Diffusion and Oxidation of Metals - Industrial & Engineering Chemistry

Diffusion and Oxidation of Metals. Massoud T. Simnad. Ind. Eng. Chem. , 1957, 49 (3), pp 617–626. DOI: 10.1021/ie51393a023. Publication Date: March ...
0 downloads 0 Views 1MB Size
(4) Anosov, V. Ya., Ozerova, M. I., Zrvcst. Sektora Fiz.-Khim. Anal. Zmt. Obshchci i Neorg. Khim., Akad. Nauk S.S.S.R. 26, 798-03 (1955). (5) Bonilla, C. F., Wang, S. J., Weiner, H., Trans. Am. SOC. Mech. Engrs. 78. 1285-9 (1956). Brokkv, R. S.‘, IND.END.CHEM.47, 2398-400 (1955). H.,Zbid., and Culture

J., others, (10) CroAer, A.; Rev. inst. franc., pitrole

10, 1467-8 (1955.) I., POPOV,V. D., Frenkel; Y . B., Zavodikaya Lab., 21; 731-3 (1955). (12) Dietzel, A.,Briickner, R., Glastech. Ber. 28, 455-67 (1955). (13) El Nadi, M., Abu Zeid, F., J . Phys. Chcm. 59, 1107-9 (1955). (14) Ezrokhi, L. L., Referat. Zhur. Khim. 1954,No. 47866. (15) Filippov, L. P.,Vestnik Moskov. Univ., 10, No. 8, Ser. Fiz-Mat. i Estestven. Nauk No. 5 , 67-9 (1955). (16)Franck, E. U.,Chem.-Zng.-Tech., 27, 473 (1955). (17)Freund, M., Vhmos, 4., Erdol u. Kohle 8 , 895-8 (1955). (18) Gamtsemlidze, G. A., Doklady Akad. Nauk S.S.S.R. 100, 441-4 (1955); [also Soviet Research in Phys., Collection No. 3, 1-3 (1955) (English translation) 1. (19) Gardiner, W. C., Schafer, K., Z . Elektrochem. 60, 588-94 (1956). (11) . . Derazhne, R.

(20) Gillam, D. G.,Romben, L., others, Acta Chem. Scand. 9, 641-56, 657GO (1955)in English. (21) Giriialco, L. A., J. Chem. Phys.*2S, 2446-7 (1955). (22) Golik, A. Z., Dopovidi Akad. Nauk Ukr. R.S.R. 1955, NO. 4, 349-53. (23) Golik, A. Z. others, Ukrain. Khim. Zhur. 11, 318-26, 480-3 (1955). (24) Zbid., pp. 576-85. (25) Golik, A. Z . , Rindick, N. A., Ukrain.. Fiz. Zhur. 1, 170-182 (1956). (26) Heiks, J. R., Orban, E., J . Phys. Chem. 60, 1025-7 (1956). (27) Innes, K. K., Zbid., pp. 817-18. (28) Kapustinskl, A. F., Ruzavin, I. I., Zhur. Fzz. Khim. 29, 2222-9 (1955); 30, 548-55 (1956). (29) Keyes, F. G., Trans. Am. Sac. Mech. Engrs. 77, 1395-6 (1955). (30) Khalilov, Kh.M., Doklady Akad. Nauk. Azerbaidzhan S.S.R. 11, No. 7,465-9 (1955). (31) Kowalczyk, L. S., Trans. Am. SOC. Mech. Engrs. 77, 1021-35 (1955). (32) Kuss, E., Z . angew. Phys. 7 , 372-8 (1955). (33) LutskiI, A. E., Zhur. Fiz. Khim. 29, 1162-72 (1955). (34) Makita, T.,Mem. Fac. Znd. Arts, Kyoto Tech. Univ. Sei. and Technol. NO.4, 19-35 (1955). (35) Mamedov, A. A.,Panchenkov, G. M., Zhur. Fiz. Khim. 29,1204-20 (1955). (36) Michels, A.,Botzen, A., others, Physica 22, 121-8 (1956)(in English). (37) Mitra, S. S., J . Indian Chem. Sac. 32, 297-301 (1955). (38) Mitra, S. S.,Chakravarty, D. N., Z .

physik Chem. (Lcipzig) 205, 1-5 (1955)(in English). (39) Mohanty, S. R., J. Sci. Znd. Research (Zmdia) l4B, 35-6 (1955). (40) Oldckop, W., Z . Physik, 140, 181-91 (1955’1. (41)

(42) (43) (1733J.

(44) SPlceanu, C.,Bojin, S., Compt. rend. 243, 237-9 (1956). (45) Sanyel, N. K.,Mitra, S. S., J. Chem. Phys. 24, 473 (1956). (46) Shimanskii, Yu. I., Ravikovich, S. D., Zhur. Fzz. Khim. 29, 48-50 (1955). (47) Shukla, B. P., Bhatnagar, R. P., J . Phys. Chem. 59, 988 (1955). (48) Zbid., 60, 809-10 (1956). (49) Slawecki, T. K., Molstad, M. C., IND. ENG.CHEM.48,1100-3 (1956). (50) ToroDov. A. P.. ATraDetova. R. P.. Kiiyukhin, V. K., *Zhur. ’Obshchei Khim. 25, 1314-7 (1955). (51) Umstatter. H.. Erdol u. Kohle 722-3 (1955).’ (52) Vargaftik, N. B., Smirnova, E. V., Zhur. Tekh. Fir. 28. 1251-61 (1956). (53) Waelbroeck, F. G., Lafleur, S:, Prigogine, I., Physica 21, 667-75 ’ (1955). (54) Zhuze, T. P., Sergievich, V. I., Zzvest. Akad. Nauk S.S.R., Otdel. Tekh Nauk 1956, No. 5, 156-63. (55) Ziebland, H.,Burton, J. T. A., Brit. J . Apple Phys. 6,416-20 (1955). .

I

~I

I

I

CHEMICAL ENOlNEERlNO REVIEWS

I FUNDAMENTALS REVIEW

Tm

I

!I Diffusion and Oxidation of Metals I I

application of radioactive tracer measurements in diffusion studies has has continued to increase and proves to be more reliable than those from chemical diffusion. Reviews of Diffusion.’ Two monographs on diffusion have appeared. Seith and Heumann (5) survey the field of metallic diffusion, with special emphasis upon recent work on marker movements during interdiffusion of metals. T h e mathematics of diffusion has been covered in great detail by Crank ( 2 ) in a book which should prove to be of practical value, as this subject has hitherto been presented too cursorily

in texts or reviews of diffusion. The sixth volume of “Progress in Metal Physics:’ edited by Chalmers and King (7), continues the high standard and timeliness of previous volumes, and reviews several subjects of importance to the structure of metals. The third -volume in the new series of monographs on solid state ‘physics, edited by Seitz and Turnbull ( 6 ) , contains many valuable papers on metal structures. T h e monumental proceedings of the remarkable international conference on peaceful uses of atomic energy, held in Geneva i n 1955, have been published (4). Volume 15 contains several review

