Chapter 20
Concepts for Future Residuum Catalyst Development 1
1
2
3
P. O'Connor , A. W. Gevers , A. Humphries , L. A. Gerritsen , and P. H. Desai Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
4
1
Akzo Chemicals BV, P.O. Box 975, 3800 AZ Amersfoort, The Netherlands Akzo Chemicals, Inc., 3250 East Washington Boulevard, Los Angeles, CA 90023 Akzo Chemicals BV, P.O. Box 15, 1000 AA Amsterdam, The Netherlands Akzo Chemicals, Inc., 13000 Bay Park Road, Pasadena, TX 77058
2
3
4
This paper reviews some main concepts for Resid Catalyst development. In the area of catalyst architecture, the effect of an enhanced accessibility of the active sites by the larger resid molecules, can significantly improve both conversion and bottoms cracking. Several generations of vanadium metal catchers have been developed (1, 2), leading to an improved activity retention at high vanadium levels on catalyst. The recent progress in nickel tolerance with new nickel encapsulation technologies i s just as dramatic. The reduced coke, gas and hydrogen make of these types of catalysts open the road to a significant increase in resid processing. Developments in the zeolite field in terms of non-framework alumina control, leading to super low delta coke zeolites and the advent of enhanced surface activity zeolites, seem promising for the resid cracking field (3). Resid upgrading in the refining industry Several forecasters (4) have predicted that the world's crude reserves are weighted about two to one in favor of heavy versus light crudes. Consequently the inevitable trend is that the average crude processed will become heavier. Market forces, regional demand, environmental considerations and other factors will determine the economics and justification for heavy oil conversion. But it is clear that in the global scene, there will be an increasing supply, of heavy oil.
0097-6156y91A)452-0318$07.25/0 © 1991 American Chemical Society In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
20.
O'CONNOR ETAL.
Future Residuum Catalyst Development
319
On t h e o t h e r h a n d , a s t e a d y d e c l i n e i n f u e l o i l c o n s u m p t i o n i n d i f f e r e n t r e g i o n s h a s b e e n r e p o r t e d (5, 6). Increasing supply, c o m b i n e d w i t h d e c r e a s i n g demand f o r o i l , c h a l l e n g e s t h e r e f i n e r i e s t o i n v e s t i g a t e c r e a t i v e s o l u t i o n s t o t h e r e s i d p r o b l e m . The m a i n o b j e c t i v e i s t o convert the heavy r e s i d to d e s i r a b l e t r a n s p o r t a t i o n fuels. Several hydrocarbon processes are a v a i l a b l e f o r upgrading r e s i d : h y d r o t r e a t i n g , F l u i d C a t a l y t i c Cracking (FCC), coking e t c . , some m o r e c a p i t a l i n t e n s i v e t h a n o t h e r s . The m o s t w i d e l y p r e v a l e n t p r o c e s s i s t h e FCC p r o c e s s . T h e r e f o r e a n y a d v a n c e s i n p r o c e s s i n g r e s i d i n FCC u n i t s w i l l h a v e w i d e a p p l i c a t i o n . T h i s p a p e r d e a l s w i t h concepts f o r developments i n r e s i d c r a c k i n g , p a r t i c u l a r l y i n r e s i d FCC d e v e l o p m e n t , e v a l u a t i o n a n d a p p l i c a t i o n . W h e r e a s w o r l d w i d e demand f o r g a s o l i n e i s e x p e c t e d t o r e m a i n m o r e o r l e s s c o n s t a n t , demand f o r m i d d l e d i s t i l l a t e s (diesel, kerosene, j e t f u e l ) i s expected to increase. Resid cracking to y i e l d g a s o l i n e does not always l e a d t o f a v o r a b l e economics. Making midd i s t i l l a t e s f r o m r e s i d h o w e v e r , may o f f e r i n t e r e s t i n g o p p o r t u n i t i e s . Resid
Processing
F r o m a n FCC v i e w p o i n t , t h e r e i s n o t a c l e a r d e f i n i t i o n o f r e s i d c r a c k i n g . I f we c o n s i d e r t h e o v e r a l l r e f i n e r y s c h e m e , a l l m a t e r i a l s n o t q u a l i f y i n g f o r gas o i l t y p e s p e c i f i c a t i o n s a r e r e s i d , w h i c h i n f a c t means t h a t t h e t r a d i t i o n a l FCC f e e d , V a c u u m G a s o i l ( V G O ) , i s n e a r l y 1 0 0 % r e s i d , o r t o be m o r e s p e c i f i c a f u e l o i l . The f a c t t h a t a t r a d i t i o n a l VGO FCC u n i t i s a l s o a " f u e l o i l " c r a c k e r , c a n be i l l u s t r a t e d b y t h e f a c t t h a t p r o c e s s i n g o f VGO in a FCC u n i t i n a r e f i n e r y r u n n i n g on M i d d l e E a s t c r u d e , w i l l r e d u c e t h e h e a v y f u e l o i l p r o d u c t i o n o f t h e r e f i n e r y by a b o u t 10% wt on crude ( 7 ) . F o r c o n v e n t i o n a l VGO c r a c k i n g t h e s h a r p n e s s o f t h e v a c u u m s e p a r a t i o n between t h e f l a s h e d d i s t i l l a t e and r e s i d u e i s n o t r e a l l y important, provided that the undesirable n o n - v o l a t i l e asphalthenes and m e t a l compounds a r e l e f t i n t h e r e s i d u e . E n t r a i n m e n t i s k e p t a t a minimum by a wash o i l s e c t i o n i n t h e v a c u u m u n i t a n d c h e c k e d w i t h a c o l o u r s p e c i f i c a t i o n o n t h e FCC feed. The " r e a l " FCC r e s i d c r a c k i n g s e e m s t o s t a r t , w h e n t h e w a s h o i l s t r e a m i n t h e v a c u u m c o l u m n i s a l s o r o u t e d t o t h e FCC u n i t , o b v i o u s l y t h e c o l o u r o f t h e FCC f e e d w i l l d e t e r i o r a t e s t r o n g l y . D e p e n d i n g on t h e c r u d e o r i g i n , a l r e a d y t h e i n t r o d u c t i o n o f d i r t y w a s h o i l c a n h a v e a s i g n i f i c a n t i m p a c t on t h e m e t a l c o n t e n t o f t h e FCC f e e d a n d h e n c e t h e c a t a l y s t . S e v e r a l d e a s p h a l t i n g p r o c e s s e s o p e n up t h e p o s s i b i l i t y t o c u t d e e p e r , b u t a l s o m o r e s e l e c t i v e i n t e r m s o f a s p h a l t h e n e and m e t a l c o n t e n t i n t o t h e r e s i d . H i g h t e m p e r a t u r e deep f l a s h i n g and vacuum f l a s h i n g o f t h e r m a l l y cracked d i s t i l l a t e a l s o c o n t r i b u t e s to i n c r e a s i n g the percentage of t h e c r u d e , w h i c h c a n be r o u t e d t o t h e FCC u n i t . I n t h e u l t i m a t e c a s e , d e p e n d i n g on t h e f e e d s t o c k o r i g i n and t h e FCC u n i t o p e r a t i o n a l c o n s t r a i n t , e v e n 100% a t m o s p h e r i c r e s i d u e c a n s o m e t i m e s be p r o c e s s e d i n t h e FCC u n i t . ( T a b l e I.)
