Subscriber access provided by University of Colorado Anschutz Medical Campus Health Sciences Library
Note
FeCl3-Mediated Synthesis of beta-Alkynyl Ketones via domino Nucleophilic-Substitution/ Intramolecular-Cyclization/ Reverse Claisen Condensation of N-cyclohexyl Propargylamines and 1,3-Diketones Yongjia Shang, Xiaoqian Hu, Xinwei He, Jiajia Tao, Guang Han, Fuli Wu, and Jie Wang J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 31 Mar 2015 Downloaded from http://pubs.acs.org on March 31, 2015
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
FeCl3-Mediated Synthesis of β-Alkynyl Ketones via domino Nucleophilic-Substitution/ Intramolecular-Cyclization/ Reverse Claisen Condensation of N-cyclohexyl Propargylamines and 1,3-Diketones
Yongjia Shang,* Xiaoqian Hu, Xinwei He, Jiajia Tao, Guang Han, Fuli Wu, Jie Wang
The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
Corresponding Author: Prof. Y.J. Shang Email:
[email protected] Fax: +86-553-5910126
Abstract Graphic
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 24
Abstract: The synthesis of β-alkynyl ketones was achieved in good to excellent yields by an iron-catalyzed domino reaction of N-cyclohexyl propargylamines and 1,3-diketones.
A
plausible
mechanism
involving
nucleophilic
substitution,
intramolecular cyclization, and reverse Claisen condensation for this process is proposed.
Because β-alkynyl carbonyl derivatives are versatile intermediates that lead to various useful structures, such as pyran, furan, and pyrrole derivatives,1 many research efforts have been focused on the efficient synthesis of these derivatives. An efficient route to β-alkynyl carbonyl derivatives is the classic Nicholas reaction, using propargylic ethers and stoichiometric amount of Co2(CO)8, which unavoidably leads to the generation of significant amount of metallic waste.2 In this context, the development of alternative, atom-economical approaches to β-alkynyl carbonyl derivatives is a highly desired goal. One common strategy to achieve this goal is the catalytic direct conjugate addition reaction of terminal alkynes to electron-deficient alkenes under the catalysis of various metal catalysts, including palladium,3 copper,4 rhodium,5 ruthenium,6 zinc,7 and cobalt8 complexes. Another strategy to access β-alkynyl carbonyl derivatives is the intramolecular nucleophilic substitution of propargylic substrates with an enolate-type nucleophile. However, examples with this strategy are rare. In recent years, iron salts, being effective, alternative, and promising transition-metal catalysts, have received much more attention because of their low
ACS Paragon Plus Environment
Page 3 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
cost, abundance, and environmentally benign properties.9 In particular, FeCl3 has been widely applied as a Lewis acid catalyst for the catalytic synthesis of heterocyclic compounds,10,9a
multicomponent
reactions,11
cross-coupling
reactions,12
and
cyclization reactions.13 Previously, we developed an efficient synthesis approach for coumarins and polysubstituted pyridines using FeCl3-catalyzed cascade and multicomponent reactions.14 As part of our ongoing efforts devoted to iron-catalyzed organic reactions, herein, we report a novel synthetic pathway to β-alkynyl ketones involving
an
FeCl3-catalyzed
domino
nucleophilic-substitution/intramolecular-cyclization/reverse
process Claisen
of
condensation
catalyzed by FeCl3 under mild conditions in good to excellent yields (Scheme 1).
Scheme 1. Synthesis of β-alkynyl ketones via FeCl3-catalyzed domino reactions of N-cyclohexyl propargylamines and 1,3-diketones. In a preliminary study, N-cyclohexyl propargylamines 1 were prepared via the A3-coupling reaction of salicylaldehydes, piperidine, and terminal alkynes using CuI as the catalyst, according to the literature procedure.15 As an exploratory experiment, 1a and 2a were chosen as model substrates to optimize the reaction conditions, with results presented in Table 1. Neither reducing the catalyst loading nor increasing the catalyst loading of FeCl3 increased the yield further (Table 1, entries 1, 2 and 4). Replacing FeCl3 with other
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 24
Lewis acids, such as CuBr2, CuI, Sc(OTf)3, or Brønsted acid (H2SO4), all led to inferior results (Table 1, entries 5-8). No reaction occurred in the absence of the catalyst (Table 1, entry 9). Changing the solvent to CH2Cl2, THF, DMF and DMSO reduced the yields to 30%, 31%, 15% and 27%, respectively (Table 1, entries 17-19, 21). When H2O or 1,4-dioxane was used as the solvent, the desired product was obtained in very low yield (Table 1, entries 20 and 22). Interestingly, when EtOH was used as the solvent, only the compound of 2-(1-ethoxy-3-phenylprop-2-yn-1-yl) phenol was isolated in 92% yield (Table 1, entry 15). Thus, the optimal reaction conditions were found to be 50 mol% catalyst of FeCl3 with CH3CN as the solvent at 80 °C for 24 h (Table 1, entry 3). Table 1. Optimization of the reaction conditions.a
entry
catalyst
solvent
temp. /oC
time /h
yield /%
1b
FeCl3
CH3CN
80
24
45
2c
FeCl3
CH3CN
80
24
80
3
FeCl3
CH3CN
80
24
89
4d
FeCl3
CH3CN
80
24
87
5
CuBr2
CH3CN
80
24
trace
6
H2SO4
CH3CN
80
24
trace
ACS Paragon Plus Environment
Page 5 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
a
7
Sc(OTf)3
CH3CN
80
24
63
8
CuI
CH3CN
80
24
10
9
—
CH3CN
80
24
0
10
FeCl3
CH3CN
r.t.
