0.
h a r d spheres of d i a m e t e r
fluid
The Z
as i n d i c a t e d i n E q u a t i o n 20.
The
t e r m is the C S e q u a t i o n
(pd?)
H S
for
d
it
U s i n g E q u a t i o n s 18 a n d 19, a n e q u i v a l e n t f o r m of E q u a t i o n 20 m a y be expressed i n terms of k n o w n c r i t i c a l constants.
Zi = Z™(pb q> V ) Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
k
ik
(21)
-\
Σ
ν et +
Σ Σ
f y V
cj
( 0 P
+aZ-(p,T)]=0.
(32)
I n this case the r i g h t side of E q u a t i o n 27 becomes o n l y Z(p), w h i c h is f u r n i s h e d d i r e c t l y b y t h e e q u a t i o n of state as i n E q u a t i o n 30. T h i s is c a l l e d the h i g h - t e m p e r a t u r e l i m i t a n d at some t e m p e r a t u r e c o n d i t i o n s of interest, e s p e c i a l l y at l o w densities, t h e o p t i m a l diameters a p p r o a c h i t closely. T h e s e diameters are a l w a y s s m a l l e r t h a n t h e h i g h - d e n s i t y l i m i t of B i e n k o w s k i a n d C h a o . T h e s e l i m i t s are v e r y n e a r l y u p p e r a n d l o w e r b o u n d s f o r t h e o p t i m a l diameters a l t h o u g h they d o n o t closely a p p r o a c h the u p p e r b o u n d at a n y c o n c e i v a b l e density of interest. A f e w cases at l o w d e n s i t y s h o w e d t h e optimal diameter very slightly below the h i g h temperature limit. T h e d i s c r e p a n c y is easily w i t h i n t h e e x p e r i m e n t a l u n c e r t a i n t y , h o w e v e r .
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
84
EQUATIONS OF STATE
Determination
of
Optimal
Diameters
from
Isochores
W e m u s t n o w c o n s i d e r a m o r e g e n e r a l m e t h o d for use w h e n these l i m i t i n g c o n d i t i o n s are n o t a p p l i c a b l e .
Determining Z
H S
( p d ) w i t h the 3
o p t i m a l d i a m e t e r at a g i v e n finite t e m p e r a t u r e a n d d e n s i t y is c a r r i e d out b y c o n s i d e r i n g a l i m i t e d t e m p e r a t u r e r a n g e a l o n g a n isochore given density.
T h i s t e m p e r a t u r e r a n g e is selected to locate t h e
t e m p e r a t u r e as n e a r to the center of the r a n g e as possible.
at the given
Isochores
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
extrapolate s m o o t h l y into t h e t w o - p h a s e r e g i o n a n d i n t h e l i q u i d p h a s e at l o w e r t e m p e r a t u r e s i n the r a n g e these extrapolations m a y e v e n p r o d u c e n e g a t i v e c o m p r e s s i b i l i t y factors w i t h o u t adverse effects o n the s o l u t i o n for the diameters.
P r o p e r t i e s a l o n g the isochore c a n be o b t a i n e d either
f r o m d i r e c t e x p e r i m e n t a l d a t a o r f r o m a n e q u a t i o n of state w h i c h r e p r e sents i s o c h o r i c b e h a v i o r w e l l .
If s u c h a n e q u a t i o n of state is u s e d , t h e
t e m p e r a t u r e r a n g e selected m u s t b e s h i f t e d to h i g h e r values i f necessary to i n s u r e t h a t (dP/dp)
T
as c a l c u l a t e d b y the e q u a t i o n is p o s i t i v e at e a c h
t e m p e r a t u r e v a l u e w i t h i n the range. T h e w i d t h of the r a n g e is selected i d e a l l y to d e t e r m i n e at a g i v e n t e m p e r a t u r e a n d d e n s i t y , Γ a n d p, the first a n d s e c o n d d e r i v a t i v e s of t h e dimensionless p r o p e r t y w i t h respect to inverse t e m p e r a t u r e s a n d to p r e d i c t t h e p r o p e r t y at e a c h t e m p e r a t u r e i n t h e r a n g e w i t h a n a c c u r a c y w i t h i n its e x p e r i m e n t a l error b y a q u a d r a t i c f u n c t i o n .
F o r example, if
the
c o m p r e s s i b i l i t y factor is b e i n g e v a l u a t e d , the values of ζ at ρ at e a c h p o i n t i n the r a n g e a b o u t Τ are fit b y least squares t o : ζ = α
0
(
Ρ
(33)
) + ? ψ - + ψ -
I n this w o r k a r a n g e w a s selected c o n s i s t i n g of e l e v e n t e m p e r a t u r e s , 10° F apart, i n c l u d i n g t h e g i v e n t e m p e r a t u r e .