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
320
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
Table
- VGO
Cracking
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
- HVGO/DAO
I . R e s i d C r a c k i n g i n FCC
- Vacuum G a s o i l c l e a r , no m e t a l s
- Vacuum F l a s h e d d i s t i l l a t e from atmospheric r e s i d
-
- C u t t i n g deeper into the barrel, while trying to avoid excessive a s p h a l t h e n e s and metals
H e a v y VGO, Wash o i l s D e e p F l a s h e d VGO Flashed Cracked residues Deasphalted O i l
- Resid Cracking - Atmospheric
Residue
(AR)
- Crude s e l e c t i o n to avoid excessive asphalthenes and metals Pretreatment t o reduce asphalthenes and m e t a l s
Processability of resids
i n FCC
units
I t i s w e l l known t h a t t h e p r o c e s s i n g o f h e a v i e r , more c o n t a m i n a t e d feedstocks (metals, asphaltenes) tends t o i n c r e a s e t h e p r o d u c t i o n of coke and gas and d e a c t i v a t e s t h e c a t a l y s t . T h i s i s m a i n l y t h e r e s u l t s of( 8 ) : (1) A l a r g e r f e e d f r a c t i o n t h a t does n o t v a p o r i z e under c o n v e n t i o n a l c r a c k i n g c o n d i t i o n s . F o r t h i s r e a s o n r e s i d i n FCC i s s o m e t i m e s d e f i n e d as t h e f r a c t i o n o f t h e f e e d b o i l i n g above an e f f e c t i v e " o u t p o i n t " o f t h e f l a s h i n t h e b o t t o m o f t h e FCC r i s e r . Depending on t h e e x p e c t e d bottom mix t e m p e r a t u r e , c u t p o i n t s o f 5 3 0 u p 560°C a r e m e n t i o n e d i n t h e l i t e r a t u r e . ( 2 ) C o n t a m i n a t i o n b y h e a v y m e t a l s ( V , N i ) . To m a i n t a i n t h e m e t a l c o n t e n t on c a t a l y s t c o n s t a n t , u s u a l l y a l a r g e i n c r e a s e i n c a t a l y s t c o n s u m p t i o n ( f r o m a n a v e r a g e o f 0.15 l b / b b l u p t o a n d a b o v e 0.5 l b / b b l ) i s r e q u i r e d . A l t e r n a t i v e l y s p e c i a l m e t a l r e s i s t a n t c a t a l y s t c a n be a p p l i e d i n o r d e r t o m i n i m i z e c a t a l y s t consumption. A r b i t r a r i l y a metals c o n t e n t ( N i + V) o f above 1500 ppm o n c a t a l y s t i s s o m e t i m e s c o n s i d e r e d t o b e a m e t a l s contaminated r e s i d operation. (3) A h i g h e r c o n c e n t r a t i o n o f b a s i c and p o l a r m o l e c u l e s , i . e . n i t r o g e n compounds t h a t a r e r e a d i l y a d s o r b e d on t o t h e c a t a l y s t a c i d i c s i t e s , l e a d i n g t o an i n s t a n t , b u t temporary d e a c t i v a t i o n . P o l y c y c l i c aromatics a l s o s t r o n g l y c o n t r i b u t e t o coke f o r m a t i o n .
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
20. O'CONNOR ETAL. (A)
Future Residuum Catalyst Development
Other poisons as a l k a l i
contaminants
321
(Na, K....).
The h i g h e r c o k e p r o d u c t i o n o f r e s i d f e e d s t o c k s w i l l a l s o t e n d t o i n c r e a s e t h e temperature o f t h e regenerator and hence t h e deactivation of thecatalyst.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
F r o m t h e f o r e g o i n g i t b e c o m e s o b v i o u s t h a t t h e FCC p r o c e s s a b i l i t y o f r e s i d f e e d s t o c k a n d t h e c h o i c e o f a p o s s i b l e FCC f e e d p r e t r e a t m e n t ( f o r i n s t a n c e R e s i d H y d r o p r o c e s s i n g ) w i l l depend on t h e feed q u a l i t y and hence i t s o r i g i n . N a b e r e t a l ( 9 ) h a v e d e m o n s t r a t e d t h a t FCC s t i l l h a s a considerable p o t e n t i a l t o remain t h e ( r e s i d ) conversion "workhorse" of t h e o i l i n d u s t r y . A t present about 45% o f t h e world's crude can be e n v i s i o n e d t o b e w i t h i n t h e f r o n t i e r s o f R e s i d FCC ( f i g u r e 1 ) . A p a r t f r o m t h e i m p o r t a n c e o f FCC f e e d p r e t r e a t m e n t a n d FCC u n i t d e s i g n , a l s o t h e i m p a c t o f FCC c a t a l y s t p e r f o r m a n c e i s c r u c i a l t o allow the processing of heavier feeds. The
Catalyst Role i n Resid
FCC
R e v i e w i n g t h e m a i n c h a l l e n g e s i n R e s i d F C C , we c a n e s t a b l i s h t h e a r e a s i n w h i c h FCC c a t a l y s t i m p r o v e m e n t s c a n p l a y a r o l e i n enhancing t h e p r o c e s s a b i l i t y o f resids. (see Table I I . )
(a) V a p o r i z a t i o n and c r a c k i n g o f l a r g e hydrocarbons: T h i s leads t o a poor conversion and higher coke and f u e l gas y i e l d s . I n order t o improve t h e conversion o f l a r g e molecules, new m o d i f i c a t i o n s i n t h e FCC C a t a l y s t A r c h i t e c t u r e a n d A c t i v e S i t e A c c e s s i b i l i t y , a r e r e q u i r e d i n terms o f Pore S i z e and Pore Acidity distribution. (b) C o n t a m i n a t i o n by heavy m e t a l s (V, N i ) : S e v e r a l c a t a l y s t s on t h e market today c o n t a i n s p e c i a l vanadium t r a p s o r vanadium scavengers i n order t o p r o t e c t t h e a c t i v e i n g r e d i e n t s a g a i n s t p o i s o n i n g and/or d e s t r u c t i o n by Vanadium. These " M e t a l Traps" l i m i t t h e m o b i l i t y o f t h e vanadium pentoxide c o m p o u n d s u n d e r FCC c o n d i t i o n s ( 2 , 1 0 ) . T h e n i c k e l p r o b l e m n e e d s t o b e a p p r o a c h e d d i f f e r e n t l y : a n d more r e c e n t l y , p r o g r e s s h a s b e e n made t o w a r d s r e d u c i n g t h e d e h y d r o g e n a t i o n a c t i v i t y o f n i c k e l d i s p e r s e d o n FCC c a t a l y s t s ( 1 1 ) . ( c ) P o i s o n i n g a n d coke f o r m a t i o n by b a s i c a n d p o l a r compounds: High n i t r o g e n r e s i s t a n t c a t a l y s t s and/or n i t r o g e n t r a p s a r e a v a i l a b l e nowadays; u n f o r t u n a t e l y , no r e a l b r e a k t h r o u g h s have b e e n made i n r e d u c i n g t h e e f f e c t o f p o l y c y c l i c a r o m a t i c s (Conradson Carbon C a t c h e r s ? ) . A t present super low d e l t a coke c a t a l y s t s a r e produced t o a l l o w f o r t h e a d d i t i o n a l coke produced by t h e s e p o l y c y c l i c a r o m a t i c s . (d) A c t i v e s i t e p o i s o n i n g by Sodium, P o t a s s i u m ; e t c The S o d i u m r e s i s t a n c e o f t h e a c t i v e i n g r e d i e n t s i n FCC c a t a l y s t s can a l s o be t a c k l e d b y high a c t i v i t y a n d s t a b i l i t y c a t a l y s t s . (e) Severe Hydrothermal regeneration conditions: An i m p r o v e m e n t i n c o k e s e l e c t i v i t y c a n h a v e a l a r g e i m p a c t o n
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
322
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
100 IRAN Hy 90
Q UJ
IRAN
ARAB Hy
It
80-
U.J U. 70
KUWAIT
% OF TOTAL
60 E CL CL
WORLD CRUDE RESERVES
50-
>
+
7
45^
SIRTICA
40
ARAB LT
30
'30* EKOFISK ESSIDER
20
STATE OF ART
CURRENT BORDERLINE
SARIR
10 LT.PARAFFINIC ATM. RESIDU i—r~ 0 4 2
8
10
n—r 12
14
" i — i—I— 16 18
20
%WT CCR IN FEED
Figure
1
: R e s i d ( 3 7 0 °C TBP+) p r o p e r t i e s i n r e l a t i o n t o FCC p r o c e s s a b i l i t y (see Ref. 9 ) . Reprinted with permission from N a t i o n a l Petroleum R e f i n e r s A s s o c i a t i o n p u b l i c a t i o n AM-90-42. C o p y r i g h t 1 9 9 0 .
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
II.
by heavy
- Severe Hydrothermal Conditions
E
D Other poisons
- Basic and polar compounds
Contamination metals
A Vaporization and cracking of l a r g e hydrocarbon molecules
Table
Resid
Challenges
- Catalyst deactivation/ s t a b i l i t y problems
A c t i v e s i t e poisoning by e.g. Sodium
a c t i v e s i t e poisoning by Nitrogen Coke formation and a c i d s i t e blocking by polyc y c l i c aromatics
C a t a l y s t d e a c t i v a t i o n by Vanadium Dehydrogenation a c t i v i t y of N i c k e l
- High A c t i v i t y and Catalysts
Stability
- Sodium Catcher/Resistance
Nitrogen Catcher/Resistance Conradson Carbon Catcher?