24
trace
11
FeCl3
CH3CN
60
24
67
12
FeCl3
CH3CN
100
24
89
13
FeCl3
CH3CN
80
5
10
14
FeCl3
CH3CN
80
12
72
15
FeCl3
CH3CH2OH
80
24
trace e
16
FeCl3
CH3OH
80
24
trace
17
FeCl3
CH2Cl2
60
24
30
18
FeCl3
THF
80
24
31
19
FeCl3
DMF
80
24
15
20
FeCl3
H2O
80
24
trace
21
FeCl3
DMSO
80
24
27
22
FeCl3
1,4-dioxane
80
24
trace
Reaction conditions: 2-(3-phenyl-1-(piperidin-1-yl)prop-2-yn-1-yl)
phenol 1a (1.0 mmol), acetylacetone 2a (1.0 mmol), catalyst, solvent (5 mL). b 20 mol% of catalyst was used. c 40 mol% of catalyst was used.
d
1.0
equiv.
of
catalyst
was
used.
e
2-(1-ethoxy-3-phenylprop-2-yn-1-yl)phenol was obtained in 92% yield as the main product after 24 h.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 24
With the optimal reaction conditions in hand, various aromatic propargylic amines 1 and 1,3-diketones 2 were examined to test the scope and limitation of this cascade reaction; the results are summarized in Table 2. In most cases, the desired β-alkynyl ketones were smoothly generated in good to excellent yields. Both acetylacetone (2a) and benzoylacetone (2b) were found to yield the desired products, with the former providing relatively higher yields of the products. Among the various N-cyclohexyl propargylamines 1 were examined, electron-donating R1 groups (-CH3) resulted in higher yields than when R1 was an electron-withdrawing group (-Cl, -Br) (Table 2, entries 6, 7, 17, 18). The reaction was affected significantly by the steric effect. No product was detected with tert-butyl group at the ortho- and para- position of the hydroxyl of N-cyclohexyl propargylamines (1m) (Table 2, entries 10, 23). The structure of product 3j was unambiguously confirmed by the X-ray crystallographic analysis as shown in Figure 1 in the Supporting Information (SI). Table 2. FeCl3-catalyzed domino reaction for the formation of β-alkynyl ketones. a
Entry
R1, R2, R3
R4
Product
Yield (%)
2a (CH3)
3a
89
1
1a (H, H, H)
2
1b (H, H, 4-CH3)
2a
3b
91
3
1c (H, H, 4-Cl)
2a
3c
87
4
1d (H, H, 2-F)
2a
3d
86
ACS Paragon Plus Environment
Page 7 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
a
5
1e (H, H, 4-F)
2a
3e
89
6
1f (CH3, H, H)
2a
3f
93
7
1g (CH3, H, 4-CH3)
2a
3g
92
8
1h (Cl, H, 4-CH3)
2a
3h
89
9
1i (Br, H, 4-CH3)
2a
3i
87
10
1m (tert-butyl, tert-butyl, H)
2a
-
NR b
11
1a (H, H, H)
2b (Ph)
3j
86
12
1b (H, H, 4-CH3)
2b
3k
85
13
1c (H, H, 4-Cl)
2b
3l
79
14
1d (H, H, 2-F)
2b
3m
82
15
1e (H, H, 4-F)
2b
3n
83
16
1f (CH3, H, H)
2b
3o
84
17
1g (CH3, H, 4-CH3)
2b
3p
85
18
1h (Cl, H, 4-CH3)
2b
3q
77
19
1i (Br, H, 4-CH3)
2b
3r
78
20
1j (H, H, 4-OCH3)
2b
3s
68
21
1k (Cl, H, H)
2b
3t
78
22
1l (Br, H, H)
2b
3u
75
23
1m (tert-butyl, tert-butyl, H)
2b
-
NR c
Reaction conditions: aromatic propargylic amines 1 (1.0 mmol),
1,3-Diketones 2 (1.0 mmol), FeCl3 (0.5 mmol), CH3CN (10 mL), 80 °C, 24 h. b No reaction.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 24
A plausible mechanism was proposed for this domino process based on our experimental results and literature reports.16 First, N-cyclohexyl of 1a obtained a proton from phenol hydroxyl group to become the phenoxide intermediate A. Subsequently, intermediate A attacks the carbonyl of intermediate B, the complex form of diketone 2a and Fe(III) ion, to form the intermediate C. Next, intermediate E results from intramolecular nucleophilic substitution and releases piperidine. Finally, a reverse Claisen condensation reaction of intermediate E in the presence of FeCl3 as a Lewis acid followed by a proton transfer process generates the desired product 3a.
N
H N
OH
O 1a
O
OH A
O
Fe3+
O
FeCl3 (Lewis acid)
2a O
O
H N
OH O
H N C
D
B
N H
O
O
FeCl3 (Lewis acid) reverse Claisen condensation
O
O
HO
3a
O OH
O
O
F OH
O E
Scheme 2. Proposed mechanism for the formation of β-alkynyl ketones via FeCl3-catalyzed domino process of N-cyclohexyl propargylamines and 1,3-diketones. To
support
the
reaction
mechanism,
the
substrate
of
2-(phenyl(piperidin-1-yl)methyl)phenol (1n) was synthesized by the Petasis boronic Mannich reaction of salicylaldehyde, phenylboronic acid and piperidine, according to the literature procedure,17 which then reacted with acetylacetone (2a) under the
ACS Paragon Plus Environment
Page 9 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
optimized reaction condition (Scheme 3). As expect, the desired product 2-(3-oxo-1-phenylbutyl)phenyl acetate was obtained in 80% yield.
Scheme 3. Synthesis of 2-(3-oxo-1-phenylbutyl)phenyl acetate via FeCl3-catalyzed domino reactions of 2-(phenyl(piperidin-1-yl)methyl)phenol (1n) and acetylacetone (2a). In conclusion, we have developed an iron-promoted method for the synthesis of β-alkynyl
ketones
in
good
to
excellent
yields
through
the
nucleophilic-substitution/intramolecular-cyclization/ reverse Claisen condensation of N-cyclohexyl propargylamines and 1,3-diketones. The notable advantages of this method are the mild reaction conditions, the inexpensive and efficient eco-friendly catalyst, and use of base-free and ligand-free conditions, under air. This methodology is highly facile and efficient and can be a useful basis for the synthesis of other interesting alkynyl ketone compounds. The resulting β-alkynyl ketones are versatile building blocks in the construction of heterocyclic architectures prevalent in natural products.
Experimental Section General comments Unless otherwise specified, all reagents and starting materials were purchased from
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 24
commercial sources and used as received, and the solvents were purified and dried using standard procedures. The chromatography solvents were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. The 1H and 13
C NMR data were recorded on 300 MHz NMR spectrometers, unless otherwise
specified. Chemical shifts (δ) in parts per million are reported relative to the residual signals of chloroform (7.26 ppm for 1H and 77.16 ppm for were recorded with proton broadband decoupling
13
C), and all
13
C NMR
and indicated as 13C{1H}NMR.
Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and the coupling constants (J) are reported in Hertz. HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios in atomic mass units. IR spectra were measured as dry films (KBr), and the peaks are reported in terms of wavenumber (cm-1). General procedure for the synthesis of 2-(5-oxo-1-phenylhex-1-yn-3-yl)phenyl acetate (3a). Anhydrous FeCl3 (0.50 mmol, 81 mg) was added to a stirred solution of N-cyclohexyl propargylamines 1a (1 mmol, 306 mg), acetylacetone 2a (1 mmol, 100 mg) in acetonitrile (5 mL). The mixture was heated at 80 °C for 24 h in an oil bath and then cooled down to room temperature. The mixture was washed by water, diluted with CH2Cl2 (3 × 10 mL). Organic layers were combined, dried over Na2SO4, filtered, and then evaporated in vacuum. The residue was further purified by flash
ACS Paragon Plus Environment
Page 11 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
column chromatography on silica gel with ethyl acetate and petroleum ether as the eluting solvent to afford the product 3a in 89% yield. 2-(5-Oxo-1-phenylhex-1-yn-3-yl)phenyl acetate (3a). Petroleum ether/ethyl acetate 16:1, 89% yield (272 mg), yellow oil; 1H NMR (300 MHz, CDCl3,) δ 7.60 (dd, J = 1.8 Hz, J = 7.2 Hz, 1H), 7.38-7.41 (m, 2H), 7.24-7.31 (m, 5H), 7.06 (dd, J = 1.5 Hz, J = 8.1 Hz, 1H), 4.53 (dd, J = 5.1 Hz, J = 8.4 Hz, 1H), 3.02 (dd, J = 8.4 Hz, J = 16.2 Hz, 1H), 2.81 (dd, J = 5.1 Hz, J = 16.8 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 205.6, 169.5, 147.8, 132.6, 131.7, 129.3, 128.3, 128.1, 126.5, 123.1, 89.6, 82.7, 50.2, 30.6, 28.4, 21.0 ppm; IR (KBr) ν 1763, 1717, 1597, 1489, 1443, 1368, 1200, 1169, 1096, 1011, 912, 820, 758, 692, 667, 590, 496 cm-1; HRMS (ESI) calcd for [C20H18O3 + H]+ 307.1329, found 307.1333. 2-(5-Oxo-1-(p-tolyl)hex-1-yn-3-yl)phenyl acetate (3b). Petroleum ether/ethyl acetate 16:1, 91% yield (291 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.56 (dd, J = 1.8 Hz, J = 7.2 Hz, 3H), 7.20-7.28 (m, 4H), 7.02-7.18 (m, 3H), 4.48 (dd, J = 4.8 Hz, J = 8.4 Hz, 1H), 2.98 (dd, J = 8.7 Hz, J = 16.8 Hz, 1H), 2.77 (dd, J = 5.1 Hz, J = 16.5 Hz, 1H),2.29 (s, 6H), 2.15 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ205.6,
169.4, 147.8, 138.1, 132.7, 131.5, 129.3, 129.0, 128.2, 126.4, 123.0, 120.1, 88.8, 82.8, 50.3, 30.6, 28.5, 21.4, 21.0 ppm; IR (KBr) ν 1767, 1717, 1609, 1510, 1487, 1368, 1202, 1169, 1096, 1011, 947, 912, 818, 756, 664, 532, cm-1; HRMS (ESI) calcd for [C21H20O3 + Na]+ 343.1305, found 343.1309. 2-(1-(4-Chlorophenyl)-5-oxohex-1-yn-3-yl)phenyl
acetate
(3c).
Petroleum
ether/ethyl acetate 16:1, 87% yield (295 mg), yellow oil; 1H NMR (300 MHz, CDCl3)
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 24
δ 7.55 (dd, J = 2.4 Hz, J = 7.5 Hz, 1H), 7.05 (dd, J = 1.5 Hz, J = 7.5 Hz, 1H), 7.22-7.33 (m, 7H), 4.51 (dd, J = 5.1 Hz, J = 8.4 Hz, 1H), 3.02 (dd, J = 8.4 Hz, J = 16.8 Hz, 1H), 2.81 (dd, J = 5.1 Hz, J = 17.1 Hz, 1H), 2.32 (s, 3H), 2.18 (s, 3H) ppm; 13
C NMR (75 MHz, CDCl3) δ 205.4, 169.4, 147.8, 134.0, 132.9, 132.4, 129.2, 128.6,
128.4, 126.5, 123.1, 121.6, 90.7, 81.5, 50.0, 30.5, 28.3, 21.0 ppm; IR (KBr) ν 1765, 1717, 1489, 1368, 1202, 1169, 1092, 1042, 1013, 912, 829, 758, 667, 559, 527, cm-1; HRMS (ESI) calcd for [C20H17O3Cl + H]+ 341.0939, found 341.0945. 2-(1-(2-Fluorophenyl)-5-oxohex-1-yn-3-yl)phenyl
acetate
(3d).
Petroleum
ether/ethyl acetate 16:1, 86% yield (278 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.63 (dd, J = 2.1 Hz, J = 7.2 Hz, 1H), 7.22-7.40 (m, 4H), 7.01-7.10 (m, 3H), 4.58 (dd, J = 5.1 Hz, J = 8.7 Hz, 1H), 3.04 (dd, J = 8.7 Hz, J = 16.5 Hz, 1H), 2.81 (dd, J = 5.1, J = 16.8 Hz, 1H), 2.34 (s, 3H), 2.20 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 205.5, 169.5, 164.5(1JCF = 249 Hz), 161.2, 147.8, 133.5, 132.3, 129.8, 129.7, 129.3, 128.4, 126.5, 123.9, 123.0, 115.5, 115.2, 95.0, 76.2, 50.1, 30.6, 28.5, 21.0 ppm; IR (KBr) ν 1765, 1716, 1574, 1491, 1450, 1369, 1202, 1094, 1042, 1011, 947, 912, 758, 667, 554 cm-1; HRMS (ESI) calcd for [C20H17O3F + H]+ 325.1235, found 325.1236. 2-(1-(4-Fluorophenyl)-5-oxohex-1-yn-3-yl)phenyl
acetate
(3e).