MASSOUD T. SIMNAD is a member of staff of the John J. Hopkins Laboratory for Pure and Applied Research, General Atomic Division, General Dynamics Corp., San Diego, Calif. He obtained his B.S. at London University (Imperial College of Science and Technology), and Ph.D. at Cambridge University in 1945. In 1949 Simnad was Weston research fellow, American Electrochemical Society, and guest fellow, Metals Research Laboratory, Carnegie Institute of Technology.

papers on self-diffusion in metals and alloys. A survey of nuclear irradiation and radioisotopes in metal research by Simnad (7) summarizes all published work o n self-diffusion in metals and alloys. Theory of Diffusion. Further computations have been made of the energies involved in the various mechanisms postulated for the diffusion of atoms. Alfred and March ( 7 A ) have shown that the use of more accurate fields around the solute atoms decreases very appreciably the discrepancy, found by Blatt, between the activation energies for solute diffusion in silver obtained from the theory of Lazarus and the experimental values. S w a b (28A) discusses the correlation between the frequency factor and activation energy for solute diffusion. Kirkaldy ( 7 5 A ) champions Boltzmann’s classic contribution to diffusion theory in a short note. H e concludes that any significant observed deviation from the relationship C = C(X), where X = x / P , is not to be attributed to any assumptions involved in the BoltzmannMatano analysis, but rather to a failure

VOL. 49, NO. S, PART II

MARCH 1957

61 7

FUNDAMENTALS REVIEW of Fick's law or to a n incorrect assessment of the boundary conditions. A further note is supplied by Fara and Baluffi (7A) on the application of the BoltzniannMatano analysis to vapor-solid diffusion couples. Compain and Haven (5'4) have given an analysis of correlation factors for diffusion in solids. The mapping of concentrations in various diffusion systems is treated by O'Sullivan (23,4) by a method in which a generalized convolution is used to simplify the equations of a wide range of classical diffusion processes. The resulting transformation expresses the solutions of these equations in terms of solutions for much simpler problems. Brinkman (3.4) has considered the Broivnian motion in a field of force and the diffusion theory of chemical reactions in terms of the general problem of the shuttling back and forth of a particle between tivo potential poles. The reaction rates depend exponentially on the ratio of activation energy to k T . The form of the temperature dependence of the nonexponential factor is determined b); the potential curve. llschner (73.4) has derived differential equations for diffusion processes a t variable temperatures. A fundamental approach to diffusion is the consideration of LeClaire and Lidiard (78=1)of correlation effects in diffusion in crystals. They point out that it is the feature of many atomic diffusion jump mechanisms that successive jumps of a n atom are "correlated" in the sense that the direction of a jump is not completely a t random but is influencrd to some extent by the dirrction of the preceding jump or jumps. General formulas are derived hy ihein to take account of this correlation The theory is applied to a calculation of the diffusion coefficient of solute atonis. Another approach is by Christiansen ( I A ) :\vho discusses the form and meaning of the diffusion equation and sho\vs that it is necessary to consider the change in kinetic energy that corresponds to the mean linear velocity in the direcrion of diffusion. LVhen this is done, the diffusion can be described by a differential equation of the Schroedinger type in which the coefficient of diffusion D.takes the place of h/4am. The validity of Fick's law is examined by hloreau (23'4) and Salvinien (254. A theoretical and experimental study has been made by Condit and Birchenall (6.4) of the effect of noncollimated radiation on surface activity methods for the determination of diffusion coefficients in solids. They have evaluated the contributions of radiations arriving a t a diffusion specimen surface, including angles other than 90') for a number of counting geometries. They propose modifications for all previous equations: the theoretical equation for absorption of'

61 8

a divergent beam from a plane source. as detected a t a point counter, has been shown to agree with experimental results for extended counters under not very restricted conditions. Tannhauser (30-4) has pointed out a systematic error in measuring diffusion constants. Several Russian papers have appeared on the analysis of diffusion processes (9A. 70A, 7 d 4 79.4). Talbot and Kitchener (29.4) have applied a solution of rhe equation for radial diffusion in terms of a correction factor for the limiting case of diffusion in a cylindrical capillary. Asivathanarayana and Ramamurthy (2'4) have presented a detailed study of the diffusion of 0-emittin5 radioactive matter through plates. Further developments have been made in the concepts of vacancies. dislocations. and intrrstitials. Schoeck (26.4) presents the equations relating the stress field of moving dislocations to the stress-induced local rearrangement of solute atoms. Hibbard and Dunn (17A) have sho\vn good agreement between calculated and measured dislocation densities for the dislocations in bent single cr>wals. They also furnish some semiquantitative data on polygon groivth. (The illustrations in this paper are particularly striking in sho\ving the arrays of < 1 1 2 > edge dislocations iii bent silicon-iron single cr)-stals.) hfach]up (21.4) gives a treatment of vacancies in metallic sodium. \vliich is pertinenr t o recent rheoi-ies regarding vacant!- u s , ring diffiision in alkali metals. T h r problems of diffusion effects in drift in semimobility ineasurcments ronducrors have been examined bv hlcKelvc-y (+'.?A]. Li and Solvick (31.1) employed neutron irradiation to obtain information on atomic mobility in a copper-aluminum alloy after quenching and after neutron irradiation, by an elastic relaxation methods. 'The results differed in t\vo xvays from the quenching esperinients of Kauffman and Koehler on pure gold. The effect of neutron irradiation upon the diffusion of silver in lithium has been measured by Zavoisiii and Ershler (.?2.1) and is of interest in view of Lomer's recent theoretical treatment of diffusion in irradiated metals. Zavoiskii and Ershler measured the diffusion of silver through lithium a t 16', loo', and 150' C . ; over a period of 34 hours \vhile irradiated with slow neutrons. Thermodynamic properties of alloy systems furnish important information regarding energy relationships in the alloy lattices, which have a bearing on the diffusion process. Such nieasurements have been carried out by Kleppa (76.4) by calorimetric methods. and by Hillert, Averbach, and Cohrn (i2.4) b!. r.m.f. mrasurrments. .l'hrl mtc-controlling p i ~ ~ r r sf osi . Iiigh