Vanadium Catcher/Resistance Reduction of N i c k e l A c t i v i t y
Catalyst Architecture
and C a t a l y s t Development
Unvaporized feed r e s u l t s i n poor conversion and higher coke and fuelgas production
Processing
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
324
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
the a c t i v i t y s t a b i l i t y v i a t h e regenerator temperature High a c t i v i t y and s t a b i l i t y c a t a l y s t s a r e r e q u i r e d .
reduction.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
I t i s o b v i o u s t h a t d e p e n d i n g o n t h e t y p e a n d s e v e r i t y o f FCC f e e d pretreatment (Coking, Hydrogenation/Demetallization) and t h e type o f FCC u n i t d e s i g n a n d o p e r a t i n g p h i l o s o p h y t h e p r i o r i t y o f t h e f o r e g o i n g a s p e c t s may d i f f e r c o n s i d e r a b l y . A n i n t e r e s t i n g e x a m p l e i s t h e c o m p a r i s o n b e t w e e n t h e o p e r a t i o n o f FCC u n i t s w i t h a n d without heat removal, (Table I I I . )
A l t h o u g h t h e t a b l e g i v e s a v e r y exaggerated comparison between t h e two c a s e s , i t d o e s c l e a r l y d i s t i n g u i s h t h e i r p r i o r i t i e s . I t i s a l s o c l e a r t h a t i n t h e c a s e o f FCC w i t h h e a t r e m o v a l , t h e f r o n t i e r o f r e s i d p r o c e s s a b i l i t y c a n a t a c e r t a i n moment b e d e t e r m i n e d by t h e c o k e s e l e c t i v i t y o f t h e c a t a l y s t , w h i l e on t h e o t h e r hand t h e c o n v e r s i o n o f r e s i d i n a u n i t w i t h o u t heat removal may a l s o b e l i m i t e d b y t h e m e t a l r e s i s t a n c e o f a c a t a l y s t . Catalyst Accessibility i.
and A r c h i t e c t u r e
D i f f u s i o n and a c t i v e s i t e
accessibility
The a c c e s s i b i l i t y o f a c t i v e s i t e s p l a y s a n i m p o r t a n t r o l e i n t h e a c t i v i t y a n d s e l e c t i v i t y o f FCC. F o r r e s i d c r a c k i n g d i f f u s i o n a n d a c c e s s i b i l i t y e f f e c t s c a n become o f p r i m e i m p o r t a n c e . I n a p r e v i o u s p a p e r ( 7 ) , we h a v e i l l u s t r a t e d t h a t d i f f u s i o n i n FCC t a k e s p l a c e i n t h e n o n - s t e a d y r e g i m e a n d t h a t t h i s e x p l a i n s t h e f a i l u r e o f s e v e r a l a t t e m p t s t o r e l a t e l a b o r a t o r y m e a s u r e m e n t s o n FCC c a t a l y s t s t o t h e o r i e s on s t e a d y s t a t e d i f f u s i o n . A p a r t from t h e d i f f u s i o n a s p e c t s , Nace ( 1 3 ) h a s a l s o i n d i c a t e d t h e l i m i t e d a c c e s s i b i l i t y o f t h e z e o l i t e p o r t a l s u r f a c e area by comparing t h e c r a c k i n g r a t e s o f v a r i o u s m o d e l compounds w i t h a n i n c r e a s i n g number o f n a p h t h e n i c r i n g s o n z e o l i t e a n d a m o r p h o u s FCC c a t a l y s t s , f i g u r e 2. W i t h an i n c r e a s e i n t h e number o f n a p h t h e n i c r i n g s , t h e c r a c k a b i l i t y o f t h e h y d r o c a r b o n m o l e c u l e i n c r e a s e s ( v i d e d a t a w i t h SiO^,Al^O^ c a t a l y s t ) , w h i l e t h e r e l a t i v e c r a c k i n g r a t e by z e o l i t e s d r o p s o f f due t o t h e l i m i t e d a c c e s s i b i l i t y o f t h e a c i d s i t e s i n t h e zeolite. I t becomes c l e a r t h a t s i g n i f i c a n t c o n v e r s i o n b e n e f i t s c a n be o b t a i n e d b y i n c r e a s i n g t h e a c t i v i t y c o n t r i b u t i o n i n t h e meso p o r e r a n g e ( a b o u t 20 t o 2 0 0 A n g s t r o m d i a m e t e r ) i n a c a t a l y s t , T a b l e I V . R e s u l t s o b t a i n e d f r o m t e s t i n g v a r i o u s c a t a l y s t s w i t h Vacuum g a s o i l (VGO) a n d A t m o s p h e r i c R e s i d u e ( A R ) c o n f i r m t h a t i n d i c a t e d i m p r o v e m e n t o f FCC c o n v e r s i o n .
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
C a t a l y s t development Category
Operating goal
Catalyst p r i o r i t y
Catalyst to o i l ratio Coke production Regenerator temperature Delta Coke on c a t a l y s t
Tvpicals
Strategy
Table
1. 2. 3. 4.
III.
FCC O p e r a t i n g
RESID-2
"MAXIMIZE CTO"
Super low d e l t a coke Hydrothermal s t a b i l i t y Catalyst a r c h i t e c t u r e Metal resistance
low low high low
Without heat removal
Resid
Strategy
1. 2. 3. 4.
RESID-1
"MAXIMIZE ACTIVITY"
Metal resistance High a c t i v i t y / s t a b i l i t y Catalyst a r c h i t e c t u r e Low d e l t a coke
high high low high
With heat removal
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
326
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
Table I V . Impact o f enhanced a c c e s s i b i l i t y
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
Catalyst
A B C D Development
Mesopore Surface area
Mesopore activity
low high medium high medium
low high medium medium medium
on c o n v e r s i o n
Conversion i n MST t e s t , w t % Delta VGO AR
63 63 62 68 66
63 65 64 74 74
+ + + +
0 2 2 6 8
MST = M i c r o S i m u l a t i o n T e s t ( 1 4 ) ; H i g h T e m p e r a t u r e , S h o r t c o n t a c t T i m e MAT (560°C, 15 s e c o n d s ) VGO = K u w a i t AR = North Sea C a t a l y s t D e a c t i v a t i o n : 5 h r s 788°C, 1 0 0 % s t e a m , 1 5 0 0 ppm N i
A l t h o u g h a n i n c r e a s e i n meso p o r e s u r f a c e a r e a a n d a c t i v i t y w i l l r e s u l t i n an i n c r e a s e i n c o n v e r s i o n and r e s i d c o n v e r s i o n , T a b l e I V a l s o shows t h a t t h e r e i s no s i m p l e c o r r e l a t i o n between t h e o b s e r v e d c a t a l y s t p r o p e r t i e s and these r e s u l t s . A p p a r e n t l y other aspects such as pore s i z e d i s t r i b u t i o n and pore c h e m i s t r y a l s o p l a y an important r o l e . A n o t h e r a s p e c t w h i c h needs t o be c o n s i d e r e d i s t h e e f f e c t o f c a t a l y s t t o o i l r a t i o . I n a c o m m e r c i a l u n i t t h e e f f e c t i v e meso p o r e a c t i v i t y w i l l b e a f u n c t i o n o f t h e meso p o r e a c t i v i t y o f t h e c a t a l y s t and o f t h e c a t a l y s t t o o i l r a t i o (CTO): E f f e c t i v e meso p o r o s i t y = M e s o p o r o s i t y x CTO M e s o p o r o s i t y i s expressed i n terms o f s u r f a c e a r e a as measured by Hg a d s o r p t i o n i n t h e 20 t o 100 A n g s t r o m r a n g e . F i g u r e 3 i n d i c a t e s how t h e e f f e c t i v e meso p o r e a c t i v i t y h a s a s t r o n g e f f e c t o n c o n v e r s i o n o f bottoms i n t h e case o f Atmospheric Residue, w h i l e t h i s e f f e c t i s much l e s s p r o n o u n c e d i n t h e c a s e o f VGO f e e d s t o c k . F o r a c o m m e r c i a l u n i t t h i s i m p l i e s t h a t we n e e d t o e n h a n c e t h e meso p o r e a c t i v i t y w h i l e a v o i d i n g a d r o p i n CTO d u e t o ( f o r i n s t a n c e ) a h i g h e r d e l t a coke o f t h e c a t a l y s t . ii.