Petroleum
ether/ethyl acetate 16:1, 89% yield (288 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.57 (dd, J = 1.5 Hz, J = 7.2 Hz, 1H), 7.22-7.39 (m, 4H), 7.06 (dd, J = 1.5 Hz, J = 8.1 Hz, 1H), 6.94 (t, J = 8.7 Hz, 2H), 4.52 (dd, J = 5.1 Hz, J = 8.7 Hz, 1H), 3.02(dd, J = 8.4 Hz, J = 16.5 Hz, 1H), 2.81 (dd, J = 5.4 Hz, J = 17.1 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 205.5, 169.5, 164.0(1JCF=247 Hz), 160.7,
ACS Paragon Plus Environment
Page 13 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
147.8, 133.6, 133.4, 132.5, 129.2, 128.3, 126.5, 123.1, 115.6, 115.3, 89.3, 81.5, 50.1, 30.5, 28.3, 21.0 ppm; IR (KBr) ν 1767, 1717, 1601, 1506, 1369, 1202, 1169, 1094, 1013, 912, 839, 756, 662, 561, 492 cm-1; HRMS (ESI) calcd for [C20H17FO3 + H]+ 325.1235, found 325.1238. 4-Methyl-2-(5-oxo-1-phenylhex-1-yn-3-yl)phenyl acetate (3f). Petroleum ether/ethyl acetate 16:1, 93% yield (297 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.38-7.41 (m, 3H), 7.25-7.28 (m, 3H), 7.07-7.10 (m, 1H), 6.93 (d, J = 8.1 Hz, 1H), 4.48 (dd, J = 5.4 Hz, J = 9.0 Hz, 1H), 3.01 (dd, J = 8.7 Hz, J = 16.5 Hz, 1H), 2.80 (dd, J = 4.8 Hz, J = 16.2 Hz, 1H), 2.35 (s, 3H), 2.31 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 205.6, 169.7, 136.1, 132.1, 131.7, 129.7, 128.9, 128.2, 128.0, 122.7, 89.7, 82.6, 50.2, 30.5, 28.4, 21.0 ppm; IR (KBr) ν 1763, 1719, 1597, 1491, 1423, 1368, 1190, 1101, 1011, 905, 829, 758, 692, 544 cm-1; HRMS (ESI) calcd for [C21H20O3 + Na]+ 343.1305, found 343.1309. 4-Methyl-2-(5-oxo-1-(p-tolyl)hex-1-yn-3-yl)phenyl
acetate
(3g).
Petroleum
ether/ethyl acetate 16:1, 92% yield (307 mg), saffron yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.38 (s, 1H), 7.28 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 6.9 Hz, 3H), 6.93 (d, J = 8.7 Hz, 1H), 4.47 (dd, J = 5.1 Hz, J = 8.4 Hz, 1H), 3.00 (dd, J = 8.7 Hz, J = 7.8 Hz, 1H), 2.79 (dd, J = 4.5 Hz, J = 16.5 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H), 2.19 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ 205.6, 169.7, 145.5, 138.0, 136.1,
132.2, 131.5, 129.7, 128.9, 128.8, 122.7, 120.1, 88.8, 82.7, 50.3, 30.6, 28.5, 21.4, 21.0 ppm; IR (KBr) ν 1763, 1717, 1510, 1497, 1418, 1368, 1192, 1101, 1042, 1011, 905, 818, 635, 538 cm-1; HRMS (ESI) calcd for [C22H22O3 + H]+ 335.1642, found
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 24
335.1644. 4-Chloro-2-(5-oxo-1-(p-tolyl)hex-1-yn-3-yl)phenyl
acetate
(3h).
Petroleum
ether/ethyl acetate 16:1, 89% yield (315 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.58 (d, J = 2.7 Hz, 1H), 7.23-7.30 (m, 3H), 7.08 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 9.0 Hz, 1H), 4.53 (dd, J = 5.1 Hz, J = 9.0 Hz, 1H), 3.00 (dd, J = 8.7 Hz, J = 16.8 Hz, 1H), 2.77 (dd, J = 5.4 Hz, J = 16.5 Hz, 1H), 2.33 (s, 3H), 2.32 (s, 3H), 2.19 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ 205.2, 169.2, 146.3, 138.3, 134.7, 131.7, 131.6,
129.2, 129.0, 128.2, 124.4, 119.7, 88.0, 83.3, 50.0, 30.5, 28.2, 21.5, 20.9 ppm; IR (KBr) ν 1765, 1717, 1601, 1510, 1481, 1404, 1368, 1196, 1165, 1109, 1042, 1011, 897, 818, 692, 529 cm-1; HRMS (ESI) calcd for [C21H19O3Cl + H]+ 355.1096, found 355.1097. 4-Bromo-2-(5-oxo-1-(p-tolyl)hex-1-yn-3-yl)phenyl
acetate
(3i).
Petroleum
ether/ethyl acetate 16:1, 87% yield (346 mg), saffron yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 2.1 Hz, 1H), 7.39-7.42 (m, 1H), 7.26-7.30 (m, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 8.7 Hz, 1H), 4.49 (dd, J = 5.1 Hz, J = 8.4 Hz, 1H), 3.01 (dd, J = 8.7 Hz, J = 16.8 Hz, 1H), 2.78 (dd, J = 5.1 Hz, J = 16.8 Hz, 1H), 2.33 (s, 3H), 2.32 (s, 3H), 2.20 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ 205.2, 169.2, 146.8,
138.3, 135.1, 132.2, 132.5, 131.2, 131.1, 129.0, 124.8, 119.7, 119.4, 87.9, 83.3, 50.0, 30.6, 28.1, 21.5, 21.0 ppm; IR (KBr) ν 1763, 1717, 1510, 1497, 1418, 1368, 1192, 1101, 1042, 1011, 908, 818, 681, 596, 536 cm-1; HRMS (ESI) calcd for [C21H19O3Br + H]+399.0590, found 399.0581. 2-(5-Oxo-1,5-diphenylpent-1-yn-3-yl)phenyl acetate (3j). Petroleum ether/ethyl
ACS Paragon Plus Environment
Page 15 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
acetate 16:1, 86% yield (316 mg), white solid; mp = 111-113 °C; 1H NMR (300 MHz, CDCl3) δ 7.97-8.00 (m, 2H), 7.68 (dd, J = 1.8 Hz, J = 7.2 Hz, 1H), 7.54-7.60 (m, 1H), 7.43-7.49 (m, 2H), 7.23-7.35 (m, 7H), 7.08 (dd, J = 1.8 Hz, J = 7.2 Hz, 1H), 4.75 (dd, J = 4.8 Hz, J = 9.0 Hz, 1H), 3.63 (dd, J = 8.7 Hz, J = 16.2 Hz, 1H), 3.30 (dd, J = 4.8 Hz, J = 16.5 Hz, 1H), 2.32 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 197.0, 169.5, 147.9, 136.8, 133.3, 132.9, 131.6, 129.4, 128.7, 128.3, 128.2, 128.0, 126.5, 123.2, 123.1, 89.8, 82.9, 45.6, 28.9, 21.1, ppm; IR (KBr) ν 1761, 1688, 1489, 1369, 1196, 1094, 910, 760, 691, 503 cm-1; HRMS (ESI) calcd for [C25H20O3 + H]+ 369.1485, found 369.1485. 2-(5-Oxo-5-phenyl-1-(p-tolyl)pent-1-yn-3-yl)phenyl
acetate
(3k).