INDUSTRIAL AND ENGINEERING CHEMISTRY

temperature creep is h i t of self-dillusion, according 10 several propot~ciits of Mott's theor!- of vrccp, \vhic.li picrurcs a dislocation-climb iiiotlrl lor high temperature c r e e p 'l'ietz 'ind I h r n (,?Idj have measurc~dtlie c i x ~ i po r col)pr-r a t intermediatr tempern tures. a n d find that the AEI \vas lo\ver. than that for self-diffusion in the inrermediatc (miperatiirc range, ivhrreas i t is k n o w n ti) be equal to that for self-ditfusion a t hiqh temperatures. Sherby and L>.tton (27.4) point out that it is 1)ossihlc to coi~rrlaie the crerp rate of n tnc.t.ield Imint alrnosr proportion all^- to the stress. 0.260; for 1 kg. p r r sq. mni. 'Thermodynamic calculations sho\vrtl that this effect is alrnosr entir,due t o increased solubility i n the latticc. indicatinq that in annealed stt:cl hydrogen diffuses homogeneously rhrough thc lattice. \Vhcn the sample \viis sut,jcrtcd to plastic deformation, the inrrcase in diffusion \vas grratrr-. Thr infliirncc. o f surfact. films on dilfiision o f hydrogen rhrough iron is k n o ~ . n to br q r w t . 'The thicknrss of such films is also ;I c:ontrolling factor. as shotvn b y rht. ~vcirh of F'reiinan and 'Titov (.I-ea ( S J ) in terms of tlic clectrostatic repulsion bet\vern tantalum ions \vhich provide thc principal barrier to ionic motion. 'The ionic conductivity is considered and morion of interstitial metallic ions. The relationship bet\veen adsorption kinetics and the defrct solid state of oxides is examined by Gray and Darby (775). They postulate that in the sui-face zone the concentration of defects should be significantly different from the concentration in the bulk, and should he subject to \wiations according to the state of adsorption and desorption of ions on the siirface. T h e chemisorption of oxygen on zinc oxide and its effect on photoconductivity have been studied in great detail. and several discussions have appeared. hlorrison and hfiller ( 3 3 ) shelved that rhe adsorbed oxygen is desorbed when the zinc oxide is heated, leaving adsorption sites. T h r number of adsorption sites decreasrd with time and is interpreted as due to the diffusion of zinc atoms away from the surface. On the basis of this model. the activation energy for the diffusion of interstitial zinc is calculated to be 1.2 ev. Xledved (375)examined the photoconductivity processes on zinc oxide as a function of' time. incident light intensity, and pressure of ambient. Incident light caused a photodesorption of oxygen from the surface accompanied by a n increase in conductivity. 'Thr equilibrium concentration of conduction electrons as a function of ternperature and pressure is described by a n expression of the Elovich ivpe. Other articles on the subject have appeared (31J.3W). Metal Oxidation. The adsorption of gases on metals at very lotv pressures has been determined by \\'agener (77K), who measured the rates of adsorption by allo\ving the gas LO floiv through a capillary to which ionization or Knudsen gages were attached at both ends. Adsorbed quantities less than l ( l - 5 y could be determined. .All the adsorption phenomena investigated \Yere chemical in nature. Electron diffraction studies have been carried out by Trillat (72K') on the oxidation of metals a t low pressures. The interaction of nitrogen \vith clear metal surfaces is described by Greenhalgh. Slack, and Trapnell (32'A.).

INDUSTRIAL AND ENGINEERING CHEMISTRY

DIFFUSION OF METALS ( 7 8 K ) . lithium ( 7 0 K ) , niobium ( 7 4 K ) , platinum ( 2 9 K ) , silicon ( 4 5 K ) , silver ( 6 9 K ) , thorium (27K, 22K, 4 7 K ) , tin (77K, 5 8 K ) , titanium (77K, 79K, 4 6 K ) , tungsten ( 5 K , SK, 24K, 26K, 54K, 77K, 79K, 87K), uranium (ZK, 67K, 64K, 70K),zirconium (7K, 44K, 4 9 K ) , and the anodic oxidation of hafnium (5OK). An apparatus is described by Grieser and Simons ( 3 6 K ) for visual study of corrosion in autoclaves at high temperatures and pressures. Alloy Oxidation. The reactions of refractory silicides with carbon and nitrogen have been investigated by Brewer and Krikorian ( 6 L ) . Silicides of titanium, zirconium, cerium, and niobium were made and the phases present a t temperatures around 2000’ K . were determined. By comparing the stabilities of the silicides with the corresponding carbides, upper and lower limits were set to the stabilities of many of the silicides. In the ternary systems involving carbon no binary metal silicides were found to be stable in the presence of carbon. T h e bonding energies of metals and metallic compounds in the 4th and 6th periods of the Periodic Table are plotted and discussed. This allows predictions to be made of the heats of formation of compounds for which values are not available. T h e stability of metal silicides is also discussed by Robins and Jenkins (42L). The corrosion of alloys in high temperature, high pressure water is being evaluated in connection with the construction of pressurized water nuclear reactors. Datsko and Breden (70L) have presented the results of an exhaustive survey of the corrosion resistance of metals in water a t 500’ or 600’ F. and a pressure of 2000 pounds per square inch at velocities of 30 and l / m feet per second. Boyd and Peoples (5L) have measured the corrosion of reactor materials in borated and deionized water a t temperatures u p to 500’ F. T h e effects of stress, contact and crevices, and heat flux were also studied. The corrosion of aluminum and its alloys in high temperature water is reviewed by Draley and Ruther ( 7 2 5 ) . This paper summarizes a very extensive and important program on the aqueous corrosion of aluminum alloys. Groot (ZOL)made corrosion tests on aluminum in superheated steam from 300’ to 500’ F., a t a pressure of 10 to 2500 pounds per square inch, for times u p to 10,000 hours. For 2 s aluminum intergranular attack occurred above 200’ F. in saturated steam or water. Resistance to intergranular attack increased when 0.1 to 0.3% iron or 1% nickel was added to the aluminum. Oxidation studies on metal carbides by Webb, Norton, and Wagner (52L) show the characteristics of the oxidation of alloys containing carbon or carbides.

Evolution of gaseous carbon monoxide and carbon dioxide can rupture oxide films which, in the absence of carbon, are highly protective. If the base metal has a high affiaity for oxygen, the carbon can be retained in the alloy or can diffuse across the oxide layer. They report experimental data for the systems nickelcarbon, tungsten-carbon, manganesecarbon, and titanium-carbon, The initial oxidation of various high temperature alloys of iron were studied by Radavich (36~5,37L) by electron microscopy, reflection electron diffraction, transmission electron diffraction, x-ray diffraction, and x-ray spectrography. T h e compositions and structures of the films show wide variations as a function of composition. The search for oxidation-resistant alloys of molybdenum is described by Rengstorff (39L). Although many, of the alloys were more resistant than molybdenum, none was entirely satisfactory. T h e oxidation properties of molybdenum disilicide received much attention, and are discussed a t length by Fitzer (75L). MoSit resistor heater element is said to have a lifetime of over 3000 hours a t 1700’ C. The effect of strain on the oxidation of heater alloys (nickel-chromium with varying silicon and manganese content) was tested by Gulbransen and Andrew (27L). They found two kinds of damage in the oxide film as a result of strain. T h e first is shown by a rapid rate of oxidation on first reoxidizing the metal, while the second involves a long-term effect. Results on the high-silicon alloys showed that strain has only a minor effect on their rate of oxidation. Often the resistance of an alloy to stress during oxidation is relatively more important than the rate of oxidation at a given temperature. Further structural and chemical studies of the oxides formed on chromium steels have been reported by Yearian, Randell, and Longo (55L). Steels containing 5 to 26% chromium were oxidized from 700’ t6 1160’ C. for times u p to 100 hours. High temperature scaling studies of cobalt chromium alloys by Evans, Phalnikar, and Baldwin (74L) indicate that the best scaling resistance is associated with a scale consisting of Crz08, not spinel. Cochardt (7L) reports on a new cobalt-nickel alloy developed especially for steam turbine blades for high-temperature applications. Rhodin (40L, 47L) has reviewed his recent studies on the relation of thin films to corrosion of stainless steels. Improved corrosion behavior is correlated with a mutual-film enrichment of silicon and molybdenum and a film depletion of iron. Alloy purity, carbon content, and alloying conditions strongly influence