Pore
Size Acidity
Distribution
In an i d e a l i z e d s i t u a t i o n one c a n o p t i m i z e s e v e r a l s t a g e s cracking of a r e s i d molecule: Stage
i n the
one : C a t a l y s t s o r b s non v o l a t i l e o r p a r t i a l l y v o l a t i l e r e s i d . L a r g e a s p h a l t h e n e s c r a c k and decompose n e a r l y i n s t a n t a n e o u s l y , and m e t a l s a r e d e p o s i t e d on t h e c a t a l y s t s u r f a c e .
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
20. O'CONNOR ET AL.
k /
Future Residuum Catalyst Development
327
ko
4 Si02-A1203 Zeolite
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
\ \
Accessibility Limitation k
= Cracking r a t e
ko = Cracking r a t e of C16
—i
i
'0
i
i
.i — i —
i—J—-u-
1 2 3 4 Naphthenic r i n g s 12 13 14 16 Carbon number
16
Figure 2
Bottoms,
5
: Active Site
accessibility (13).
wt%
15 VGO
ATM.RESID
CTO * PV-Meso MST a t Figure 3
70 wt%
(20-100 Ad) conversion
: Effective
Mesoporosity
concept.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
328
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
Stage two
: L a r g e h y d r o c a r b o n m o l e c u l e s p r e c r a c k i n meso p o r e s .
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
Stage three: Hydrocarbon
c r a c k i n g on s u r f a c e o f and i n z e o l i t e
pores.
H e t t i n g e r e t a l (7) have p r e s e n t e d t h i s staged c r a c k i n g concept as a useful m o d e l f o r FCC r e s i d c a t a l y s t d e s i g n ( f i g u r e 4 ) . B a s e d o n t h i s m o d e l we c a n e n v i s i o n a v e r y s p e c i f i c P o r e S i z e A c i d i t y D i s t r i b u t i o n ( f i g u r e 5 ) , w h i c h would b e n e c e s s a r y t o a c h i e v e a n i m p r o v e ment i n r e s i d c o n v e r s i o n . We h a v e n o t e d t h a t r e g a r d i n g t h e n e c e s s i t y o f s p e c i a l l a r g e " L i q u i d c a t c h i n g " (LC) p o r e s , t h e r e i s a v e r y s i g n i f i c a n t impact on coke and f u e l gas s e l e c t i v i t y . F i g u r e 6 s h o w s a n e x a m p l e o f t h e c o k e s e l e c t i v i t y i n t h e MST u n i t w i t h a n o r m a l VGO f e e d s t o c k . A n o t h e r i n t e r e s t i n g f e a t u r e i s t h a t t h e s e LC p o r e s r e s u l t i n a n i n c r e a s e i n t h e o v e r a l c o n v e r s i o n . T h i s e f f e c t i s most pronounced when t h e c a t a l y s t i s i m p r e g n a t e d w i t h N i c e l ( 1 5 0 0 ppm N i c k e l i n MST) and a t h i g h c o k e y i e l d s . From t h i s i t seems o b v i o u s t h a t p o r e mouth b l o c k i n g i s a l s o a f a c t o r i n R e s i d FCC, and t h a t t h e p r e s e n c e o f LC p o r e s c a n b e b e n e f i c i a l i n t h i s r e s p e c t . M e s o p o r e s , a r e e s s e n t i a l f o r r e d u c t i o n o f t h ebottoms y i e l d w i t h a r o m a t i c and/or n a p h t h e n i c f e e d s t o c k s . ( T a b l e V.)
T a b l e V.
Impact
Bottoms y i e l d
o f meso p o r e a c t i v i t y
i n t h e MST a t 4 w t % c o k e '*) A r o m a t i c/Napthen i c Feedstock
Cat.
Cat.
Cat.
A
high zeolite activity l o w meso p o r e activity medium z e o l i t e activity h i g h meso p o r e activity medium z e o l i t e activity h i g h meso p o r e activity
B
C
* MST t e s t
with
1 5 0 0 ppm N i , c a t a l y s t
Paraffinic Feedstock
14.5
11.5
12.0
13.2
11.0
10.5
deactivated
5 h o u r s a t 788°C.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
20.
O'CONNOR ETAL.
Future Residuum Catalyst Development
329
Liquid asphaltene Non-Acidic large pores
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
1
Acidic Matrix
H+ \//////////////////////////A
H+
iC4. C5=, C3= e t c .
Z e o l i t e P o r t a l S u r f a c e Area Figure 4
Surface Area
Small
: Staged C r a c k i n g Model
(15).
Relative
Pores
Activity
< 20 Ad
"Liquid catching" Large Pores > 100 Ad
Meso P o r e s 30
J
- 100 Ad
L_J I I I I I I I Pore Diameter
Figure 5
1
: Poresize Acidity
i
1
I
I
I
L
• Distribution.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
330
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
T a b l e 5 i n d i c a t e d t h e l a r g e e f f e c t o f m e s o p o r e a c t i v i t y on t h e r e d u c t i o n of bottoms y i e l d w i t h Aromatic/Naphthenic feedstocks. For the p a r a f f i n i c feedstocks t e s t e d , the impact of the z e o l i t e a c t i v i t y i s much more p r o n o u n c e d , and t h e c a t a l y s t w i t h t h e h i g h e s t z e o l i t e a c t i v i t y and l o w e s t mesopore a c t i v i t y g e n e r a t e s t h e lowest bottoms y i e l d . T h e s e r e s u l t s seem t o c o r r e l a t e w e l l w i t h t h e "conceptual p i c t u r e " o f s t a g e d c r a c k i n g a s p r e s e n t e d by H e t t i n g e r ( f i g u r e 5 ) a n d t h e i n f l u e n c e o f m o l e c u l a r s t r u c t u r e ( l a r g e number o f r i n g s v s low number o f r i n g s ) on t h e e f f e c t i v e n e s s o f t h e z e o l i t e a c t i v i t y a s i n d i c a t e d by Nace ( f i g u r e 2 ) . A s a l i e n t p o i n t o f t a b l e 5 i s t h e f u r t h e r r e d u c t i o n of bottoms y i e l d s obtained w i t h a s p e c i a l technology h i g h mesopore a c t i v i t y c a t a l y s t (Cat. C). F i g u r e 7 i l l u s t r a t e s t h a t t h e r e i s an e s s e n t a i l d i f f e r e n c e i n the pore s i z e a r c h i t e c t u r e between c a t a l y s t s produced w i t h t h i s t e c h n o l o g y ( C a t . C) a n d t h o s e p r o d u c e d w i t h t h e o t h e r m a n u f a c t u r i n g t e c h n o l o g i e s ( C a t . A , B ) . W i t h t h e C a t . C T e c h n o l o g y ( h i g h meso p o r e a c t i v i t y c a t a l y s t s ) t h e r e i s a s h i f t t o w a r d s more p o r e s i n t h e " l a r g e r " meso p o r e a r e a (Table IV.) Catalyst Resistance i.
t o D e a c t i v a t i o n by
Metals
S t r a t e g i e s to reduce vanadium e f f e c t s
There a r e s e v e r a l good r e v i e w a r t i c l e s w h i c h c o v e r t h e r e s e a r c h o f t h e m e c h a n i s m o f v a n a d i u m d e a c t i v a t i o n o f FCC c a t a l y s t s ( s e e 2, 8). B a s i c a l l y the vanadium present i n the l a r g e metal porphorin m o l e c u l e s i s d e p o s i t e d o n t h e o u t e r s u r f a c e o f t h e c a t a l y s t , due to the f a s t decomposition of these molecules. A t h i g h t e m p e r a t u r e s and i n t h e p r e s e n c e o f s t e a m , v a n a d i u m b e c o m e s m o b i l e a n d m o v e s i n t o o t h e r p a r t s o f t h e c a t a l y s t . I n a FCC u n i t t h i s t a k e s p l a c e d u r i n g t h e r e g e n e r a t i o n p h a s e ( a v e r a g e 700°C a n d 5 - 2 5 % s t e a m a t m o s p h e r e ) . V a n a d i u m o x i d e V^O^ formed d u r i n g r e g e n e r a t i o n c a n r e a c t w i t h t h e z e o l i t e , RE^O^, Na a n d A^O-* p r o m o t i n g d e s t a b i l i z a t i o n and c o l l a p s e o f t n e z e o l i t e s t r u c t u r e (16, 17). Even i n the case t h a t a very s t a b l e z e o l i t e i s a b l e t o w i t h s t a n d t h i s a t t a c k , a c t i v i t y l o s s e s c a n o c c u r due t o n e u t r a l i z a t i o n o f t h e z e o l i t e and m a t r i x a c i d s i t e s . FCC c a t a l y s t d e v e l o p m e n t t o r e d u c e t h e e f f e c t o f v a n a d i u m h a s been aimed a t r e d u c t i o n of vanadium m o b i l i t y : the a p p l i c a t i o n of s p e c i a l i n g r e d i e n t s i n t h e c a t a l y s t w h i c h f u n c t i o n as m e t a l s c a v e n g e r s o r m e t a l c a t c h e r s . I n t h e p a s t ( 2 , 10) t r a n s p o r t e x p e r i m e n t s w e r e u s e d t o show t h a t d u r i n g s t e a m - a g i n g , i n t r a p a r t i c l e t r a n s f e r o f v a n a d i u m o c c u r s a n d t h a t m i g r a t i n g v a n a d i u m c a n be i r r e v e r s i b l y s o r b e d by a m e t a l t r a p s u c h as s e p i o l i t e ( 2 ) i n t h e form of a heat s t a b l e vanadate. A s i m p l e v a n a d i u m m o b i l i t y t e s t c a n be s e t u p , i n w h i c h t h e vanadium which migrates from vanadium-loaded c a t a l y s t towards n o n - v a n a d i u m l o a d e d c a t a l y s t c a n be m e a s u r e d u n d e r c a t a l y s t a g i n g ( u s u a l l y steaming) conditions (2). The m e t h o d we a p p l i e d i s a s f o l l o w s : The c a t a l y s t i s s i e v e d i n t o a c o a r s e a n d a f i n e f r a c t i o n . The c o a r s e f r a c t i o n o f t h e c a t a l y s t (PSD > 7 5 yum) i s i m p r e g n a t e d h o m o g e n e o u s l y w i t h a b o u t 4 0 0 0 ppm v a n a d i u m fey a t r a d i t i o n a l p o r e v o l u m e i m p r e g n a t i o n method.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
O'CONNOR ET AL.