I f (dP/dp)
T
is p o s i t i v e at e a c h
t e m p e r a t u r e , the r a n g e consists of five t e m p e r a t u r e s a b o v e a n d five t e m peratures b e l o w the g i v e n v a l u e ; o t h e r w i s e , t h e r a n g e is s h i f t e d u p w a r d so t h a t t h e l o w e s t t e m p e r a t u r e i n the r a n g e is n e a r e r to the g i v e n t e m p e r a ture.
If (dP/dp)
T
is n e g a t i v e at the g i v e n t e m p e r a t u r e t h e m e t h o d is
i n o p e r a b l e at the g i v e n c o n d i t i o n s .
V a r y i n g t h e w i d t h of t h e r a n g e d i d
not affect the results as l o n g as the c o n d i t i o n s d e s c r i b e d f o r i t w e r e met. A t e v e r y d e n s i t y s t u d i e d , E q u a t i o n 33 gave a n excellent r e p r o d u c t i o n of ζ values a l o n g the 1 0 0 ° F r a n g e as defined here. T h e v a l u e of ψ for the q u a d r a t i c fit of the isochore i n this l i m i t e d r a n g e is defined as ψ to i n d i c a t e that i t contains t w o i n v e r s e t e m p e r a t u r e 2
terms. C o n s e q u e n t l y , f r o m E q u a t i o n 3 3 :
* * = - ( ^ + ψ )
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(34)
4.
CHANG ET AL.
Molecular
Diameters
for Fluid
85
Mixtures
W e c a n find the t e m p e r a t u r e d e p e n d e n c e t h a t is n o t a c c o u n t e d f o r b y t h e q u a d r a t i c fit b y c o m p a r i n g ψ w i t h 2
the m a x i m u m p o s s i b l e
range
a n d assuming that ψ
describes
Λ
of temperatures.
T h e difference
is d e
fined as
(ψ* - φ )
δ =
(35)
2
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
since t h e H S E p s e u d o c r i t i c a l values f o r the excess over t h e h a r d - s p h e r e b e h a v i o r w e r e d e r i v e d b y c o n s i d e r i n g o n l y terms i n ( 1 / T ) a n d ( 1 / T ) i n its e x p a n s i o n .
2
F u r t h e r m o r e , these terms i n v o l v e d o n l y p a i r w i s e c o n
t r i b u t i o n s f r o m t h e a t t r a c t i v e p o r t i o n of t h e i n t e r m o l e c u l a r p o t e n t i a l . C o n s e q u e n t l y , at c o n d i t i o n s w h e r e t h e coefficients a\ a n d a i n E q u a t i o n 2
34 c o n t a i n p r e d o m i n a t l y a t t r a c t i v e c o n t r i b u t i o n s of this t y p e , the aZ~(p, T) t e r m i n E q u a t i o n 2 7 contains n o t r i p l e t p o t e n t i a l effects of o r d e r C o n s e q u e n t l y , i t is e n t i r e l y i n c l u d e d a m o n g (1/T)
3
i n t h e ψ expression.
(1/T) . 2
t h e interactions of
order
I f a n e x p a n s i o n of Z (p, T ) i n p o w e r s o f +
χ
1 / T gives coefficients of ( 1 / T ) a n d ( 1 / T )
2
w h i c h are n e g l i g i b l e i n c o m
p a r i s o n w i t h t h e a t t r a c t i v e c o n t r i b u t i o n s to these terms, t h e i r presence w i l l n o t a p p r e c i a b l y affect t h e Γ p s e u d o a t t r a c t i o n p a r a m e t e r p r e d i c t e d b y t h e H S E theory.
C o n s e q u e n t l y , t h e o n l y soft-sphere
contributions
w h i c h need to be i n c l u d e d i n the hard-sphere term b y adjusting the d i a m e t e r are those i n terms of o r d e r ( 1 / T )
3
and higher i n the
term.
I n this case, t h e difference b e t w e e n ψ» a n d ψ represents a l l terms o f 2
h i g h e r o r d e r t h a n 1 / T w h i c h n e e d to b e c o m b i n e d i n t o t h e h a r d - s p h e r e 3
result.
T h i s difference
terms of o r d e r
(1/T)
defines t h e δ p a r a m e t e r i n E q u a t i o n 35. I f a l l 3
were
zero, t h e best Z (pd! ) v a l u e at these HS
3
conditions w o u l d be the a leading term i n E q u a t i o n 33 for the quadratic Q
fit. W i t h corrections for the h i g h e r o r d e r terms, t h e best Z ( p d ) v a l u e is HS
Z
H S
3
(,d ) — ( a - S ) 8
(36)
0
T h e n e g a t i v e s i g n is t h e result of t h e c o n t r i b u t i o n to ζ as g i v e n b y —φ as d e f i n e d i n E q u a t i o n s 26 a n d 34. E q u a t i o n 36 m a y b e r e g a r d e d as t h e best a p p r o x i m a t i o n to E q u a t i o n 2 7 u n d e r these c o n d i t i o n s . T h e l i m i t s of v a l i d i t y of E q u a t i o n 36 are i n d i c a t e d b y t h e m a g n i t u d e a n d s i g n of t h e a (p) t e r m i n E q u a t i o n 34. T h e assumptions l e a d i n g t o 2
E q u a t i o n 36 b e c o m e i n v a l i d at h i g h densities. b e l o w pV ~ 0.6, δ ^ c
0, a n d a ~ 0
A t the lowest
densities
Z(p), t h e h i g h - t e m p e r a t u r e l i m i t of
the e q u a t i o n of state i n E q u a t i o n 30. T h e a (p) i n E q u a t i o n 34 is s m a l l 2
a n d negative. A s densities increase a b o v e pV =
0.6 t h e absolute v a l u e
of a begins to increase w h i l e i t is s t i l l n e g a t i v e .