surface behavior and corrosion resistance. A large number of titanium-base alloys have been oxidized in air by Maynor and Swift (29L), and compared to the rates of oxidation of titanium and stainless steel in the temperature range 650’ to 980’ C. The aqueous corrosion properties of zirconium and of zircalloy-2 a t high temperatures and pressures are of importance in pressurized water reactors. Thomas and others (17L-49L) have carried out extensive tests on this system, and reported results in detail. The addition of tin to zirconium improves corrosion resistance. They present a method whereby the linear corrosion rate of zircalloy-2, which occurs at very long exposure times, can be determined in a relatively short time by measurement of the corrosion rate at the low temperature after sufficient previous exposure at a higher temperature to reach the linear portion of the weight gain-time curve. Pray and Peoples (35L) have developed a 750’ F. steam test at a pressure of 1500 pounds per square inch, which appears to disclose corrosion characteristics of zirconium in a much shorter time than the 600’ F. water test. Kneppel and Magel (27L) found that the addition of iron or nickel to zirconium allows higher impurity levels with good corrosion resistance in 600’ F. water, and an even greater improvement in steam corrosion resistance. T i n additions allowed greater nitrogen impurity content in the zirconium. They point out that carbon picked u p in graphite crucible-melted zirconium is detrimental to corrosion resistance, but extrusion greatly reduces the corrosion. Alloying with tin, nickel, or chromium also reduces corrosion from carbon .impurity. Wanklyn (57L) has used capacity measurements for studying the protective character, as distinct from thickness, of oxide films.

Bibliography Reviews of Diffusion (1) Chalmers, B., King, R., ed., “Progress in Metal Physics,” vol. 6, Pergammon Press, New York, 1956. (2) Crank, J., “Mathematics of Diffusion,” Clarendon Press, Oxford, 1956. ( 3 ) Hauffe, K., “Reaktionen in und an Festen Stoffen,” Springer-Verlag, Berlin, 1955. (4) Intern. Conf. Peaceful Uses Atomic Energy, Proceedings, Geneva, 1956. (5) Seith, W., Heumann, T., “Diffusion in Metallen,” Springer-Verlag, Berlin, 1955. (6) Seitz, F., and Turnbull, D., ed., “Solid State Physics,” Academic Press, New York, 1955. (7) Simnad, M. T., Intern. J . Appl. Radiation and Isotopes 3 , 145 (1956).

VOL. 49, NO. 3, PART II

MARCH 1957

623

FUNDAMENTALS REVIEW Theory of Diffusion Alfred, L. C. K.. Xlarch, N. H., Phys. Rcv. 103, 877 (1956). Aswathanarayana, U., Kamamurthy, S., Proc. Indian Acad. Sci. 42A, 71 (1955). Brinkman, H. C . , PliJsics 22, 149 (1956). Christiansen, J. .\.: Z. Ir'i~ifrochem. 59, 338 (1955). Compain, K., Haven, S.. Trans. Faraday Soc. 52, 786 (1956). Condit, R. H.. Birchenall, C!. E., J . .Metals 8, 1341 (1956'1. Fara, H.. Baluffi. K. M-., .I. .lfifil. Phys. 27, 964 (1956). Geguzin, 1.. E.. Bengus, V. Z..b'i:. .lfrtal. i .2letalloi,td. .4kad. . T a d . S.S.S.R. L7ral. Filial 1, 269 (1955). (9.4) Gertsriken, S. D.. Zbid., 2, 37'8

(1956). (10.1)Gertsriken. S.D.: CXrain. Fiz. Zhur. 1, 193 (1956). (11.4)Hibbard. fV. K.: Dunn. C:. G . , Acta .\let. 4 ( 3 ) : 306 (1956). .4verbach, B. L., Cohe:!, (12.4) Hillert, M., M., Ibid.,4 (1). 31 (1956). a (13'4) Ilschner, B.: Arch. Eisrnhuttenri'. 27, 337 (1956). (1 4.4) Kafarov, -V.V., J . Appl. Chm. 1r.S.S.R. 29, 43 (1956). (1 5.4) Kirkaldv, 3. S..Acta .kft-t. 4 (1 )! 92 (1956). (16.4) Kleppa. 0. J., J. Phys. Chrni. 60, 842 (1956). (lT.\) Kuczynski, G. C.: Acta .\Id. 4 ( I ) , 58 (1956). LeClaire. A. D.,Lidiard. A . B., (184) ~, Phil. Atlag. 1 , Srr. 8 (6), 518 (1956). (19.4) Levitskii, M.P.. Z h u r . Tekh. I.'iz. 25, 544 (19553. (20.4) Li, C. k., Nowick, A. S., Phys. Rrz,. 103, 294 (1956). (21.4) Machlup. S.,J . Chrnr. Phys. 24, 169 (1956). ( 2 2 4) McKelvey, J. P.: ~ J ..4fipl. Phjs. 27, 341 (1956). (23.4) lforeau, J. J . . Pubis. sci. r t tech. minisrere air ( F r a n c e ) 59, 1 (1956). (24.4) O'Sullivan. D. G.: J . Chem. Phys. 25, 270 (19563. (25.4) Salvinien, J., Pubis. sci. rt tech. minis!i.re nir (Franc?) 59, 1 (1956). (26.4) Schoeck. G.. Phys. R r i . 102, 1458 (19%). (27.4) Sherby. 0. D.. I.ytton> J. I,.! .J. .\l~/ols 8, 928 (19563. ( 2 8 1) Swalin. K. .A,. J . .4,bfil. Pligs. 27, .554 (1956). (29.4) Talbot. A , , Kitchencr, .I. .1.! Brit. J.Appl. Pirjs. 7, 96 (1956). Phys. (30.1) Tannhauser. D. S . . J . &$I. 27, 662 (19561. (31.1) Tietz. T. E.. Dorn. .J. I:.. J . .\l~fals ~. 8, 156 (1956). (32.4) Zavoiskii: V. K.. I~rshlcr. B. V., Sessija d k a d . I \ - ~ ~ ~ XS.S.S.R. fio .\firnomu Isfiol'zwaniw .4tonin0i G i ergii, %asedani?a Ofdrl. f:iz.-.\la/. AITauk1955, p. 362. \ -

-

-

/

Volume Self-Diffusion in Pure Metals (1B) Bauerle, J. E.. Klabunde: C:. E.. Koehler. J. S.. Phys. Rec. 102, 1182 (1956). (2B) Careri, G., Paoletti. A,, iVuu0z.o cimento 2, 574 (1955). (3B) Druyvesteyn? M. J., Berghout: C. W., P h y . Rei,. 102, 1686 (1956). (4B) Hoffman, R. E.! Pikus, F. LV., \Vard. R. A , , J . I\ietals 8, 483 (1956). (5B) Jaumot, F. E.. Smith, R. L., Ibid., 8, 137 (1956). (6B)Ibid.. p. 164.