Future Residuum Catalyst Development
1
58
60
62
64
66
68
70
72
CONVERSION, WT% Figure 6
: Selectivity
b e n e f i t of improved pore
architecture.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
331
332
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
A f t e r t h i s both f r a c t i o n s a r e mixed t o g e t h e r a g a i n , and t h e m i x t u r e i s s t e a m e d i n a f i x e d b e d f o r 5 h o u r s a t 7 8 8 o r 830°C, w i t h 1 0 0 % steam. The steamed m i x t u r e i s t h e n s i e v e d a g a i n and t h e vanadium c o n t e n t o f t h e c o a r s e f r a c t i o n ( P S D > 7 5 yum) i s m e a s u r e d . T h i s a p p r o a c h m i n i m i z e s t h e e f f e c t s o f c a t a l y s t a t t r i t i o n phenomena on t h e v a n a d i u m m o b i l i t y d e t e r m i n a t i o n . The
vanadium m o b i l i t y
(VM) i s t h e n d e f i n e d a s f o l l o w s : V
C- s t a r t
-
V
C- e n d
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
VM ( % > = _
:
*
1
0
0
V start
^C^
start =
Vanadium l e v e l o f c o a r s e f r a c t i o n m i x i n g a n d s t e a m i n g (ppm w t )
( > 7 5 yum), b e f o r e
^C^
end
Vanadium l e v e l o f coarse f r a c t i o n m i x i n g a n d s t e a m i n g (ppm w t )
( > 75 yum) a f t e r
The and
f o l l o w i n g t a b l e (Table VI.) , s h o w s a n e x a m p l e o f v a n a d i u m i t s dependence on c a t a l y s t c o m p o s i t i o n .
=
Table V I . R e d u c t i o n o f vanadium
Catalyst
USY USY USY
mobility
mobility
Vanadium m o b i l i t y (% V m i g r a t i o n )
+ Active A1 0 2°3 + A c t i v e kUO* L 0 + MTT*) 2 3 L
L
?
U
*) MTT = A m e t a l t r a p ,
61.5 52.7 33.0
as d e s c r i b e d i n Reference (18).
I n FCC u n i t s w h i c h e x h i b i t a h i g h t e n d e n c y t o v a n a d i u m t h e a p p l i c a t i o n o f m e t a l t r a p s can be v e r y b e n e f i c i a l .
migration,
Factors that
FCC u n i t s
i n f l u e n c e vanadium m o b i l i t y
i n commercial
are:
1. T h e o x i d a t i o n s t a t e o f t h e v a n a d i u m ( s e e a l s o 2 ) 2. R e g e n e r a t o r t e m p e r a t u r e ; i t h a s b e e n o b s e r v e d t h a t t h e v a n a d i u m m o b i l i t y c a n d o u b l e w i t h A0°C r e g e n e r a t o r t e m p e r a t u r e ( s e e figure 8). 3. T h e p r e s e n c e o f s t e a m a n d c a r b o n o n c a t a l y s t . 4. T h e v a n a d i u m l e v e l a n d t h e c a t a l y s t r e p l a c e m e n t o n i n v e n t o r y .
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
20. O'CONNOR ET AL.
Future Residuum Catalyst Development
333
F i g u r e 8 i l l u s t r a t e s t h e e f f e c t o f t e m p e r a t u r e on v a n a d i u m m o b i l i t y ( m e a s u r e d o n e q u i l i b r i u m c a t a l y s t s f r o m t h r e e FCC u n i t s ) a n d t h e l a r g e impact of c e r t a i n u n i t v a r i a b l e s . For t h e s e measurements t h e c o a r s e e q u i l i b r i u m c a t a l y s t was t e s t e d i n a m o b i l i t y t e s t u s i n g t h e method d e s c r i b e d a b o v e by s u b s t i t u t i n g s i e v e d c o a r s e e q u i l i b r i u m c a t a l y s t f o r vanadium impregnated c a t a l y s t . I n case o f a r e l a t i v e l y low vanadium m o b i l i t y , t h e d e a c t i v a t i o n by v a n a d i u m w i l l be l e s s , and so w i l l be t h e e f f e c t o f i n c o r p o r a t i n g a m e t a l t r a p . S t i l l i t a l s o a p p e a r s t o be i m p o r t a n t t o a d d r e s s t h e s t r a t e g y t o combat vanadium i n t h i s c a s e . I f vanadium i s o n l y p r e s e n t on t h e o u t e r l a y e r and i n t h e l a r g e r p o r e s o f a c a t a l y s t , t h e e f f e c t on z e o l i t e d e a c t i v a t i o n m i g h t be d e c r e a s e d . H o w e v e r o w i n g t o deactiv a t i o n of a c i d s i t e s i n these mesopores, the bottoms c r a c k i n g p o t e n t i a l o f t h e c a t a l y s t s w i l l be s t r o n g l y a f f e c t e d . Thus t h e presence of vanadium c a t c h i n g c a p a b i l i t y i n these l a r g e r pore r e g i o n s becomes e s s e n t i a l . T h i s i s c l e a r l y v i s i b l e w i t h more r e s i d in the feestock. S i n c e t h e method o f m e t a l i m p r e g n a t i o n w i l l a l s o have a l a r g e impact o n t h e p r o f i l e o f v a n a d i u m d e p o s i t i o n o f t h e c a t a l y s t , we c l e a r l y need t o r e v i e w t h i s a s p e c t of c a t a l y s t t e s t i n g . V i a c y c l i c m e t a l i m p r e g n a t i o n a n d c a t a l y s t d e a c t i v a t i o n , we c a n a p p r o a c h " R e a l - W o r l d " c o n d i t i o n s f a r b e t t e r . (Table VII.)
Table V I I . E f f e c t of
C o n v e r s i o n i n MST,
%
accessibility
wt 1 0 0 % VGO
Catalyst
66
A
Catalyst B "Accessible"
*) 5 0 0 0 ppm method.
