Triethylene Glycol-Water Systems. J. Chem. Soc. 1957, 2284−2287. (38) Mussini, P. R.; Mussini, T.; Sala, B. Thermodynamics of the Cell {Li-Amalgam |LiX (m)| AgX|Ag} (X = Cl, Br) and Medium Effects Upon LiX in (Acetonitrile + Water), (1,4-Dioxane + Water), and (Methanol + Water) Solvent Mixtures with Related Solvation Parameters. J. Chem. Thermodyn. 2000, 32, 597−616. (39) Basili, A.; Mussini, P. R.; Mussini, T.; Rondinini, S. Thermodynamics of the Cell: {NaxHg1−x|NaCl (m)|AgCl|Ag} in (Methanol + Water) Solvent Mixtures. J. Chem. Thermodyn. 1996, 28, 923−933. (40) Manzoni, A.; Mussini, P. R.; Mussini, T. Thermodynamics of the Amalgam Cell {KxHg1‑x|KCl (m)|AgCl|Ag} and Primary Medium Effects upon KCl in {Ethylene glycol + Water}, {Acetonitrile + Water}, and {1,4-Dioxane + Water} Solvent Mixtures. J. Chem. Thermodyn. 2000, 32, 107−122. (41) Hernández-Luis, F.; Vázquez, M. V.; Esteso, M. A. Activity Coefficients for NaF in Methanol-Water and Ethanol-Water Mixtures at 25 °C. J. Mol. Liq. 2003, 108, 283−301. (42) Hernández-Luis, F.; Vázquez, M. V.; Esteso, M. A. Activity Coefficients of NaF in Aqueous Mixtures with ε-Increasing Cosolvent: Ethylene Carbonate-Water Mixtures at 298.15 K. Fluid Phase Equilib. 2004, 218, 295−304.

J

DOI: 10.1021/je500919f J. Chem. Eng. Data XXXX, XXX, XXX−XXX