Petroleum
ether/ethyl acetate 16:1, 85% yield (324 mg), white solid; mp = 101-103 °C; 1H NMR (300 MHz, CDCl3) δ 7.93 (dd, J = 1.5 Hz, J = 6.6 Hz, 2H), 7.63 (dd, J = 2.1 Hz, J = 7.5 Hz, 1H), 7.50-7.56 (m, 1H), 7.40-7.45 (m, 2H), 7.17-7.28 (m, 4H), 7.00-7.07 (m, 3H), 4.70 (dd, J = 4.5 Hz, J = 8.4 Hz, 1H), 3.59 (dd, J = 8.4 Hz, J = 13.8 Hz, 1H), 3.26 (dd, J = 4.8 Hz, J = 16.5 Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 197.1, 169.5, 147.9, 138.0, 136.8, 133.3, 133.0, 131.5, 129.4, 128.9, 128.7, 128.3, 126.4, 123.1, 120.1, 89.0, 83.0, 45.6, 29.0, 21.4, 21.1 ppm; IR (KBr) ν 1761, 1686, 1595, 1508, 1489, 1450, 1366, 1198, 1094, 1011, 912, 822, 756, 691, 584, 530 cm-1; HRMS (ESI) calcd for [C26H22O3 + H]+ 383.1642, found 383.1642. 2-(1-(4-Chlorophenyl)-5-oxo-5-phenylpent-1-yn-3-yl)phenyl acetate (3l). Petroleum ether/ethyl acetate 16:1, 79% yield (317 mg), white solid; mp = 115-117 °C; 1H NMR (300 MHz, CDCl3) δ 7.96-7.99 (m, 2H), 7.63 (dd, J = 1.8 Hz, J = 7.2 Hz, 1H),
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 24
7.55-7.60 (m, 1H), 7.44-7.49 (m, 2H), 7.19-7.34 (m, 7H), 7.08 (dd, J = 1.5 Hz, J = 7.5 Hz, 1H), 4.72 (dd, J = 5.4 Hz, J = 9.0 Hz, 1H), 3.62 (dd, J = 9.0 Hz, J = 16.8 Hz, 1H), 3.30 (dd, J = 5.1 Hz, J = 16.5 Hz, 1H), 2.31 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 196.9, 169.5, 147.9, 136.7, 133.9, 133.4, 132.9, 132.6, 129.3, 128.7, 128.5, 128.4, 128.2, 126.5, 123.1, 121.7, 90.8, 81.8, 45.4, 28.8, 21.1 ppm; IR (KBr) ν 1751, 1690, 1585, 1580, 1489, 1447, 1369, 1356, 1207, 1092, 1013, 916, 827, 760, 689, 594, 525 cm-1; HRMS (ESI) calcd for [C25H19O3Cl + H]+ 403.1096, found 403.1095. 2-(1-(2-Fluorophenyl)-5-oxo-5-phenylpent-1-yn-3-yl)phenyl
acetate
(3m).
Petroleum ether/ethyl acetate 16:1, 82% yield (316 mg), white solid; mp = 77-79 °C; 1
H NMR (300 MHz, CDCl3) δ 7.95-7.98 (m, 2H), 7.71 (dd, J = 2.1 Hz, 6.9 Hz, 1H),
7.54-7.56 (m, 1H), 7.43-7.48 (m, 2H), 7.19-7.35 (m, 4H), 7.08 (dd, J = 2.1 Hz, J = 7.2 Hz, 1H), 6.98-7.04 (m, 2H), 4.80 (dd, J = 4.5 Hz, J = 8.1 Hz, 1H), 3.64 (dd, J = 8.7 Hz, J = 17.1 Hz, 1H), 3.32 (dd, J = 5.4 Hz, J = 16.8 Hz, 1H), 2.32 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 196.9, 169.4, 164.5 (1JCF=249 Hz), 161.3, 147.9, 136.7, 133.6, 133.3, 132.6, 129.7, 129.6, 129.4, 128.6, 128.4, 128.2, 126.5, 123.8, 123.0, 115.5, 115.2, 95.2, 76.3, 45.6, 28.9, 21.0 ppm; IR (KBr) ν 1757, 1686, 1595, 1580, 1489, 1445, 1371, 1252, 1200, 1094, 912, 814, 734 cm-1; HRMS (ESI) calcd for [C25H19O3F + H]+ 387.1391, found 387.1390. 2-(1-(4-Fluorophenyl)-5-oxo-5-phenylpent-1-yn-3-yl)phenyl
acetate
(3n).
Petroleum ether/ethyl acetate 16:1, 83% yield (320 mg), pale yellow solid; mp = 80-82 °C; 1H NMR (300 MHz, CDCl3) δ 7.97-8.00 (m, 2H), 7.66 (dd, J = 1.8 Hz, J = 7.2 Hz, 1H), 7.56-7.58 (m, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.24-7.35 (m, 4H), 7.08 (dd,
ACS Paragon Plus Environment
Page 17 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
J = 1.5 Hz, J = 7.8 Hz, 1H), 6.91-6.97 (m, 2H), 4.73 (dd, J = 4.5 Hz, J = 8.7 Hz, 1H), 3.62 (dd, J = 9.0 Hz, J = 16.8 Hz, 1H), 3.31 (dd, J = 4.8 Hz, J = 16.5 Hz, 1H), 2.32 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ 196.9, 169.5, 163.9 (1JCF=248 Hz), 160.6,
147.9, 136.7, 133.5, 133.4, 132.7, 129.4, 128.7, 128.4, 128.2, 126.5, 123.1, 115.5, 115.3, 89.5, 81.8, 45.4, 28.8, 21.0 ppm; IR (KBr) ν, 1763, 1688, 1597, 1504, 1449, 1368, 1223, 1198, 501, 1096, 910, 843, 758, 691, 532 cm-1; HRMS (ESI) calcd for [C25H19O3F + H]+ 387.1391, found 387.1393. 4-Methyl-2-(5-oxo-1,5-diphenylpent-1-yn-3-yl)phenyl
acetate
(3o).