60% VGO/ 40% N o r t h Sea 66
68
AR
71
vanadium c a t c h e r
V metal
level,
i m p r e g n a t i o n by a c y c l i c
deactivation
The r o u t e o f c a t a l y s t d e a c t i v a t i o n v i a a c y c l i c m e t a l i m p r e g n a t i o n and d e a c t i v a t i o n method has p r o d u c e d s i g n i f i c a n t improvements i n a p p r o a c h i n g r e a l i s t i c v a n a d i u m and n i c k e l p r o f i l e s o v e r t h e c a t a l y s t p a r t i c l e s . From e l e c t r o n m i c r o p r o b e a n a l y s e s o f N i and V l o a d e d c a t a l y s t i t has been e s t a b l i s h e d t h a t a f t e r pore volume s a t u r a t i o n , N i and V a r e r a t h e r homogeneously d i s t r i b u t e d o v e r t h e c a t a l y s t . I n c y c l i c i m p r e g n a t e d c a t a l y s t s , N i i s m a i n l y p r e s e n t on t h e c a t a l y s t s u r f a c e . I n c o n t r a s t a vanadium p r o f i l e over the p a r t i c l e i s f o u n d . I n t h e c a s e t h a t no s t e a m i s a p p l i e d i n t h e regeneration stage of the c y c l i c d e a c t i v a t i o n procedure, the V remains mainly c o n c e n t r a t e d a t t h e s u r f a c e o f t h e c a t a l y s t p a r t i c l e s . Other methods a s i m a g i n g SIMS ( 1 9 ) a n d L u m i n e s c e n c e ( 2 0 ) a r e a l s o b e i n g a p p l i e d t o m o n i t o r and compare t h e N i and V d i s t r i b u t i o n o f d e a c t i v a t e d
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
334
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
catalysts versus commercially deactivated equilibrium catalysts. C a r e f u l s e l e c t i o n of the d e a c t i v a t i o n c o n d i t i o n s (metals per c y c l e , r e g e n e r a t o r t e m p e a t u r e , % wt s t e a m i n c a n a l s o a l l o w us t o d i s t i n g u i s h b e t w e e n c a t a l y s t d e a c t i v a t i o n by m e t a l s and by h y d r o t h e r m a l e f f e c t s . ( T a b l e V I I I . )
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
Table V I I I .
Conversion
loss
M e t a l s t o l e r a n c e by
(wt % i n
Catalyst
Zeolite
g K Akzo Akzo
Z-14 US LZ-210 ADZ-40 ADZ-41
Low m e t a l s : 1000 ppm H i g h m e t a l s : 3 0 0 0 ppm
V, V,
cyclic
deactivation
MST) Low m e t a l s cycles 2.8 2.4 2.3 2.6
High metals cycles 5.5 4.8 3.5 3.0
500 ppm N i lOOOppm N i
I t c a n be o b s e r v e d t h a t t h e m a g n i t u d e o f c o n v e r s i o n l o s s o f 1 t o 2 p o i n t s MST p e r 1000 ppm V c o r r e s p o n d s q u i t e w e l l w i t h c o m m e r i c a l d a t a . N o t e t h a t t h i s i s o n l y t r u e f o r V l e v e l s b e l o w 5 0 0 0 ppm t h a t i s , a t r e l a t i v e l y low V l e v e l s . ii.
Nickel effects
and e n c a p s u l a t i o n
I n t h e e i g h t i e s , m o r e a n d m o r e FCC u n i t s p r o c e s s e d n i c k e l r i c h feedstocks, e s p e c i a l l y n i c k e l r i c h p a r a f f i n i c atmospheric r e s i d s f r o m t h e N o r t h Sea and A s i a P a c i f i c s o u r c e s . A l t h o u g h n i c k e l has o n l y a m a r g i n a l e f f e c t on c a t a l y s t d e a c t i v a t i o n , n i c k e l i t s e l f i s a c t i v a t e d e s p e c i a l l y on a l u m i n a s u r f a c e s and works as a d e h y d r o g e n a t i o n agent c a t a l y z i n g t h e r e a c t i o n s f o r m i n g c o k e , gas and e s p e c i a l l y h y d r o g e n ( 2 ) . A l s o as a c o n s e q u e n c e o f t h e h i g h e r l o c a l i z e d c o k e f o r m a t i o n , b l o c k i n g of t h e p o r e s w i l l t a k e p l a c e , r e s u l t i n g i n a l o s s o f a c t i v i t y . A p a r t f r o m t h e u s e o f Sb o r B i p a s s i v a t o r s on t h e c a t a l y s t s i d e , up to v e r y r e c e n t l y t h e o n l y approach has been t o m i n i m i z e t h e a c t i v e a l u m i n a s u r f a c e i n t h e c a t a l y s t and c o n s e q u e n t l y s a c r i f i c e bottoms conversion for nickel resistance. A new t e c h n o l o g y o f c a t a l y s t p r o d u c t i o n ( 1 1 ) i s c a p a b l e o f g e n e r a t i n g m a t e r i a l s i n w h i c h t h e n i c k e l a c t i v i t y as d e h y d r o g e n a t i o n a g e n t h a s been s t o p p e d by a m u l t i - s t e p s t r a t e g y . ( T a b l e I X . )
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Future Residuum Catalyst Development
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
O'CONNOR ET AL.
Mobility 35 -Unit A 30 -A
25
5h 788 St A 5h 830 St
Similar Catalysts
A
Unit C A
-
Unit A: High T, Low Inv
-
20
A
Unit B. C: Low T, High Inv
15 Unit B 10
i
0
i
i
1
i
1
i
1
i
1
i
2000 4000 6000 Vanadium on cat, ppm.wt Figure 8
335
: V a n a d i u m M o b i l i t y on
FCC
catalysts.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
336
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
Table
Silica
Rich Surface
Alumina r i c h
Surface
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
Zeolite
I X . S t r a t e g y t o combat N i c k e l
Formation o f l a r g e c r y s t a l l i t e s and stable inert Ni-silicates Encapsulation of nickel i n non-active alumina t e t r a h e d r a l s t r u c t u r e s Non-framework A l u m i n a C o n t r o l (ADZ)
Figure 9 demonstrates t h e c l e a r b e n e f i t o f n i c k e l encapsulation i n r e d u c i n g t h e a c t i v i t y f o r h y d r o g e n p r o d u c t i o n . The o b s e r v e d R l ^ O ^ e f f e c t on hydrogen p r o d u c t i o n , i s r e l a t e d t o t h e f o r m a t i o n o f z e o l i t e s u r f a c e non-framework alumina. P r o g r e s s i n n i c k e l t o l e r a n c e o f FCC c a t a l y s t w i t h t h e s e new t e c h n o l o g i e s i s a t l e a s t a s d r a m a t i c as i n v a n a d i u m t o l e r a n c e ( 2 ) . C o m m e r c i a l FCC o p e r a t i o n s w i t h n i c k e l o n e q u i l i b r i u m c a t a l y s t ( a b o v e 2 0 0 0 ppm) w i t h o u t t h e u s e o f p a s s i v a t o r , h a v e become f e a s i b l e . T h i s new t e c h n o l o g y a l s o a l l o w s f u r t h e r o p t i m i z a t i o n o f t h e m e s o p o r e a c t i v i t y , t h e c o n c e p t u a l f i g u r e 10 i l l u s t r a t e s t h i s p o i n t , w h i c h now h a s b e e n c o n f i r m e d i n c o m m e r c i a l FCC o p e r a t i o n s ( 2 1 ) . As w i t h v a n a d i u m u n d e r r e l a t i v e l y l o w m o b i l i t y c o n d i t i o n s , n i c k e l remains mainly deposited i n t h e larger pores o f t h e c a t a l y s t . Hence t o i n v e s t i g a t e n i c k e l e f f e c t s as r e a l i s t i c a l l y as p o s s i b l e , C y c l i c D e a c t i v a t i o n (CD) methods a r e recommended. T a b l e X: d e m o n s t r a t e s t h i s , s h o w i n g how t h e c a t a l y s t r a n k i n g c a n b e i n f l u e n c e d by t h e d e a c t i v a t i o n procedure used.
T a b l e X. I n f l u e n c e o f c a t a l y s t procedure.
Method
pore volume impregnation
Catalyst
*)
MST y i e l d Conversion H
2 Dry gas Gasoline Bottoms Coke C =/C t o t 4
4
r a n k i n g by type
LCMR
ES
0.16 3.1 44.2 13.1 3.4 0.63
0.22 3.1 44.0 12.2 3.8 0.70
of deactivation
cyclic deactivation LCMR
ES
70 % w t
0.17 3.0 44.0 14.2 4.2 0.60
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
0.15 2.5 45.2 12.6 3.7 0.65
20. O'CONNOR ET AL.
Future Residuum Catalyst Development
337
*) C a t a l y s t C h a r a c t e r i s t i c s : LCMR : M i n i m u m m e s o p o r e a c t i v i t y w i t h MR m e t a l t r a p ES : H i g h m e s o p o r e a c t i v i t y w i t h ADVANCE t e c h n o l o g y C a t a l y s t R e s i s t a n c e t o D e a c t i v a t i o n by O t h e r Other c a t a l y s t poisons
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
1. 2.
besides n i c k e l
Poisons
and vanadium a r e :
Poisons which n e u t r a l i z e o r d e s t r o y a c i d s i t e s , as f o r i n s t a n c e sodium, potassium, n i t r o g e n . P o i s o n s ( s u c h a s b a s i c a n d p o l a r compounds i n t h e f e e d ) w h i c h p r i m a r i l y enhance t h e f o r m a t i o n o f coke and hence i n d i r e c t l y a l s o cause t h e d e a c t i v a t i o n o f t h e c a t a l y s t .