P r e s u m a b l y this means
c
2
an a t t r a c t i o n c o n t r i b u t i o n is b e i n g r e p r e s e n t e d .
P o s i t i v e c o n t r i b u t i o n s of
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
86
EQUATIONS OF
STATE
t h e soft r e p u l s i o n are a p p a r e n t l y s t i l l n e g l i g i b l e a n d E q u a t i o n 36, w h i c h r e q u i r e s this, is s t i l l v a l i d . T h i s causes the v a l u e of δ i n E q u a t i o n 35 to be n e g a t i v e a n d Z As
i n E q u a t i o n 36 increases.
H S
d e n s i t y increases
decrease.
f u r t h e r t h e absolute
v a l u e of
a
2
begins
A l t h o u g h i t s t i l l r e m a i n s n e g a t i v e at this p o i n t , the
to
absolute
v a l u e of δ is a m a x i m u m . T h e a t e r m , w h i c h is b e c o m i n g less n e g a t i v e 2
i n this w a y , is c o n s i d e r e d to b e a l t e r e d b y the onset of the p o s i t i v e c o n t r i b u t i o n s of soft r e p u l s i o n w h i c h at these densities begins to affect the coefficient of ( 1 / T ) . Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
2
T h i s m a x i m u m s i n |δ| a n d \a \ o c c u r at a r e d u c e d 2
d e n s i t y of a b o u t 1.6 T h e r e d u c e d d e n s i t y of 1.6 is c o n s i d e r e d to be the u p p e r l i m i t of the v a l i d i t y of E q u a t i o n 36.
A t densities h i g h e r t h a n this |δ| a n d \a \ 2
decrease r a p i d l y a n d a itself e v e n t u a l l y becomes p o s i t i v e , i n t e r p r e t e d as 2
its d o m i n a t i o n b y p o s i t i v e soft-repulsion effects.
Diameters from Equation
36 g i v e p o o r results i n this r e g i o n . T h e r e is no w a y t h a t these soft effects c a n be separated f r o m a t t r a c t i o n effects a n d the o p t i m a l d i a m e t e r c a n not be c a l c u l a t e d . T h e diameters c a n b e p r e d i c t e d o n c e m o r e at v e r y h i g h densities where a
2
has b e c o m e v e r y l a r g e a n d p o s i t i v e , i n d i c a t i n g d o m i n a n c e
the second-order t e r m b y s o f t - r e p u l s i o n effects.
three b o d y c o n t r i b u t i o n s to this t e r m are no l o n g e r
negligible.
o p t i m a l diameters t h e n are o b t a i n e d b y p l a c i n g a l l of the (1/T)
2
of
It is also v e r y l i k e l y that The
second-order
t e r m i n the h a r d - s p h e r e e q u a t i o n since it is n o w r e p u l s i o n d o m i
n a t e d . T h e t e m p e r a t u r e r a n g e u s e d for the q u a d r a t i c fit is r e d u c e d f r o m 100° to 5 0 ° F w i t h the g i v e n t e m p e r a t u r e near the center of this shorter range. T h e objective is n o w to o b t a i n a n accurate r e p r e s e n t a t i o n of e a c h ζ v a l u e i n the r a n g e b y a least-squares fit of the l i n e a r r e l a t i o n :
z =
+
a/
(37)
^f
T h e ai t e r m is a l w a y s n e g a t i v e at r e a d i l y accessible densities. S i n c e n o n e of the n e g a t i v e 1 / T d e p e n d e n c e s h o u l d a p p e a r i n t h e h a r d - s p h e r e e q u a t i o n a n d E q u a t i o n 37 represents the ζ values a c c u r a t e l y i n the shorter r a n g e , the best Z
H S
result i s : Z
H S
(38)
(pd ) = O o ' 3
E q u a t i o n 38 t h e n is s o l v e d for t h e d i a m e t e r . T h i s l i n e a r fit m e t h o d gives excellent results for the o p t i m a l d i a m e t e r at r e d u c e d densities of
about
2.4 a n d h i g h e r . T h e r e d u c e d d e n s i t y r e g i o n b e t w e e n 1.6 a n d 2.4 is thus a n i n d e t e r m i n a n t r e g i o n . A s a first a p p r o x i m a t i o n , t h e best Z
H S
( p d ) values i n this 3
r e g i o n w e r e a s s u m e d to be g i v e n b y a spline-fit i n t e r p o l a t i o n b e t w e e n
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4.