624

Letaw, H.! Portnoy, FV. M., Slifkin, L., Phys. Rev. 102, 636 (1956). Sachtrieb, N. H.: Petit, J., J. Chrm. Phvs. 24, 746 (1956). Okkerse. B., Plijs. Rw. 103, 1246 (1956) --,Petit, J., Nachtrieb, N. H., J . C h m . Phys. 24, 1027 (1956). Rothman, S. J.. Hall, I,. D., J. Metals 8, 199 (1956). Shewmon, P. G., Ibid., 8, 918 (1956I . \ -

Tomizuka, C. 'r., Sonder,. E.,Phis. . Rm. 103, 1182 (1956). 114B) Vasiler, V. P., Chernomorchenko. S. C., Zauodskaya L a b . 22, 688 (1956J.

Volume Self-Diffusion in Alloy (1C) Bokshtein, S. Z.,Kazakova, V. X., Kishkin, S. T., hfirskii. I,. hi., Izcest. Akad. ,VauX S.S.S.R., O t d ~ l . Tekh. .Yauk 1955, No. 12,p. 18. ( 2 C ) Gertsriken, S . D., Dekhtvar. I. Y., roc. Intern. Con$ Peiceful [ ' s P ( Atomic Energy, Grneca 15, 39

(1956). (3C) Glawitsch. G.: 2'. .Ifetallkunde 47, 199 (1956). (4C) Golikov, V. hi.? Borisov, V. T.. Zacodskaja L a b . 21, 824 (1955). Fedorov, G. B.: DoAh u i S.S.S.R. 105, 264 (1955). ( 6 C ) Gruzin, P. L.! Kotogonov. lr.G . , Platonov, P. A , . Ibid.: 100, 1069 (1955). (7C) Heumann, T,, Lohmann, P., Z. Elektrochem. 59, 849 (1955). ( 8 C ) Hirone. T., .J. Phjs. Sac. J a p a n 10, 967 (1955). (9C) Lazarus. D.,Tomizuka. C . T., Piijs. Rev. 103, 1155 (1956). (10C)hlead. H. LV., Birchenall, C. I:., J . ,\frtals 8, 1336 (1956). (1 1C) Xiortlock, A . ,J., Tomlin. I). H., Proc. P/tys. Sac. (London) 69B, 248 (1956). (12C) Saskidashvili. I. A , Soobshcheiiija Akad. .lbuh Gruziti. S.S.S.R. 16, 509 (1955). (13C:) Noskov, B. M., Kuznetsov, I:. V.; Fiz. .\fetal, i .\fetallocrd.. :tiad. .Vauk LP.S.S.R. l i a l Filiui 2, 489 (1956). (14C)Sawatzkv, A . , Jaumot. F. E.. P//>r. Rec. 100, 1627 (1955). (15C) Sonder, E.,Ibid..100, 1662 (1955). (16C) Winter. F. R.,Drickamer. H . G.. J . Chem. Phvs. 24. 492 (1956). (17C) Ymq, 1,. Simnad,' M. '1 . Driqc. G., J . .lip!a/s 8, 15-- (1956)

Chemical Diffusion in Substitutional Alloys (1D)Accary. '4..Cumpt. lend. 242, 2140 119561. Adda, q., Philibert. J.: Ibid., 242, 3081 (1356). .\rkharov, V.I., others, F i z . .\fntai. i ,\fetallor~ed. Akad. . T a d S3.S.R . L'ral. Filial 1, 56 (1955). Ibid., p. 69. Ibid.,p. 281. Ibid., p. 517. Ibid.,2, 472 (1956). Dash, W.C., J . Appl. P / / y .27, 1193 (1956). Dubinin, G. N., Zhur. Tekh. F i r . 26, 1345 (1956). Freise, V., Sauer, F., Z. phjsii.. Chem. 8, 387 (1956). Fuller, C. S.,Ditzenberger, J. A , J . Appl. Phjs. 27, 544 (1956). Gemzin. Y. E.. Dokladv A k a d . .?auk k.S.S.R. 106, 839 (f956). (13D) Gorhunov, N. S.; Iri,est. Ad..l;luX

INDUSTRIAL AND ENGINEERING CHEMlSlIRY

S.S.S.R., Oldel. Kliim. .Yauk 1955, p. 793. (14D)GreenLvood. G. LV., Acta .tiel. 4 (3), 243 (1956'1. Jaumot, F. E., Sawatzkv, A . J . A p j l . Phjs. 27, 1186 (1956). Karqer. \I-. IV., Z. phqszk. Chrni. 7, \

,

11-9 ... 11956) \ -' - - I .

Landcrgren, U. S . , Jvrnkonlorrts 2~lrin.140, 401 (1956). Landergren, LJ. S., Birchenall, C . I.:.. Xlehl, K. F., J. .bfetals 8 . 73 ~ !1956j. (19D) I.eClaire. A . D., Bear, I. J., .I. .Vucleai I h v g y 2, 229 (1956). (20D) Lers: C . S.. Atomic Enrrgy Ktscarch Estab. (Gt. Brit.) G/M 13 (1955). (21D) I.och, Id. D., Gambino, J. K., Duckworth, \V. H.: A.I.CIi.E .lourrial 2, 195 (1956). (22U) Logan, K. A . ; f'hys. Rei. IOU, 615 (1955). (23D) Mackowiac, .J. Shreir, L. L., Acta h f e l . 4 (5). 556 (1956). (24D) Mash, D. K., Disselhorst, B. F., U. S. .\tomic EnerFy Cornm. AECD-3701 (1954). (25D) Neiman, hl. B., Shinyatr, .\. Y., I1ol;lady A k u d . :\'auk S.S.S.R.102, 969 119551. ~, Niwa, K., .J. Japan Inst. .lfetals 18, 271 (1954). Rothman, S. J., Hall! IJ, D., J. .llrtals 8, 1580 (1956). Saito, T., Maruya, K., Bull. T o h o i u L'niv. 12, 27 (1956). Schopper, H., Z. Phjsik 143, 93 (1955). ' Tweet. .2. G.. Galla~her.C . J., Phrs: Rev. 103. 828 (1956). , . (31~) Vasiiev, V. P., 'T+ L.jiiz.. im v.I . Lcnina 65, 47 (1955). (32D) LVernick, J. H . , .I. Chrm. Ph!s. 25, 47 (1956). \

Chemical Diffusion in Interstitial Alloys (lE)Barducci, I., .Vuoco cirrzenlo 3, 350 ( 1 0 56 \.

( 2 E i Buhy; y. E., Hart, D. P., Wells, C., J . .ifetais 8, 686 (1956 j. (3E Erdmann, F., Gunkrl, LV., .4rch. EisrnhCftenw. 27, 41 (1956j. ( 4 C ) Frrro. ,\., Montalenti, G., Riccrcu scz. 25, 3069 (1955). (5E) Freiman, L. I., 'l'itov. V. Zhur. Fiz. Khim. 30, 882 (1956). (6E) Kazinczy, F. D., Jernkotilore!s A n n . 139, 885 (1955). ( 7 E ) Ki-, T. S.. Yung, P. 'I., \Vang, Y. N.. ,ScientiaSztiica 4, 263 (195.51. ( 8 E ) Salmon. 0. N.. U. S. Atomic Energy Comm. KAPL-1272 (1956). (9E) Stross, T. hi., Tompkins, F. (l., J . Chem. Soc. 1956, 230-4. (10E) Svechnikov, Lr. N..Golubev. S. S.. F i r . .VP/al. i .tletaIiowd. 2, 88 (1956). A\.>

Grain Boundary and Surface Diffusion hrkharov. V. I., Skornvakov, N N., Fiz. .\fetal. i .tletalloied. .lkad. S a u l , S.S.S.R. L'ral. I.ziia1 1, 75 (1955). Ibid., p. 97. Borisov, V. 'I., Golikov, V. X I . , Zacodskaja Lab. 22, 178 (1956): Borisov, V. T., Lynbov, B. Y., Fir. .\letal. i Metailooed. Ahad.