F o r t h e f i r s t t y p e o f p o i s o n s , we c a n e i t h e r t r y t o a p p l y t h e same approach as w i t h vanadium; meaning s p e c i f i c c a t c h e r s o r o f f e r a s u f f i c i e n t excess of a c i d s i t e s : s a c r i f i c i a l s i t e s i n order t o reduce t h e r e l a t i v e impact o f t h e p o i s o n i n g . F o r i n s t a n c e , i n t h e case o f a n i t r o g e n r e s i s t a n t c a t a l y s t , u s u a l l y t h e c a t a l y s t design w i l l i n v o l v e a r e l a t i v e l y h i g h r a r e - e a r t h and h i g h z e o l i t e c o n t e n t catalyst with the option of additional s a c r i f i c i a l sites i nthe form o f a c t i v e alumina (12). O b v i o u s l y s u c h a t y p e o f f o r m u l a t i o n c o u l d h a v e some n e g a t i v e c o n s e q u e n c e s f o r t h e c a t a l y s t : p r i m a r i l y a h i g h e r c o k e make a n d p r o b a b l y a l s o some o c t a n e p e n a l t y . W i t h r e g a r d s t o s o d i u m we a l s o n e e d t o c o n s i d e r t h e s t a b i l i t y r e s i s t a n c e o f t h e z e o l i t e . F o r t u n a t e l y , some o f t h e n e w e r z e o l i t e s are able t o maintain t h e i r s t r u c t u r a l i n t e g r i t y , i n t h e presence of h i g h sodium l e v e l s . However, t h e a c i d s i t e s p r e s e n t r e m a i n s t i l l v e r y s u s c e p t i b l e t o n e u t r a l i z a t i o n by sodium. We c a n a l s o d i s t i n g u i s h a f e w l i n e s o f a p p r o a c h r e g a r d i n g c a t a l y s t p o i s o n s which d e a c t i v a t e t h e c a t a l y s t by coke f o r m a t i o n , t h a t i s by b l o c k i n g o f pores and t h e c a t a l y s t a c t i v e s i t e s , 1.
Conversion o f these coke p r e c u r s o r s p r i o r t o t h e formation o f t h e c o k e . I t i s t o some e x t e n t d e b a t a b l e w h e t h e r t h i s c a n b e d o n e . Some i m p r o v e m e n t s a r e p o s s i b l e u s i n g a n i m p r o v e d c a t a l y s t pore a r c h i t e c t u r e and a c i d i t y d i s t r i b u t i o n . 2. A d a p t c a t a l y s t d e s i g n t o m i n i m i z e t h e e f f e c t o f c o k e o n c a t a l y s t . T h i s i s a n a s p e c t w h i c h c l e a r l y d e s e r v e s a t t e n t i o n , a s we m i g h t expect s i g n i f i c a n t d e p o s i t i o n o f coke i n t h e very beginning o f t h e r i s e r when p r o c e s s i n g r e s i d s . 3. R e d u c e t h e c a t a l y t i c c o k e f o r m a t i o n o f t h e c a t a l y s t i n o r d e r t o a l l o w some r o o m f o r t h e a d d i t i o n a l c o k e f o r m e d b y t h e s e p o i s o n s . I n t h i s a p p r o a c h we a c c e p t t h a t t h e e x t r a c o k e f o r m e d i s u n a v o i d a b l e , a n d t h a t we n e e d t o c o m p e n s a t e b y i m p r o v i n g t h e c o k e selectivity of the catalyst. The m a i n s t r a t e g i e s f o r a d d r e s s i n g are summarized i n Table X I .
these
types
of catalyst
poisons
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
338
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
O A c t i v e A1203 • No A1203
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
"Ni-Activating"
• A c t i v e A1203 including ADVANCE Technology
Ni-Encapsulation" _J
0
i
I
2
4
RE203,
i
I
L_
i
6
8
%wt on Y MST at 70%wt Conversion 1500 ppm Ni, 5h 788 100%St
Figure
9
: Hydrogen p r o d u c t i o n
vs Catalyst
design.
--- A c t i v e A1203
COKE
Traditional
A c t i v e A1203 Advance Technology
MST LCS
- Optimum Where ?
Test
1500 ppm N i 5h 788 S t . K u w a i t VGO
MESOPORE ACTIVITY Figure
10
: Coke s e l e c t i v i t y
v s Mesopore
activity.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
20.
Table XI.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
Type o f
339
Future Residuum Catalyst Development
O'CONNOR ETAL.
Strategies for addressing
Poison
catalyst
Strategy
Examples
poisons
Remarks
Poisons which n e u t r a l i z e or destroy acid sites
Na, K, nitrogen
s p e c i f i c poison catchers sacrificial sites: high
not s u c c e s s f u l yet n e e d t o compensate f o r cokeselectivity
Poisons which deactivate s i t e s and b l o c k p o r e s by e x t r a coke formation
b a s i c and polar compounds
convert coke precursors min. effect o f c o k e on catalyst reduce catal y t i c coke formation
special acidity
pore distr.
n e e d t o compensate f o r coke selectivity
We c a n c o n c l u d e t h a t a n i m p r o v e m e n t i n c o k e s e l e c t i v i t y p l a y s a n important r o l e i n the s t r a t e g i e s t o cope w i t h b o t h type of p o i s o n s . Catalyst Selectivity
and
Stability
As d i s c u s s e d i n t h e p r e v i o u s s e c t i o n s any i m p r o v e m e n t s i n c o k e s e l e c t i v i t y c a n be u t i l i z e d t o e x t e n d t h e f r o n t i e r s o f r e s i d p r o c e s s i n g as s e v e r a l t y p e s o f p o i s o n s i n t h e r e s i d f e e d , most o f a l l the p o l a r hydrocarbons w i l l i n c r e a s e the coke formed. A l s o f o r f u e l g a s we c a n o b s e r v e t h a t n o n - o p t i m a l v a p o r i z a t i o n a n d c r a c k i n g c o n d i t i o n s w i t h r e s i d w i l l s t r o n g l y enhance gas f o r m a t i o n . A low c o k e and gas c a t a l y s t i s h e n c e a b i g p l u s f o r r e s i d p r o c e s s i n g . (Table XII.) T a b l e X I I . Low
Zeolite
A c t i v e Al^O^ Catalyst Architecture
c o k e and
gas
catalyst
N o n - f r a m e w o r k c o n t r o l (3), a l s o low coke w i t h m e d i u m / h i g h RE^O^ levels. F u e l g a s d e c r e a s e s w i t h h i g h e r RE^O^ levels M o d i f i e d s u r f a c e c h e m i s t r y t o r e d u c e c o k e and g a s f o r m a t i o n (11, 20) S p e c i a l pore s i z e A c i d i t y D i s t r i b u t i o n r e d u c e s c o k e and gas formation
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
340
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
B a s e d o n t h e " i d e a l i z e d o b j e c t i v e s " o u t l i n e d i n T a b l e X I I L , we c a n a r r i v e a t t h e f o l l o w i n g c a t a l y s t c h a r a c t e r i s t i c s f o r optimum coke and g a s r e d u c t i o n RESID-1
Minimum g a s
RESID-2
Minimum coke
Medium r a r e e a r t h z e o l i t e w i t h medium t o h i g h mesopore a c t i v i t y . Low r a r e e a r t h z e o l i t e w i t h l o w mesopore a c t i v i t y .