Petroleum
ether/ethyl acetate 16:1, 84% yield (320 mg), white solid; mp = 88-90 °C; 1H NMR (300 MHz, CDCl3) δ 8.01 (s, 1H), 7.98 (d, J = 1.2 Hz, 1H), 7.56-7.58 (m, 1H), 7.45-7.50 (m, 3H), 7.32-7.36 (m, 2H), 7.24-7.26 (m, 3H), 7.10 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.70 (dd, J = 4.8 Hz, J = 8.7 Hz, 1H), 3.63 (dd, J = 9.0 Hz, J = 16.8 Hz, 1H), 3.29 (dd, J = 5.1 Hz, J = 16.5 Hz, 1H), 2,37 (s, 3H), 2.31 (s, 3H) ppm; 13
C NMR (75 MHz, CDCl3) δ 197.1, 169.7, 145.7, 136.8, 136.2, 133.3, 132.4, 131.7,
129.9, 128.9, 128.7, 128.3, 128.2, 127.9, 123.3, 122.8, 89.9, 82.8, 45.6, 28.9, 21.1 ppm; IR (KBr) ν 1763, 1686, 1595, 1489, 1449, 1366, 1213, 1188, 1099, 1009, 899, 766, 689, 530, 505 cm-1; HRMS (ESI) calcd for [C26H22O3 + H]+ 383.1642, found 383.1643. 4-Methyl-2-(5-oxo-5-phenyl-1-(p-tolyl)pent-1-yn-3-yl)phenyl
acetate
(3p).
Petroleum ether/ethyl acetate 16:1, 85% yield (336 mg), white solid; mp = 87-89 °C; 1
H NMR (300 MHz, CDCl3) δ 7.97-8.00 (m, 2H), 7.44-7.58 (m, 4H), 7.24 (d, J = 7.2
Hz, 1H), 7.21 (s, 1H), 7.04-7.12 (m, 3H), 6.96 (d, J = 7.8 Hz, 1H), 4.69 (dd, J = 4.5
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 24
Hz, J = 8.4 Hz, 1H), 3.62 (dd, J = 9.0 Hz, J = 16.8 Hz, 1H), 3.28 (dd, J = 4.5 Hz, J = 16.5 Hz, 1H), 2.37 (s, 3H), 2.31 (s, 6H) ppm; 13C NMR (75 MHz, CDCl3) δ 197.2, 169.7, 145.7, 137.9, 136.9, 136.1, 133.3, 132.5, 131.5, 129.9, 128.9, 128.7, 128.3, 122.8, 120.2, 89.1, 82.9, 45.7, 28.9, 21.4, 21.1 ppm; IR (KBr) ν 1748, 1690, 1508, 1447, 1356, 1221, 1207, 1196, 818, 758, 690 cm-1; HRMS (ESI) calcd for [C27H24O3 + H]+ 397.1798, found 397.1799. 4-Chloro-2-(5-oxo-5-phenyl-1-(p-tolyl)pent-1-yn-3-yl)phenyl
acetate
(3q).
Petroleum ether/ethyl acetate 16:1, 77% yield (320 mg), saffron yellow solid; mp = 97-99 °C; 1H NMR (300 MHz, CDCl3) δ 7.97-8.00 (m, 2H), 7.68 (d, J = 2.4 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.22-7.29 (m, 3H), 7.03-7.08 (m, 3H), 4.73 (dd, J = 4.8 Hz, J = 8.7 Hz, 1H), 3.63 (dd, J = 8.7 Hz, J = 16.8 Hz, 1H), 3.27(dd, J = 5. 1 Hz, J = 16.5 Hz, 1H), 2.32 (s, 6H) ppm; 13C NMR (75 MHz, CDCl3) δ 196.7, 169.2, 146.4, 138.2, 136.6, 135.0, 133.4, 131.7, 131.6, 129.4, 129.0, 128.7, 128.3, 124.5, 119.8, 88.2, 83.5, 45.4, 28.7, 21.5, 21.0 ppm; IR (KBr) ν 1751, 1692, 1597, 1508, 1477, 1447, 1371, 1204, 1163, 1107, 1007, 901, 816, 760, 692, 498 cm-1; HRMS (ESI) calcd for [C26H21O3Cl + H]+ 417.1252, found 417.1251. 4-Bromo-2-(5-oxo-5-phenyl-1-(p-tolyl)pent-1-yn-3-yl)phenyl
acetate
(3r).
Petroleum ether/ethyl acetate 16:1, 78% yield (358 mg), pale yellow oil; 1H NMR (300 MHz, CDCl3) δ 8.01 (d, J = 7.2 Hz, 2H), 7.86 (d, J = 2.4 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.44-7.54 (m, 3H), 7.28 (d, J = 4.5 Hz, 1H), 7.26 (s, 1H), 7.02 (dd, J = 7.8 Hz, 22.8 Hz, 3H), 4.76 (dd, J = 4.8 Hz, J = 8.4 Hz, 1H), 3.67 (dd, J = 8.4 Hz, 16.2 Hz, 1H), 3.30 (dd, J = 4.8 Hz, J = 16.5 Hz, 1H), 2.36 (s, 6H) ppm; 13C NMR (75 MHz,
ACS Paragon Plus Environment
Page 19 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
CDCl3) δ 196.7, 169.1, 147.0, 138.2, 136.7, 135.3, 133.4, 132.3, 131.5, 131.2, 129.0, 128.7, 128.3, 124.8, 119.8, 119.4, 88.2, 83.5, 45.5, 28.7, 21.4, 20.9 ppm; IR (KBr) ν 1767, 1684, 1597, 1510, 1477, 1449, 1368, 1120, 1161, 1103, 1009, 816, 689, 754, 592, 529 cm-1; HRMS (ESI) calcd for [C26H21O3Br + H]+ 461.0747, found 461.0752. 2-(1-(4-Methoxyphenyl)-5-oxo-5-phenylpent-1-yn-3-yl)phenyl
acetate
(3s).