CHANG E T AL.
p o i n t s at p
R
Molecular
Diameters
> 2.4 a n d those at p
R
for Fluid
87
Mixtures
< 1.6. F o r l i q u i d s at l o w temperatures
t h e i n d e t e r m i n a n t r e g i o n is l e n g t h e n e d b e c a u s e t h e l i q u i d n o l o n g e r c a n b e e x t r a p o l a t e d to r e d u c e d densities n e a r 1.6 because of the s t a b i l i t y l i m i t . L o w d e n s i t y values at p
R
< 0.6 are s t i l l o b t a i n a b l e b y e q u a t i n g Z
H S
(pd ) 3
to t h e h i g h - t e m p e r a t u r e l i m i t of t h e e q u a t i o n of state. T h e b e h a v i o r of t h e q u a d r a t i c a n d l i n e a r fit m e t h o d s is s h o w n i n F i g u r e 1.
T h e i n t e r p r e t a t i o n of t h e a
coefficient b e h a v i o r i n terms of
2
s o f t - r e p u l s i o n effects i n the q u a d r a t i c fit a (p)
assumes t h a t t h e d a t a fitted
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
z
6.0|
1
1
/>v Figure 1.
Computation
of Z
HS
-j
Γ
c
from BWR-S
equation (CH
k
at T / T = c
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.0)
88
EQUATIONS O F STATE
to t h e isochores gives a v a l i d s e c o n d d e r i v a t i v e w i t h respect t o 1 / Γ . T h i s m a y n o t b e t h e case f o r values g e n e r a t e d
by the B W R - S
R e g a r d l e s s of this, t h e q u a d r a t i c fit m e t h o d b e l o w p = R
fit m e t h o d a t p
R
equation.
1.6 a n d t h e l i n e a r
> 2.4 g i v e excellent results f o r t h e o p t i m a l d i a m e t e r s .
This was checked
b y increasing a n d decreasing Z
H S
(pd ) 3
about the
p r e d i c t e d v a l u e a n d n o t i n g t h e effect o n t h e p r e d i c t e d m i x t u r e p r o p e r t i e s . T h e weakest prediction for Z
H S
( p d ) is i n t h e spline-fit r e g i o n . A t y p i c a l 3
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
result o f this test o n t h e p r e d i c t e d v a l u e is s h o w n i n T a b l e II.
Table II. Effect of Z on Calculated ζ i n the Incalculable Region for 2 H S
H S e
HS
%
Z
5.31 1.77
2.73 3.39 (α -8) 0
Error
=3.48-> 0.29 0 -0.99 -2.23
3.68" 3.74 ' 3.94 4.21 50% C H ; 50% C H . Τ = 160°F; Ρ = 5000 psia. * B y spline fit between Z „ at p > 2.4 and Z at p < 1.6. Predicted by interpolation to 0% error.
α
4
3
8
s
H S
R
R
c
Application
of the
Method
A l t h o u g h o n l y c o m p r e s s i b i l i t y factor c a l c u l a t i o n s are u s e d example
i n t h e e x p l a n a t i o n of t h e m e t h o d , o t h e r p r o p e r t i e s
as a n can be
p r e d i c t e d e q u a l l y w e l l . B e c a u s e of t h e t e m p e r a t u r e a n d d e n s i t y d e p e n d ence of t h e diameters a n d shape factors n e e d e d to relate t h e m t o c r i t i c a l constants i t is best to d e t e r m i n e separate values of t h e m f o r e a c h c o m ponent.
T h r e e basic d i m e n s i o n l e s s p r o p e r t i e s
should be determined.
T h e s e are t h e ones best s u i t e d to t h e use of t h e H S E m e t h o d w i t h a n e q u a t i o n of state i n terms of t e m p e r a t u r e a n d d e n s i t y .
These are the
c o m p r e s s i b i l i t y factor, z; t h e i n t e r n a l e n e r g y d e v i a t i o n ( U * —
U)/RT;
a n d a dimensionless f u g a c i t y r a t i o , l n ( f / p R T ) . A l l o t h e r d e s i r e d p r o p e r ties c a n b e o b t a i n e d f r o m t h e m . T h e l n ( f / p R T ) similarly.
a n d ζ are calculated
T h e c o m p u t a t i o n scheme is o u t l i n e d as s h o w n i n T a b l e III.
Table III. Shape Factors and Diameters for Nonconformal Fluids with U n k n o w n Potentials Example for Compressibility Factor 1. Calculate Z™{pr°)
di and d =Z
i
H S
from:
r
(p °) i
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4.
Molecular
CHANG E T A L .