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
The p r o g r e s s i n c o k e s e l e c t i v i t y a n d b o t t o m s o r r e s i d c r a c k i n g i s i l l u s t r a t e d i n Table X I I I below:
Table X I I I . Resid conversion a t constant
RC,
coke
R e s i d c o n v e r s i o n = 1 0 0 - b o t t o m s - c o k e , i n MST RC
Base
D e l t a RC
79.3
ADVANCE DEV-1*) DEV-2*)
80.6 82.8 83.8
RE-USY c a t a l y s t w i t h m e d i u m m e s o p o r e a c t i v i t y , a t 788°C, 1 0 0 % s t e a m a n d 1 5 0 0 ppm N i . *) E x p e r i m e n t a l l a b o r a t o r y samples
1.3 3.5 4.5
deactivated
5 hours
I t i s c l e a r t h a t the z e o l i t e d e l t a c o k e w i l l have a s t r o n g e f f e c t on t h e r e g e n e r a t o r t e m p e r a t u r e a n d h e n c e o n t h e c a t a l y s t d e a c t i v a t i o n . D e p e n d i n g o n t h e t r e n d i n FCC r e g e n e r a t o r t e m p e r a t u r e s , t h e a s p e c t o f h y d r o t h e r m a l s t a b i l i t y m i g h t become o f g r e a t e r importance. I t h a s been o b s e r v e d t h a t , t h e i n d i r e c t e f f e c t o f d e l t a coke on c a t a l y s t d e a c t i v a t i o n , a n d t h e d i r e c t e f f e c t o f d e l t a c o k e o n the b l o c k i n g o f a c i d s i t e s ( e a r l y ) i n t h e r i s e r seems t o b e a prime f a c t o r , which dominates conversion and s e l e c t i v i t y e f f e c t s i n a r e s i d type of operation. Future
Perspectives
From t h e f o r e g o i n g c h a p t e r s i t s h o u l d be c l e a r t h a t t h e development o f a s u c c e s s f u l FCC r e s i d c a t a l y s t d e p e n d s o n s e v e r a l a s p e c t s t h e r e l a t i v e p r i o r i t i e s o f which w i l l be determined by t h e r e f i n e r y o b j e c t i v e s , f e e d s t o c k , FCC u n i t c o n f i g u r a t i o n a n d l i m i t a t i o n s . S t i l l , i t i s worthwhile t o distinguish certain "idealized objectives" i n o r d e r t o f o c u s t h e c a t a l y s t development i n t h i s f i e l d . The advances i n r e s i d F C C c a t a l y s t d e v e l o p m e n t u p t o now h a v e b e e n m a i n l y i n t h e f i e l d of metal tolerance (metal traps), while also progress has
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
20. O'CONNOR ETAL.
b e e n made i n c r a c k i n g t h e l a r g e r h y d r o c a r b o n m o l e c u l e s . F o r t h e f u t u r e we n e e d t o a d d r e s s some o t h e r c r i t i c a l p o i n t s upon i n t h i s r e v i e w as ( T a b l e X I V . )
T a b l e X I V . Some f u t u r e
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
341
Future Residuum Catalyst Development
touched
challenges
- How t o r e d u c e t h e f o r m a t i o n a n d t h e d e t r i m e n t a l e f f e c t o f t h e f e e d c o k e o r c o k e f o r m e d b y p o l a r compounds - Development o f t r a p s f o rp o i s o n s , w i t h o u t n e g a t i v e l y a f f e c t i n g the c a t a l y s t s e l e c t i v i t y - A c c e s s i b i l i t y and e f f e c t i v e n e s s o f vanadium t r a p p i n g - Further r e d u c t i o n o f " c a t a l y t i c " coke and f u e l gas p r o d u c t i o n i n o r d e r t o a l l o w more room f o r r e s i d p r o c e s s i n g - Cracking of c e r t a i n " d i f f i c u l t " molecules
I t i s a l s o c l e a r t h a t a g o o d u n d e r s t a n d i n g o f t h e FCC p r o c e s s o b j e c t i v e s , l i m i t a t i o n s and c o n f i g u r a t i o n w i l l be o f c r u c i a l i m p o r t a n c e f o r t h e d e v e l o p m e n t o f a n o p t i m i z e d r e s i d FCC c a t a l y s t formulation. REFERENCES
1. See f o r example: (a) M.L. O c c e l l i and J.V. Kennedy i n GB 2.116.062 A (1983) (b) M.L. O c c e l l i and J.V. Kennedy i n US 4.465.588 (1984) (c) M.L. O c c e l l i and H.E. Swift i n US 4.466.884 (1984) (d) M.L. O c c e l l i i n US 4.615.996 (1986) (e) J . I . de Jong i n US 4.519.897 (1985) 2. M.L. O c c e l l i i n " F l u i d Catalyst Cracking: Role i n Modern Refining", ACS Symposium Series, v o l 375, M.L. O c c e l l i , Ed. ACS Washington D.C., p 162 (1989). 3. See f o r example: (a) J . Scherzer i n " C a t a l y t i c Materials: Relationship between structure and r e a c t i v i t y , ACS Symposium Series, v o l 248 T.E., Whyte, R.A.D. Betta, E.G. Derouane and R.T.K. Baker, E d i t o r s , ACS Washington D.C., p 157 (1983) (b) R.J. P e l l e t , C.S. Blackwell and J.A. rabo; J . C a t a l y s i s 114, 71-89 (1988) (c) B. de Kroes, C.J. Groenenboom and P. O'Connor; "New Z e o l i t e s i n FCC", Akzo Catalyst Symposium 1986, May 25-28, The Netherlands. H.Th. R i j n t e n , and H.J. Lovink e d i t o r s . 4. See f o r example: G.J. Thompson, R.H. Hensen, C.N. Cabrera and E.J. Houde; "Processing requirements and economic analysis of Heavy Oil and syncrude r e f i n i n g " , i n the 12th World Petroleum Congres, Houston 1987, John Wiley & Sons ltd.
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CHINESE UNIV OF HONG KONG on February 14, 2016 | http://pubs.acs.org Publication Date: January 23, 1991 | doi: 10.1021/bk-1991-0452.ch020
342
FLUID CATALYTIC CRACKING II: CONCEPTS IN CATALYST DESIGN
5. C. Carter; NPRA Annual meeting 1986, AM-84-27 6. J.A. Dudley; AIChe 1989, Spring National Meeting, Houston 7. P. O'Connor and F.W. van Houtert; "The role of diffusion in bottoms conversion", Akzo Catalyst Symposium 1986, May 25-28, The Netherlands. H.Th. Rijnten and H.J Lovink editors. 8. J . L . Mauleon and J.B. Sigaud; "Characterization and selection of heavy feeds for upgrading through fluid catalytic cracking process" in the 12th world Petroleum Congress, Houston 1987, Hohn Wiley & sons Ltd. 9. J.E. Naber, P.H. Barnes and M. Akbar; J . P . I . Petroleum Refining conference, Tokyo - Japan, October 1988. 10. M.L. Occelli and J.M. Stengel in "Fluid Catalytic Cracking: Role in Modern Refining", ACS Symposium Series, vol 375, M.L. Occelli, Ed. ACS Washington D.C., p 195 (1989). 11. C. Lam, P. O'Connor and C . P . Smit; "The Advance Catalyst Series", Akzo Catalyst Symposium 1988, May 29-June 1, The Netherlands, H.J. Lovink editor. 12. J. Scherzer and d.P. McArthur; "Catalytic Cracking of High Nitrogen Petroleum Feedstocks: Effect of Catalyst Composition and Properties", Ind. Eng. Chem. Res. 1988, 27, p 1571-1576. 13. D.M. Nace; Ind. Eng. Chem. 9 (2), 203, 1970. 14. P. O'Connor and M.B. Hartkamp in "Characterization and Catalyst Development", ACS Symposium series, vol 411, S.A. Bradley, M.J. Gatturo and R . J . Bertolacini, editors ACS Washington DC, p 135 (1989). 15. P. Hettinger in "Fluid Catalytic Cracking: Role in Modern Refining", ACS Symposium Series, Vol 375, M.L. Occelli, editor ACS Washington DC, p 308 (1989). 16. M.L. Occelli and J.M. Stencel in "Zeolite as Catalysts, sorbents and Detergent Builders" H.G. Karge and J . Weitkamp, editors Elsevier, p 127 (1989). 17. M.L. Occelli and J.M. Stencel in "Zeolites, Facts, Figures, Future", P.A. Jacobs, P.A. Vanjarter, editor Elsevier, part B p 1311, 1989. 18. C. Groenenboom in "Zeolites as Catalysts, Sorbents and Detergent Builders", H.G. Karge, editor Elsevier, p 199, 1989. 19. D.P. Leta and E.L. Kugler; "Secondary Ion Mass Spectranetry Proc. Int. Conf.", 6th 1987, p 373 (1988). 20. MM.L. Occelli; Journal of Catalysis, 96, 1985, 2, p 363-370. 21. A.W. Gevers, P. O'Connor and E. Brevoord; "Advance: an exceptional FCC Catalyst desing", Akzo Catalysts South American Catalyst Seminar, 1989, October 19-20, 1989, H.J. Lovink editor. RECEIVED October 5, 1990
In Fluid Catalytic Cracking II; Occelli, Mario L.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.