Petroleum ether/ethyl acetate 16:1, 68% yield (270 mg), white oil; 1H NMR (300 MHz, CDCl3) δ 7.96-7.99 (m, 2H), 7.66-7.69 (m, 1H), 7.54-7.57 (m, 1H), 7.43-7.48 (m, 2H), 7.24-7.31 (m, 4H), 7.07-7.10 (m, 1H), 6.77 (t, J = 2.4 Hz, 1H), 6.75 (d, J = 2.1 Hz, 1H), 4.72 (dd, J = 5.4 Hz, J = 9.0 Hz, 1H), 3.77 (s, 3H), 3.61 (dd, J = 8.7 Hz, J = 16.5 Hz, 1H), 3.28 (dd, J = 5.1 Hz, J = 16.5 Hz, 1H), 2.31 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 197.1, 169.5, 159.3, 147.9, 136.8, 133.3, 133.0, 129.4, 128.6, 125.3, 128.2, 126.4, 123.1, 115.3, 113.8, 88.2, 82.7, 55.2, 45.6, 28.9, 21.1 ppm; IR (KBr) ν 1769, 1682, 1607, 1508, 1449, 1248, 1202, 1173, 1049, 831, 750 cm-1; HRMS (ESI) calcd for [C26H22O4 + H]+ 399.1591, found 399.1590. 4-Chloro-2-(5-oxo-1,5-diphenylpent-1-yn-3-yl)phenyl
acetate
(3t).
Petroleum
ether/ethyl acetate 16:1, 78% yield (313 mg), yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.97 (d, J = 7.5 Hz, 2H), 7.68-7.68 (m, 1H), 7.56-7.61 (m, 1H), 7.45 (s, 2H), 7.27-7.36 (m, 6H), 7.04 (dd, J = 1.5 Hz, J = 8.4 Hz, 1H), 4.69 (dd, J = 5.1 Hz, J = 7.5 Hz, 1H), 3.63 (dd, J = 8.4 Hz, J = 16.5 Hz, 1H), 3.28 (dd, J = 4.5 Hz, J = 16.8 Hz, 1H), 2.32 (s, 3H) ppm;
13
C NMR (75 MHz, CDCl3) δ 196.6, 169.2, 146.4, 136.6,
134.8, 133.5, 131.7, 129.4, 128.7, 128.3, 128.2, 124.4, 122.9, 89.0, 83.4, 45.4, 28.6, 21.0 ppm; IR (KBr) ν 1761, 1684, 1597, 1489, 1368, 1200, 1163, 1109, 1011, 758,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 24
691 cm-1; HRMS (ESI) calcd for [C25H19O3Cl + H]+ 403.1096, found 403.1096. 4-Bromo-2-(5-oxo-1,5-diphenylpent-1-yn-3-yl)phenyl
acetate
(3u).
Petroleum
ether/ethyl acetate 16:1, 75% yield (334 mg), brown oil; 1H NMR (300 MHz, CDCl3) δ 7.93 (d, J = 7.5 Hz, 1H), 7.78 (d, J =2.1 Hz, 1H), 7.37-7.57 (m, 4H), 7.23-7.32 (m, 5H), 6.94 (d, J = 8.1 Hz, 1H), 4.69 (dd, J = 4.8 Hz, J = 8.4 Hz, 1H), 3.59 (dd, J = 8.7 Hz, J = 16.8 Hz, 1H), 3.23 (dd, J = 5.1 Hz, J = 17.1 Hz, 1H), 2.28 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 196.6, 169.2, 146.9, 136.6, 135.2, 133.5, 132.3, 131.7, 131.3, 128.7, 128.3, 128.2, 124.8, 122.9, 119.5, 89.0, 83.4, 45.4, 28.6, 21.0 ppm; IR (KBr) ν 1767, 1684, 1597, 1479, 1449, 1368, 1198, 1161, 1103, 1009, 910, 756, 691 cm-1; HRMS (ESI) calcd for [C25H19O3Br + H]+ 447.0590, found 447.0593. 2-(3-Oxo-1-phenylbutyl)phenyl acetate (3v). Petroleum ether/ethyl acetate 12:1, 80% yield (225 mg), yellow oil; 1H NMR (300 MHz, CDCl3,) δ 7.14-7.28 (m, 8H), 7.04 (d, J = 7.5 Hz, 2H), 4.77 (t, J = 7.5 Hz, 1H), 3.24, 3.18 (dd, J = 8.4 Hz, J = 8.4 Hz, 1H), 3.10, 3.04 (dd, J = 6.6 Hz, J = 6.6 Hz, 1H), 2.22 (s, 3H), 2.09 (s, 3H) ppm; 13
C NMR (75 MHz, CDCl3) δ 206.4, 169.1, 148.3, 142.6, 135.6, 128.5, 128.2, 127.7,
127.5, 126.5, 126.1, 123.0, 48.7, 39.6, 30.5, 20.9 ppm; IR (KBr) ν 1759, 1708, 1489, 1448, 1371, 1207, 1112, 1014, 916, 823, 771, 756, 702, 667 cm-1; HRMS (ESI) calcd for [C18H19O3 + H]+ 283.1334, found 283.1328. ASSOCIATED CONTENT AUTHOR INFORMATION Corresponding author *Tel:+86-553-5910129. Fax: +86-553-5910126. E-mail:
[email protected] ACS Paragon Plus Environment
Page 21 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Notes The authors declare no competing financial interest. ACKNOWLEDGMENTS The work was partially supported by the National Natural Science Foundation of China (No. 21172001, 21372008), the Program for the NCET (NCET-10-0004), the Anhui Provincial Natural Science Foundation (No. 1308085QB39), and the Special and Excellent Research Fund of Anhui Normal University. Supporting Information Spectral data for all compounds and crystallographic data of compound 3j. This material is available free of charge via the Internet at http://pubs.acs.org. REFERENCES [1] (a) Lin, M.; Hao, L.; Ma, R.-D.; Zhan, Z.-P. Synlett 2010, 2345. (b) Zhang, X.-M.; Tu, Y.-Q.; Jiang, Y.-J.; Zhang, Y.-Q.; Fan, C.-A.; Zhang, F.-M. Chem. Commun. 2009, 4726. (c) Belting, V.; Krause, N. Org. Biomol. Chem. 2009, 7, 1221. (d) Zhan, Z.-P.; Cai, X.-B.; Wang, S.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y. J. Org. Chem. 2007, 72, 9838. (e) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681. (f) Catherine, C.; Joseph, G.; Brandon, A. Org. Lett. 2013, 15, 2656. [2] (a) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. 1980, 102, 2508. (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. (c) Green, J. R. Curr. Org. Chem. 2001, 5, 809.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