.Yauk S.S.S.R. L'ral. Filial 1, 298

(1955). Bron, W. E., Machlin, E. S., J. .bletals 8, 513 (1956). Hacherman, IT., Simpson, N. H., Trans. E'araday Soc. 52, 628 (1956).

DIFFUSION OF METALS Hoffman, R. E., Acta Met. 4 ( l ) ,97 (1956). Kehoe, R. B., Newman, R. C., Pashley, D. W., Phil. Mag. 1, Ser 8 (8), 783 (1956). Leymonie, C., Lacombe, P., Compt. rend. 242, 1175 (1956). Wepener, 2. Ph sik. 139,414 (1956). Zbidl, 143, 548 4956).

J

Reviews of Oxidation (1G) Adam, N. K., “Physics and Chemistry of Surfaces,” 3rd ed., Oxford Book Co., New York, 1956. (2G) Am. SOC. Testing Materials, Spec. Tech. Publ. 175 (1956). (3G) Campbell, I. E., ed., “High Temperature Technology,” Wiley, New York, 1956. (4G) Corrosion 12 (5), 33 (1956). (5G) Draley, J. E., Greenber S., Nuclear Metallurgy 2, 32 (1956y (6G) Draley, J. E., Ruther, W. E., Proc. Intern. Conf. Peaceful Uses Atomic Energy, Geneva, paper 535 (1956). (7G) Kubaschewski, O., Caterall, J. A., “Thermochemical Data of Alloys,” Pergammon Press, London, 1956. (8G) Wells, A. F., “Third Dimension in Chemistry,” Oxford University Press, 1956. (9G) Wroughton, D. D., DePaul, D. J., Nuclear Metallurgy 2, 56 (1956). T h e o r y of Oxidation (1H) Baranovskil, V. I., Lure, B. G., Murin, A. N., Doklady Akad. Nauk S.S.S.R. 105, 1188 (1955). (2H) Benard, J., Metaux (Corrosion-Znd.) 31, 306 (1956). (3H) Birchenall, C. E., J . Electrochem. SOC.103 ( l l ) ,619 (1956). (4H) Borucka, A., Bockris, J. 0.M., Kitchener, J. A., J . Chem. Phys. 24,1282 (1956). (5H) Caffyn, J. E., Goodfellow, T. L., Nature 176, 878 (1955). (6H) Compton, D., Phys. Rev. 101, 1209 (1956). (7H) Ehrlich, G., J . Phys. Chem. Solids 1, 1 (1956). (8H) Grimley, B., Trapnell, B. M., Proc. Roy. SOC. (London) 234A, 405 (1956). (9H) Hove, J. E.,.~Phys. Rev. 102, 915 (1956). Jost, W., Nolting, J., Z . physik. Chem. 7. 383 (1956). Laurent, J. F.,’Benard, J., Comfit. rend. 241, 1204 (1955). McCombie, C. W., Lidiard, A. B., Phys. Rev. 101, 1210 (1956). Noyer, F., Laurent, J. F., Comfit. rend. 242, 3068 (1956). Sachs, K., Metallurgia 54, 11 (1956). Samsonov, G. V., Zzvest. Akad. Nauk. S.S.S.R. 27, 97 (1956). Sears, G. W., J . Chem. Phys. 25, 154 (1956). (17H) Uhlig, H. H., Acta Met. 4 (5), 541 I 1 956). (18H) Wggner; C., J . Electrochem. SOC.103, 627 (1956). (19H) Zbid., p. 571. (20H) Young, L., Acta Met. 4 ( l ) , 100 (1956). (21H) Young, L., Trans. Faraday SOC. 51, 1250 (1955). (22H) Zbid., 52, 502 (1956).

Oxides and Related Crystals (1J) Ackermann, R. J., Thorn, R. J., J . Am. Chem. SOC.78, 4169 (1956). (2J) Anderson, J. S., Harper, E. A., Moorbath, S., Roberts, L. E. J., Atomic Energy Research Estab. (Gt. Brit.) Rept. C/R 886 (1955).

(3J) Anderson, J. S., Roberts, L. E. J., Harper, E.,A., J. Chem. SOC.1955, D. 3946. r - --

(45) Aubry, J., Marion, F., Compt. rend. 241, 1778 (1955). (5J) Barrer, R. M., Falconer, J. D., Proc. Roy. SOG.(London) A236, 227 (1956). Bean, C. P., Fisher, J. C., Vermilyea, D. A., Phys. Rev. 101, 551 (1956). Cowley, J. M., J. A@ Phys. 27, 422 (1956). Donstora, E. I., Doklady Akad. Nauk S.S.S,R. 105, 305 (1955). Elovich, S. Y . ,Margolis, L. Y., Zbid., 107, 112 (1956). Glasner, A,, Reisfeld, R., J . Chm. Phys. 25, 381 (1956). Gray, T. J., Darby, P. W., J . Phvs. Chem. 60, 201 (1956). Zbid., p. 209. Gronvold, F., J . Znorg. Nuclear C h . 1, 357 (1955). Hedvall, J. A., Plansee Proc. 1956, 1-7. Hedvall, J. A., Trans. Brit. Ceram. SOC.55, 1 (1956). Hoekstra, H. R., Siege], S., Proc. Intern. Conf. Peaceful Uses Atomic Energy Geneva 7, 394 (1956). Holser, W. T., Acta Cryst. 9, 196 (1956). Hou en, J. O., Reeves, R. R., ManG. G., IND. ENG.CHEM.48, 318 (1956). Jones, P., Thirsk, H. R., WynneJones, W. F., Trans. Faraday SOC. 52, 1003 (1956). Keier, N. P., RoginskiI, S. Z., Sargonova, L. S., Doklady Akad. Nauk S.S.S.R. 106, 859 (1956). Kellogg, H. H., J . Metals 8, 1105 (1956). Kubokawa, Y., Toyama, O., J. Phys. Chem. 60, 833 (1956). Lang, S. M., Knudsen, F. P., Fillmore, C. L., Roth, R. s., Natl. Bur. Standards (U.S.), Circ. 568 (1956). Lindner, R., Akerstrom, A., 2. physik. C h m . 6, 162 (1956). Lindner, R., Engvist, O., Arkiv Kemi 9, 471 (1956). Livey, D. T., Murray, P., Atomic Energy Research Estab. (Gt. Brit.) M/B1846 (1956). Livey, D. T., Murray, P., J . Nuclear Encrgv 2, 202 (1956). McCabe, C. L., Morgan, J. A., J . Metals 8, 800 (1956). Magneli, A., J . Znorg. Nuclear Chem. 2, 330 (1956). Manson, J. E., J . Phys. Chem. 60,806 (1956). Medved, D. B., private communication, December 1956. Morrison, S. R., Miller, P. H., Jr., J . Chem. Phys. 24,1064 (1956). Munnich, F., Naturwissenschaften 42, 340 (1955). Myasnikov, I. A., Pshezhetskii, S. Y., Doklady Akad. Nauk S.S.S.R. 99, 125 (1954). (35J) Okunev, A. I., Dieve, N. P., Popovkina. A. L.. Zbid.. 103. 857 (1955). (365) Ong, J. N., Wadsworth, M. E., Fassell, W. M., J . Metals 8, 206 (1956). (375) Papazian, H. A., J. Appl. Phys. 27, 1253 (1956). (385) Pozin, M. E., Ginstling, A. M., Pechkovskii, V. V., Zhur. Priklad. Khim. 28, 1249 (1955). (395) Putseiko, E. K., Terenin, A. N., Doklady Akad. Nauk S.S.S.R. 101, 645 (1955).