Diameters
Table III.
for Fluid
89
Mixtures
Continued
o b t a i n e d f r o m p u r e - c o m p o n e n t equations of state b y m e t h o d r e p o r t e d i n t h i s c h a p t e r (22). C o n d i t i o n s a t w h i c h shape factors are e v a l u a t e d (28) : p VCP m
Pr
(V ) c
p
m
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
and
,
ο pi° =
pmVCP (V )^i c
r
= mixture density S o l v e for φ a t t r i a l V C P . έ
T o force c o n f o r m a l i t y betwen C o m p o n e n t i a n d Reference r: 1 + V+ V
2
Î
S o l v e for η S o l v e f o r d: 1/3
1/3
and
di =
Calculate
0 :
d
r
Np ° r
2.
ir
to force c o n f o r m a l i t y between C o m p o n e n t i a n d Reference r: Ζ,ίρΛΓ, )
Z (pr°,
0
T °)
r
Î
τ
f r o m e q u a t i o n of state o r k n o w n v a l u e s f o r pure p o l a r fluid
from equation of state for the pure nonpolar reference fluid
3
d?
I« ( di ) 0
Pl
3
Z
+
r
]
E X A
î asymmetric excess calculated below
(kT-ψ}
Ti° = t e m p e r a t u r e a t w h i c h ^ m u s t be e v a l u a t e d i n a m i x t u r e (28). U s i n g p r e v i o u s l y c a l c u l a t e d d solve for Ti° : h
Calculate 0 at trial T C P value from T ° : ir
T
C
p
(TJidir v*c/»"*r
{
a —n d
T *° r
r
=
Tu
(T )r e
N o w c a l c u l a t e new T C P a n d V C P a n d repeat u n t i l t h e y a r e constant.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
90
EQUATIONS O F STATE
F o r (U* — U)/RT
n o h a r d - s p h e r e p r o p e r t y c a l c u l a t i o n s are m a d e a n d
the a t e r m of t h e q u a d r a t i c fit a l o n g t h e c o m p r e s s i b i l i t y f a c t o r isochores 0
c a n be e q u a t e d to Z
H S
(pd ). 3
T h i s is t h e n s o l v e d for t h e d i a m e t e r u s e d
i n the p s e u d o p a r a m e t e r c o m p u t a t i o n s . C a l c u l a t e d results f o r m e t h a n e a n d p r o p a n e o b t a i n e d b y H w u (22) w i t h a n ethane reference are p r e s e n t e d i n T a b l e I V . T h e B W R - S e q u a
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
t i o n is u s e d f o r a l l p u r e c o m p o n e n t s . Table I V . P
T h e agreement is g e n e r a l l y excellent.
Compressibility Factors—Density"
Exp"
Cale.
HSE
(psia)
(lb-mol/ff?)
(lb-mol/ft )
200 400 800 1000 3000 5000 7000 9000
0.0322 0.0692 0.1648 0.2252 0.6760 0.7955 0.8636 0.9091
0.0321 0.0691 0.1666 0.2333 0.6778 0.7955 0.8631 0.9101
Cale.
Exp"
HSE
ζ
ζ
0.9351 0.8692 0.7313 0.6670 0.6676 0.9451 1.2189 1.4886
0.9369 0.8696 0.7228 0.6448 0.6645 0.9446 1.2191 1.4866
3
*Sage and Lacey {23).
T h e p o o r e r results at 1000 p s i a a p p a r e n t l y are d u e to a weakness i n t h e B W R - S reference e q u a t i o n at this p o i n t . I t c o i n c i d e s w i t h t h e m i n i m u m of t h e c u r v e of ζ vs. P .
_
T a b l e V shows the c o m p u t a t i o n s b y H w u f o r Η * — Η i n a m e t h a n e p r o p a n e m i x t u r e i n c o m p a r i s o n w i t h t h e p r e d i c t i o n s of M o l l e r u p 18) u s i n g t h e V D W o n e - f l u i d t h e o r y w i t h shape factors.
(16,17,
T h e improve
m e n t of t h e H S E m e t h o d is v e r y slight. T h e t h e o r e t i c a l advantages o f the H S E m e t h o d f o r e n t h a l p y c a l c u l a t i o n s m a y b e offset here b y u s i n g a g e n e r a l l y p o o r e r reference e q u a t i o n of state t h a n that u s e d b y M o l l e r u p . T a b l e V I presents p r e l i m i n a r y c a l c u l a t i o n s b y C h a n g (24) p o l a r - n o n p o l a r m i x t u r e . T h e h i g h e s t pressures m a y b e i n v a l i d
for a because
they w e r e m a d e before t h e m e t h o d f o r e v a l u a t i n g t h e o p t i m a l d i a m e t e r s was developed.
T h e s e c o m p u t a t i o n s use t h e h i g h - t e m p e r a t u r e l i m i t of
the B W R - S e q u a t i o n f o r Z
H S
( p d ) to o b t a i n t h e d i a m e t e r . I t w a s h o p e d 3
that c o m p a r i s o n w i t h t h e B W R - S e q u a t i o n w o u l d s h o w a m o r e d i s t i n c t a d v a n t a g e of t h e t h e o r e t i c a l c o m p o s i t i o n d e p e n d e n c e of the H S E m e t h o d . I n fact, t h e t w o m e t h o d s
g i v e a b o u t t h e same results.