[3] (a) Jiang, H. F.; Zhou, L.; Chen, L.; Skouta, R.; Li, C. J. Org. Biomol. Chem. 2008, 6, 2969. (b) Rubin, M.; Markov, J.; Chuprakov, S.; Wink, D. J.; Gevorgyan, V. J. Org. Chem. 2003, 68, 6251. (c) Villarino, L; García-Fandiño, R; López, F; Mascareñas, J. Org. Lett. 2012, 14, 2996. [4] (a) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 10275. (b) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964. (c) Sanz-Marco, A.; García-Ortiz, A.; Blay, G.; Pedro, J. R. Chem. Commun. 2014, 50, 2275. [5] (a) Nishimura, T.; Guo, X. X.; Uchiyama, N.; Katoh, T.; Hayas hi, T. J. Am. Chem. Soc. 2008, 130, 1576. (b) Fillion, E.; Zorzitto, A. K. J. Am . Chem. Soc. 2009 , 131, 14608. [6] (a) Nishimura, T.; Washitake, Y.; Uemura, S. Adv. Synth. Catal. 2007, 349, 2563. (b) Uemura, S.; Nishimura, T.; Washitake, Y.; Nishi-guchi, Y.; Maeda, Y. Chem. Commun. 2004, 1312. [7] Knöpfel, T. F.; Boyall, D.; Carreira, E. M. Org. Lett. 2004, 6, 2281. [8] Nishimura, T.; Sawano, T.; Ou, K.; Hayashi, T. Chem. Commun. 2011, 47, 10142. [9] (a) Majumdar, K. C.; De, N.; Ghosh, T.; Roy, B. Tetrahedron 2014, 70, 4827. (b) Lin, H.-H.; Lee, K.-Y.; Chen, Y.-A.; Liu, C.-F.; Yeh, M.-C. P. J. Org. Chem. 2014, 79, 11802. (c) Iwasaki, M.; Fujii, T.; Nakajima, K.; Nishihara, Y. Angew. Chem., Int. Ed. 2014, 53, 13880. (d) Mishra, S.; Monir, K.; Mitra, S.; Hajra, A. Org. Lett. 2014, 16, 6084. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. [10] (a) Zheng, K.; Liu, X.-H.; Ain, S.; Xie, M.-S.; Lin, L.-L.; Hu, C.-W.; Feng, X.-M.
ACS Paragon Plus Environment
Page 22 of 24
Page 23 of 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
J. Am. Chem. Soc. 2012, 134, 17564. (b) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674. (c) Zhu, Y.; Hong, J.-J.; Zhou, Y.-B.; Xiao, Y.-W.; Lin, M.; Zhan, Z.-P. Org. Biomol. Chem., 2014, 12, 3797. [11] (a) Zhang, Y.-C.; Wang, M.; Li, P.-H.; Wang, L. Org. Lett. 2012, 14, 2206. (b) Rana, S.; Brown, M.; Mukhopadhyay, C. RSC Adv., 2013, 3, 3291. (c) Mudumala, V. R.; Chinthaparthi, R. R.; Yeon, T. J. Tetrahedron 2014, 70, 3762. (d) Wang, L.; Liu, J.; He, T. Tetrahedron 2014, 70, 3420. (e) Kalita, S. J.; Mecadon, H.; Deka, D. C. RSC Adv., 2014, 4, 32207. [12] (a) Bistri, O.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586. (b) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880. (c) Lin, Y.-Y.; Wang, Y.-J.; Lin, C.-H.; Cheng, J.-H.; Lee, C.-F. J. Org. Chem. 2012, 77, 6100. (d) Ghorai, S. K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Org. Lett., 2012, 14, 1066. (e) Chandrasekharam, M.; Chiranjeevi, B.; Gupta, K. S. V. Sridhar, B. J. Org. Chem., 2011, 76, 10229. [13] (a) Chan, L.-Y.; Kim, S.; Park, Y.; Lee, P. H. J. Org. Chem. 2012, 77, 5239. (b) Yeh, M.-C. P.; Fang, C.-W.; Lin, H.-H. Org. Lett. 2012, 14, 1830. (c) Sun, M.; Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 8155. [14] (a) He, X.-W.; Shang, Y.-J.; Yu, Z.-Y.; Fang, M.; Zhou, Y.; Han, G.; Wu, F.-L. J. Org. Chem. 2014, 79, 8882. (b) He, X. W.; Shang, Y. J.; Zhou,Y.; Yu, Z. Y.; Han, G.; Jin, W. J.; Chen, J. J. Tetrahedron 2015, 71, 863. (c) He, X.-W.; Yan, Z.-L.; Hu, X.-Q.; Zuo, Y.; Jiang, C.; Jin, L.; Shang, Y.-J. Synth. Commun. 2014, 44, 1507. [15] (a) Nandakumar, A.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2011,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
52, 1644. (b) Sudhapriya, N.; Nandakumar, A.; Perumal, P. T. RSC Adv. 2014, 4, 58476. [16] (a) Fan, W.; Ma, S.-M. Angew. Chem. Int. Ed. 2014, 53, 14542. (b) Jiang, G.-J.; Zheng, Q.-H.; Dou, M.; Zhuo, L.-G.; Meng, W.; Yu, Z.-X. J. Org. Chem. 2013, 78, 11783. (c) Ranjan, A.; Yerande, R.; Wakchaure, P. B.; Yerande, S. G.; Dethe, D. H. Org. Lett. 2014, 16, 5788. [17] Liu, Y.; Wang, L.-M.; Sui, Y.-Y.; Yu, J.-J. Chin. J. Chem. 2010, 28, 2039.
ACS Paragon Plus Environment
Page 24 of 24