nets,

1

vc

Ritchey, W. M., Calvert, J. G., J . Phys. Chem. 60, 1465 (1956). Roberts, L. E. J., J . Chem. SOC.1955, 3939-46. Rode, T. V., Dobrynina, T. A., Golder, G. A., Zzvest. Akad. Nauk S.S.S.R. 1955. p. 611. Rosen, C., Banks, E., Post, B., Acta (43J) Cryst. 9, 475 (1956). (445) Samsonov, G. V., Zhur. Tekh. Fiz. 26, 716 (1956). (453) Straumanis. M. E.. Chenr. C . H.. Schlechten, A. W., J . Ehrochem: SOC. 103, 439 (1956). Takahashi, N., Trillat, J. J., Acta Met. 4 (2), 201 (1956). Tanisaki, J . Phys. Sod. Japan 11, 620 (1956). Vajnstejn, B. K., Nuovo cimento, Suppl. 3, 773 (1956). Varlev. J. H. 0.. J . Znst. Metals (Loikon) 84, 103 (1956). Vaughan, D. A., J . Metals 8 , 78 11956). \ - - - - , -

(515) Vermilyea, D. A., J . Appl. Phys. 27, 963 (1956). (525) Wagner, C., U. S. Atomic Energy Comm., WAPD-144 (1955). (53J) Wang, C. C., Grant, N. J., J . Metals 8. 184 11956). (545) Young, J.- R., ’Phys. Rev. 103, 292 (1956). (555) Zelikman, A. N., Gorovitz, N. N., Zhur. Neorg. Khim. 1, 632 (1956). Metal Oxidation (1K) Adams, G. B., Maraghini, M., Van Rysselkerghe, P., Proc. 6th Meeting Intern. Comm. Electrochem. Thermodynamics and Kinet. 1955, p. 249. (2K) Adda, Y . , Compt. rend. 242, 126 (1956). (3K) Andrievskil, A. I., Mishchenko, M. T., Zhur. Tekh. Fir. 26, 430 (1956). (4K) Arkharov, V. I., Kozmanov, Y . D., Fiz. Metal. i Metalloved. Akad. Nauk S.S.S.R. 1, 117 (1955). (5K) Zbid., 2, 361 (1956). (6K) Arkharov, V. I., Mardeshev, S., Doklady Akad. Nauk S.S.S.R. 103, 273 (1955). (7K) Bagg, k., Tompkins, F. C . , Trans. Faraday SOC.51, 1071 (1955). (8K) Baur, J. P., Bridges, D. W., Fassell, W. M., J . Electrochem. Sod. 103, 266 (1956). (9K) Zbid., p. 273. (10K) Belyaev, A. I., Firsanova, L. A . , Moskov. Znst. Zsvetnvkh Metal. i Zolota 25, 172 (1955). (11K) Bilbrey, J. H., Wilson, D. A., Spendlove, M. J., U. S. Bur. Mines, Rept. Invest. 5181 (1955). (12K) Binford, J. S., Eyring, H., J . Phys. * Chem. 60, 486 (1956). (13K) Brenner, S. S., Plating 43, 1143 (1956). (14K) Bridges, D. W., Fassell, W. M., J . Electrochem. SOC. 103, 326 (1956). (15K) Zbid., p. 475. (16K) Zbid., p. 614. (17K) Claisse, F., Koenig, H. P., Acta Met. 4 (6), 650 (1956). (18K) Clauss, A., Comfit. rend. 242, 1578 (1956). (19K) Conjeaud, P., J . recherches centre natl. recherche sci.. Lab. Belleme (Paris) 32, 273 (1955). (20K) Danilova, E. I., Frent, G. S., Zzvest. Akad. Nauk S.S.S.R:. Otdel . TekhNauk 1955, No. 11, 25-33. (21K) Deal, B. E., Svec, H. J., J . Electrochem. SOC.103, 421 (1956). (22K) Deal, B. E., Svec, H. J., U. S. 49, NO. 3, PART II

MARCH 1957

625



FUNDAMENTALS REVIEW .Atomic Lnerqy Comm., 1%-653 (1 955 ). ( 2 3 K ) Dixit: K. R.. Agashe, V. V.> %. .YatuiJortch. loa, 152 (1956). ( 2 4 K ) Ehrlich. G.. .f. Chrni. PIiJs. 24, 482 (19i6). ( 2 5 K ) Ehrlich; G . . .J. Phys. Chmt. 60, 1388 (1956). (26K Ehrlich, G , . Hickmott. 'l7. \V,! .Y(ititre 177, 1045 (1956'1. (2'K Fischer, \\-, .\.. Hoffniann. .I.. Shimada. K.: .4rc/t. Eisenhiittrnrt~. 27, 521 (19561. 128K Fryburq, C;. C . . Cmrosion 12, 841 (1956). (29K Fri-burg. G. C.. J . Chem. Phys. 24, 175 (1956 I . ( 3 0 K Fuschillo, N.. .\ston. J. G., Ibid.. 24, 12-7 ( 1 9 5 6 ) . ( 3 1 K Gonzalez. 0.D.: Parraxvano. G . . J . Am. Chrni. .Tor. 78, 4533 (1956), ( 3 2 K ) Greenhalgh. E.. Slack. S . . 'Trapnell. B. Xi. LV.. Trnns. Fczrodos Soc. 52, 865 ( 1956 J. (33K 1 Gornyi. S. B.; .Sriztut P/I>s.,JIZ7.P 2, 687 (1956 I. ( 3 4 K ) GornyI, N.B.; Z h u r . EXsptl. i ?'fv,ut. Fk.29, 808 (1955). ( 3 5 K ) Goswami. A , . Trehan, Y.N.. Trorts. Fnhraday Sot. 52, 358 (1956). ( 3 6 K ) Grieser, D. R., Simons; E. l f . , A.Z.Ch.E. Joirrriai 2. 215 (19.56). (37K) Hart, R. K.. P I X . Roy. s o c . (London) A236, 68 (19.56). (38K) Herenpel, J . , I.elong, P., Cinript. rend. 242. 2941 11956). (39K) Hunter, hi: S.. Fo;vle, P..J. Z ? / F C / ~ O rhem. Soc. 103, 482 (1956). ( 4 0 K ) Janeff, LV.. %. Phy.ri/;. 142, 619

A. X.. .f. Eiectrochem. Sac. 103, 135 (19.56).

(64K) (65K)

\ - - - - > .