Probably no
c o n c l u s i o n a b o u t this c a n b e d r a w n f r o m t h e c o m p a r i s o n because t h e constants d e t e r m i n e d b y H o p k e a n d L i n (25)
for t h e B W R - S e q u a t i o n
w e r e o b t a i n e d b y fitting t h e e q u a t i o n to this b i n a r y . T h e results are g i v e n i n the c o l u m n headed B W R S E .
T h e test of t h e i m p r o v e d c o m p o s i t i o n
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4.
CHANG E T AL.
Molecular
Table V .
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
τ (Of)
e 5 e
Diameters
for Fluid
E n t h a l p y Calculations of Ρ
Expt."
91
Mixtures (H — H*)
M-R
HSE
c
( psia)
(Btu/lb)
(Btu/lb)
(Btu/lb)
100
250 1250 1750
-20.4 -142.4 -143.6
-18.5 -142.4 -143.1
-19.3 -144.0 -144.4
50
750 1250 1750
-157.1 -156.1 -155.5
-154.9 -154.8 -154.3
-156.8 -156.3 -156.0
0
750 1250 1750
-169.3 -168.5 -167.1
-167.1 -166.2 -165.1
-168.3 -167.4 -166.5
-50
750 1250 1750
-180.7 -179.3 -178.0
-178.6 -177.2 -175.8
-178.4 -177.1 -176.0
23.4% C H , 76.6% C H . Yesavage-Powers (24). Mollerup-Rowlinson (16,17,18). 4
3
8
Table V I . Calculated T h e r m o d y n a m i c Properties for Methane—Carbon D i o x i d e M i x t u r e at 100°F P
Ζ
(psia)
Expt. (23)
BWR-SE Xj
200 600 800 1000 2000 3000 4000 5000 7000 9000
0.9512 0.8347 0.7830 0.7160 0.4438 0.4958 0.5921 0.6947 0.8982 1.1012
β
0.9606 0.8584 0.8360 0.7921 0.6100 0.6055 0.7755
HSE =
0.9491 0.8748 0.8305 0.7855 0.6056 0.6031 0.7678
=
(A -
A*;
(A -
A*
RT
RT
BWR-SE
HSE
-0.0507 -0.1670 -0.2357 -0.3150 -0.8184 -0.9831 -1.0336 -1.0561 -1.0722 -1.0724
-0.0503 -0.1653 -0.2331 -0.3116 -0.8080 -0.9613 -1.0153 -1.0389 -1.0556 -1.0557
-0.0469 -0.1309 -0.1807 -0.2308 -0.5268 -0.6928 -0.7838
-0.0408 -0.1303 -0.1791 -0.2336 -0.5302 -0.6870 -0.7747
0.2035 ° 0.9500 0.8443 0.7836 0.7165 0.4518 0.5033 0.5992 0.6999 0.9087 1.1058
0.9489 0.8400 0.7787 0.7121 0.4458 0.4942 0.5910 0.6941 0.9005 1.1025 X/
200 600 800 1000 2000 3000 5000
Ζ
Ζ
04055 0.9595 0.8771 0.8336 0.7873 0.6067 0.6067 0.7748
The χι = mole fraction methane.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
92
EQUATIONS OF STATE
d e p e n d e n c e w i l l h a v e to a w a i t c a l c u l a t i o n s w h e n a t h i r d c o m p o n e n t
is
a d d e d , m a k i n g a m i x t u r e not i n c l u d e d i n the fitting of the constants. It is e n c o u r a g i n g that a t h e o r e t i c a l l y b a s e d m e t h o d for a m i x t u r e of a n o n p o l a r s y m m e t r i c p o t e n t i a l fluid, m e t h a n e , a n d a s t r o n g q u a d r a p o l e
fluid,
C0 , 2
p r o d u c e s s u c h g o o d results. T h e n o n p o l a r reference fluid w a s m e t h a n e . Conclusions
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
I n s u m m a r y the results s h o w that i t is i n d e e d p o s s i b l e to e x t e n d the H S E m e t h o d successfully to m i x t u r e s c o n t a i n i n g p o l a r m o l e c u l e s .
Meth
ods h a v e b e e n d e v e l o p e d to o b t a i n effective diameters a n d shape factors w h i c h are o p t i m a l for use w i t h the H S E theory. A l t h o u g h the d e t e r m i n a t i o n of d i a m e t e r s for fluids w i t h u n k n o w n p o t e n t i a l f u n c t i o n s w i t h these m e t h o d s is not possible at a l l densities, e n o u g h c a l c u l a t i o n s c a n b e m a d e to a l l o w a c o r r e l a t i o n b y fitting the results to the V W equations f o r the o p t i m a l d i a m e t e r w i t h the p e r t u r b a t i o n theory.
T h e success of t h e V W
d i a m e t e r s for the H S E t h e o r y w a s c o n f i r m e d . T h e results o b t a i n e d encourage f u t u r e s t u d y a n d illustrate the p o w e r of c o n f o r m a i s o l u t i o n methods. It is reasonable to expect t h a t the excellent a c c u r a c y o b t a i n e d b y M o l l e r u p (16,17,18)
w i t h the V D W
one-fluid
t h e o r y for n a t u r a l gas m i x t u r e s c a n be e x p e c t e d w i t h t h e H S E t h e o r y for p o l a r m i x t u r e s a n d other systems i n w h i c h there are large d i s s i m i l a r i ties b e t w e e n the c o m p o n e n t s a n d the reference
fluid.
Nomenclature English a
u
Letters a = coefficients of 1 / T a n d ( 1 / T ) e q u a t i o n of state 2
2
i n a n e x p a n s i o n of a n
a = u n i v e r s a l p r o p o r t i o n a l i t y constant b e t w e e n c a n d T fluids c o n f o r m a i w i t h fluid k fc
c
for a l l
A = dimensionless r e s i d u a l H e l m h o l t z free e n e r g y f u n c t i o n A = m o l a l H e l m h o l t z free e n e r g y at a g i v e n Τ a n d Ρ A * = m o l a l H e l m h o l t z free e n e r g y at Τ a n d Ρ i f the fluid o b e y e d t h e p e r f e c t gas l a w b
fc
= u n i v e r s a l p r o p o r t i o n a l i t y constant b e t w e e n σ a n d V fluids c o n f o r m a i w i t h fluid k 3
c
for a l l
b , B = constants i n the B W R S t a r l i n g e q u a t i o n of state 0
0
d = effective h a r d - s p h e r e d i a m e t e r d = p s e u d o p a r a m e t e r u s e d to f o r m t h e r e d u c e d d e n s i t y i n p r e d i c t i n g the m o l e c u l a r a t t r a c t i o n c o n t r i b u t i o n t o a m i x t u r e property 3
f =
fugacity
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4.
CHANG ET AL.
g
Molecular
Diameters
for Fluid
93
Mixtures
= r a d i a l d i s t r i b u t i o n f u n c t i o n for a n if p a i r i n a m i x t u r e w i t h other constituents gREF = r a d i a l d i s t r i b u t i o n f u n c t i o n for a p a i r i n a p u r e reference fluid i ;
M
gHs _
r a
d i i d i s t r i b u t i o n f u n c t i o n for a p a i r of h a r d spheres i n a a
hard-sphere
fluid
H = molal enthalpy k = B o l t z m a n n ' s constant Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
Ν = Avogadro's number Ρ =
pressure
Q =
quadrapole moment
r =
s e p a r a t i o n distance b e t w e e n a p a i r of m o l e c u l a r centers
R = gas constant Τ = T
c
temperature
= critical temperature
u = intermolecular pair potential T7 = m o l a l i n t e r n a l e n e r g y V = V
c
volume
= critical volume
x = m o l e f r a c t i o n of constituent i i n a m i x t u r e {
X = any dimensionless t h e r m o d y n a m i c p r o p e r t y of a
fluid
ζ = c o m p r e s s i b i l i t y factor Ζ = c o m p r e s s i b i l i t y factor of a h a r d - s p h e r e Z
+
fluid
= c o n t r i b u t i o n of soft r e p u l s i o n to a n e q u a t i o n of state expressed i n terms of the c o m p r e s s i b i l i t y f a c t o r
Z " = c o n t r i b u t i o n of i n t e r m o l e c u l a r a t t r a c t i o n to a n e q u a t i o n of state expressed i n terms of the c o m p r e s s i b i l i t y f a c t o r Greek
Letters a = f r a c t i o n of the a t t r a c t i v e c o n t r i b u t i o n to e x p a n d e d equations of state d u e to terms of order ( 1 / T ) a n d h i g h e r a n d threeb o d y interactions of order ( 1 / T ) a n d h i g h e r 3
2
/? =
l/kT
δ = p a r a m e t e r u s e d i n o b t a i n i n g the effective h a r d - s p h e r e d i a m e t e r f r o m isochores 8
V W
= p a r a m e t e r i n the V e r l e i t - W e i s e q u a t i o n for the effective hard-sphere diameter
c = L e n n a r d - J o n e s p a r a m e t e r f o r the a l g e b r a i c m i n i m u m i n the pair potential 7 = p s e u d o p a r a m e t e r u s e d to f o r m t h e r e d u c e d t e m p e r a t u r e i n p r e d i c t i n g the m o l e c u l a r a t t r a c t i o n c o n t r i b u t i o n to m i x t u r e properties. μ, = d i p o l e m o m e n t π = 3.141516
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
94
EQUATIONS O F STATE
η = dimensionless d e n s i t y i n t h e C a r n a h a n - S t a r l i n g e q u a t i o n φ · = shape f a c t o r coefficient of V to m a k e f l u i d i c o n f o r m a i w i t h fluid / ρ = density ί;
P r
c i
= reduced density, Ρ V
c
σ = L e n n a r d - J o n e s p a r a m e t e r f o r t h e finite s e p a r a t i o n distance at w h i c h the i n t e r m o l e c u l a r p o t e n t i a l is z e r o $ij = shape factor coefficient of T to m a k e fluid i c o n f o r m a i w i t h a reference fluid /. ( F o r a c o m m o n reference t h e s e c o n d s u b s c r i p t is sometimes o m i t t e d . ) $ij = coefficient o f t h e B e r t h e l o t c o m b i n i n g r u l e f o r u n l i k e ij p a i r i n t e r a c t i o n potentials φ = t e m p e r a t u r e d e p e n d e n t p o r t i o n of a d i m e n s i o n l e s s e q u a t i o n of state
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
ci
Acknowledgment T h e t h e o r e t i c a l studies c o n c e r n i n g t h e test of t h e H S E m e t h o d w i t h m i x t u r e s of L J m o l e c u l e s a n d t h e w o r k i n v o l v e d i n e x t e n d i n g t h e m e t h o d to p o l a r m o l e c u l e s w e r e s u p p o r t e d b y t h e N a t i o n a l Science F o u n d a t i o n . T h e w o r k o n evaluating molecular diameters from P V T data a n d from pure-component
equations of state w a s s u p p o r t e d b y t h e G a s R e s e a r c h
Institute.