~~

(1 9 5 5 ) ,

-

~

-

-

I

'

( 4 1 K ) Kerr: I . S.. LVilman. H., J. / / i s / . .liefais 84, 3-9 (1956). ( 4 2 K ) Kingston, R . H.. J . .-I@/. Pitys. 27, 101 ( 1 9 5 6 1 . ( 4 3 K i Kleine. J.. Forestier. H.. Comb/. rend. 242, 499 (1956j. ( 4 4 K ) Kubaschewski. 0.. Dench. LV. .\,, J . Ivst. .Ifetais 84, 440 (1956). ( 4 5 K J Law. .I. T.. Francois, E. E.: J . P h ~ s . Chem. 60, 353 (19561. ( 4 6 K ) Luchkin. G. P.! Ilin: G. G.. Fi:. .\letal. i .\ictn/loi,ed. .-1Xod. .Ymk S.S.S.R. 2, 521 (1956). ( 4 7 K 1 llallett, S I . LV., ;\lbrecht. \\-. Xf., U. S. .Atomic EnerFy Coniin.. BMI-819 (1955). (48E;) XIills, T.. Evans, U . R.. J. Clirn;. Soc.. 1956. 2182-96. ( 4 9 K ) hlisch. R. D,. Fisher. E. S.,.-lr/n .ifet. 4 (21, 222 (1956). (5OK) llisch, R . D., Fisher? E. S., J . Eluctrnchem. Soc. 103, 1 5 3 (1956). ( 5 l K ) lioldovanova. 51.. Doklody dkaif. .Vat& S.S.S.R. 103, 223 (1955). (52K) Moore. L . L..Selwood, P. \\-., J . .1m. Chem. .Cor-. 78. 697 (1956). (53K) Xfukai. T.. J . Sci.' Hiroshima Crniz. 19, 115 [l9551. ( 5 4 K J Lluller. E. \\-.. %. EleLtrochmi. 59, 372 [1955!. (55K)hfurakawa. T.. ,I. Elrctrochern. SOC. Jnpori 23, 355 (1955). ( 5 6 K ) Olds. L . E.. Rengstorff, G. \\*. P.: J . .\feta/s 8, 150 (1956). (.?:E;) Paidassi? J.. d r f a .Met. 4 (2), 228 (19561. (5SK) Patteeuw. J. C . . lfever. G.. Trnns. Faiudai SOC.52, 1066 (1956). ( 5 9 K 1 Pfeiffer. H. P.. Ilschner, B., %. Elektrochm. 60, 424 (1956). ( 6 0 K ) Pitsch. LV,. Kemont, E. H.. .4rch. E i s m h u t t m u . 27, 281 (1956). ( 6 l K ) Polling, J. J.. Industrie chim. beige 20, 313 11955 1. ( 6 2 K ) Powers. R. LV.. Doyle, X I . V.. .4cto \ l e t 4 ( 3 . 233 (1956) ( 6 3 K ) Ramsev, J. S . Caplan. D . Burr,

626

(66K 10, 147 (1955). ( 6 7 K ) Seybolt, ,A. U.. Oriani, K. .4.. J . .lieids 8. 556 11956). Smeltzer, ' ~ $ 7 . i ~ .f. . I ! Grant, N. .J., .\letu1 P r o p . 69 ( h 76 (19561. (2U12! Groot, C , L . b .Atomic I iiert.\ ('omm . HW-41797 f 1956 1 (211. Giilbransen. 1;. .2.. .\ndrew, li. I.'.. I ?

\

,

A m . Soc. Trsting %laterialsSpl i i i i n x . LV.. Plansir /'roc. 1955, 13U. Hirashinia. h l . . .J. Afi)l. I'hys. 27, 05 [ 10.56 J.

(251,

iiriiitirol

E n X . Rei,,. 15 11 1 I. 46

[ 1 9 56 ).

(2912I Alaynor. H . LV,, SLvif't, K.E,. ( . O I J O srnn 12, 293t (,19S6), (301.) lfc,i.jt%ring. .1. I,.. /'/Q7tSf'f' P ~ o 1956, . p. 405. (311.1 l I o o r e , L). G.. Cuthill. J . Iii./nd. Khirn. 29, 810 (1956). (351,'i Pray. H. .\.. P ~ o p l r K. ~ , S.. L.. h . .\tornic 1,;nrrqy Coinm., BMI-T55 (1955). (361,) Radavich. .J. F., A m , So(-.'l'rstinc.

14 (1955). 1371.) lbid., p. 83. (381, 1 Raub. E., Platt-, LV., .\IP~Q/!10, (,?I) 119.36). (3912) Renqstorff, \ V . P.. .I. \ f ~ t n / 8, s 171 ( 1 956 1. (4(1I.! Khodin, T. S . . C'oriosion 12, 113t ( I 956). 1411. I lbid.. D. 46.5 (1956 I. (42L 1 Robin's. D. :\., J;nkin.;. I . , f'iuntfv /'roc. 1956, p. 187. ( 4 3 L Koyrn, P..Kainhardt, H.! L. m n o t ~ . 11. nllgeni. Chem. 281, 18 (19551. (441,) Sachs, K.3il.ie/a/lurgzn 54, 109 (1956 :. (451+ Sch\vartz, C. hf., Vauqhn, 11. .\.. Cocks, G. G., U. S. Xtomic €XIergy Comm., BMI-793 (1355). ( 4 6 L ) Sprnglcr. H.. .liefall 10, 617 ( 1 9 5 6 I. (~, 4 7 1 J Thoinas. D. E.. Proc. Zti/Prn. C071f. Ptacejui I 'rrs Atomic L w r q y ~ r n r: ii, paprr 537 (1 956). (48L) Thomas. D. €:.! Forscher, I'.. . f . .\Ietnis 8, 640 (1956). (49L) Thomas. D. E.. Kass. S. J., J . I&ctro(501.) C s o v . V.V., Maraveva, E. hi., biz. .Iletul. i .Clrtalloi ed. Ai,ad. .\hui. S.S.S.R. 2, 552 (1956). (511.) it'anklyn. .T. S . . .Y(itu1e 177, 849 11956). (521,) \Vehb. W.LV., Sorton, .T. C, LVaqner, C., ./. Ek'lrctrochpm. S u r . 103, 112 (19561. (.53L) $\'hittineham. G.. Corrosion 7.wItiid. 1, 182 (1954). (541.1 \Vood, D. I>.. .I. ,tletals 8, 1252 (1956). (55L) Yearian, H. J., Kandell, 1;. C : , . Lonqo. T. .A,. (Ihrrn.rion 12, 51 5 t [ 1956 1. (561.) Zima. G. L , , .Ifeta/ Proqr. 70 ( 9 ) . 214 (1956).