Literature Cited 1. Mansoori, G. Α.; Carnahan, N . F.; Starling, Κ. E.; Leland, T. W. J. Chem. Phys. 1971, 54, 1523. 2. Bienkowski, P. R.; Deneholz, H. S.; Chao, K. C. AIChE J. 1973, 19, 167. 3. Mansoori, G. Α.; Leland, T. W. J. Chem.Soc.,Faraday Trans. II 1972, 68, 320. 4. Carnahan, N . F.; Starling, Κ. E. J. Chem. Phys. 1969, 51, 635. 5. Verlet, L.; Weis, J. J. Phys. Rev. A 1972, 5, 939. 6. Weeks, J. D.; Chandler, D.; Andersen, H . C. J. Chem. Phys. 1971, 54, 5237. 7. Barker, J. Α.; Henderson, D. J. Chem. Phys. 1967, 47, 4714. 8. Singer, J. V. L.; Singer, K. Mol. Phys. 1972, 24, 357. 9. Leland, T. W.; Rowlinson, J. S.; Sather, G. A. Trans. Faraday Soc. 1968, 64, 1447. 10. Leland, T. W.; Rowlinson, J. S.; Watson, I. D. Trans. Faraday Soc. 1969, 65, 2034. 11. Grundke, E. W.; Henderson, D.; Barker, J. Α.; Leonard, P. J. Mol Phys. 1973, 25, 883. 12. Pople, J. A. Proc. R. Soc. London, Ser. A 1954, 221, 508. 13. Mo, K. C.; Gubbins, Κ. E. J. Chem. Phys. 1975, 63, 1490. 14. Stell, G.; Rasaiah, J.; Narang, H. Mol. Phys. 1972, 23, 393. 15. Rowlinson, J. S.; Watson, I. D. Chem. Eng. Sci. 1969, 24, 1565. 16. Mollerup, J.; Rowlinson, J. S. Chem. Eng. Sci. 1974, 29, 1373. 17. Mollerup, J. Adv. Cryog. Eng. 1975, 20, 172. 18. Ibid., 1978, 23, 550.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by NORTH CAROLINA STATE UNIV on December 5, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch004
4. CHANG ET AL. Molecular Diameters for Fluid Mixtures
95
19. Hsu, R. "Thermodynamic Properties of Mixtures by the Hard Sphere Expansion Theory," M.S. Thesis, Rice University, 1977. 20. Starling, Κ. E. Hydrocarbon Process. 1972, 50. 21. Ibid., 1973, 51. 22. Hwu, F. S. S. M.S. Thesis, Rice University, 1978. 23. Sage, B. H.; Lacey, W. H. "A.P.I. Project 37"; American Petroleum Insti tute: New York, 1950. 24. Chang, J. I. C. "Improvement of the Hard Sphere Expansion Conformal Solution Theory," M.S. Thesis, Rice University, 1978. 25. Lin, C. J.; Hopke, S. W. "Application of the BWRS Equation to Natural Gas Systems," presented at National A.I.Ch.E. Meeting, Tulsa, Okla homa, March 1974. 26. Reamer, H . H.; Olds, R. H.; Sage, Β. H.; Lacey, W. N . Ind. Eng. Chem. 1944, 88. 27. Bienkowski, P. R.; Chao, K. C. J. Chem. Phys. 1975, 63, 4217. 28. Leach, J. W.; Chappelear, P. S.; Leland, T. W. Proc. Am. Pet. Inst., Sec. 3 1966, 46, 223. 29. Leach, J. W.; Chappelear, P. S.; Leland, T. W. AIChE J. 1968, 14, 568. RECEIVED September 21, 1978.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.