pubs.acs.org/Langmuir © 2010 American Chemical Society
Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography Chuanzhen Zhou and Amy V. Walker* Department of Chemistry and Center for Materials Innovation, Washington University in St. Louis, Campus Box 1134, One Brookings Drive, St. Louis, Missouri 63130 Received December 28, 2009. Revised Manuscript Received March 3, 2010 Ultrathin complex multilayer structures have many potential applications in molecular and organic electronics, sensing, biotechnology and other areas. Reported here is a method by which to construct multifunctional, multilayer, patterned structures, using alkanethiolate SAMs adsorbed on Au, UV photopatterning, and chemoselective covalent bond formation. We demonstrate that amide coupling is efficient for producing multilayer structures on -COOHterminated SAMs, while oxime coupling is efficient for producing multilayer structures on -CHO-terminated SAMs. Reaction yields obtained are ∼67% and ∼84% for the coupling of the first layer (bilayer formation) for amide and oxime coupling, respectively. Subsequent adlayer formation occurs with ∼100% yield in both cases. The resulting adlayers are chemically robust and are suitable for subsequent chemical processing. Finally, both chemistries are used to produce a complex multilayer structure atop a UV photopatterned SAM. The resulting construct is well-defined and has the same lateral resolution as the photopatterned SAM substrate. The method demonstrated here is synthetically flexible and allows for the assembly of functionally complex surfaces and, in principle, the incorporation of biomolecules and metals.
1. Introduction Ultrathin multilayer structures have many potential applications in technologies including molecular and organic electronics,1-3 polymer light emitting diodes (PLEDs),4 optoelectronics,5,6 photovoltaics,7-9 sensors,10 tissue engineering,11 and fuel cells.9 A number of methods have been employed to construct multilayer structures, including Langmuir-Blodgett deposition12,13and layerby-layer (LbL) assembly.14-18 Of these LbL is the more versatile method. LbL allows a wide range of materials, including *Corresponding author: Present address. Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd, RL10, Richardson, TX 75080. Telephone: 972 883 5780. Fax: 972 883 5725. E-mail:
[email protected]. (1) Yu, L. H.; Zangmeister, C. D.; Kushmerick, J. G. Nano Lett. 2006, 6, 2515– 2519. (2) DeLongchamp, D. M.; Hammond, P. T. Chem. Mater. 2003, 15, 1165–1173. (3) Cutler, C. A.; Bouguettaya, M.; Reynolds, J. R. Adv. Mater. 2003, 2002, 684– 688. (4) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Mards, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; L€ogdlund, M.; Salaneck, W. R. Nature 1999, 397, 121–128. (5) Lenahan, K. M.; Wang, Y.-X.; Liu, Y. J.; Claus, R. O.; Heflin, J. R.; Marciu, D.; Figura, C. Adv. Mater. 1998, 10, 853–855. (6) Wang, Y.; Tang, Z.; Correa-Duarte, M. A.; Liz-Marzan, L. M.; Kotov, N. A. J. Am. Ceram. Soc. 2003, 125, 2830–2831. (7) Li, L. S.; Jia, Q. X.; Li, A. D. Q. Chem. Mater. 2002, 14, 1159–1165. (8) He, J. A.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J. Langmuir 2003, 19, 2169–2174. (9) Lutkenhaus, J. L.; Hammond, P. T. Soft Matter 2007, 3, 804–816. (10) Davis, F.; Higson, S. P. J. Biosens. Bioelectron. 2005, 21, 1–20. (11) Tang, Z.; Wang, Y.; Podsiallo, P.; Kotov, N. A. Adv. Mater. (Weinheim, Ger.) 2006, 18, 3203–3224. (12) Esker, A. R.; Mengel, C.; Wegner, G. Science 1998, 280, 892–895. (13) Vierheller, T. R.; Foster, M. D.; Schmidt, A.; Mathauer, K.; Knoll, W.; Wegner, G.; Satija, S.; Majkrzak, C. F. Macromolecules 1994, 27, 6893–6902. (14) Decher, G. Science 1997, 277, 1232–1237. (15) Lee, S. W.; Sanedrin, R. G.; Oh, B.-K.; Mirkin, C. A. Adv. Mater. 2005, 17, 2749–2753. (16) Westenhoff, S.; Kotov, N. A. J. Am. Chem. Soc. 2002, 124, 2448–2449. (17) Jiang, X.-P.; Clark, S. L.; Hammond, P. T. Adv. Mater. 2001, 13, 1669– 1673. (18) Park, J.; Hammond, P. T. Adv. Mater. 2004, 16, 520–525. (19) Shiratori, S. S.; Rubner, M. F. Macromolecules 2000, 33, 4213–4219. (20) Ariga, K.; Hill, J. P.; Ji, Q. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340. (21) Zheng, L.-S.; Yao, X.; Li, J. Curr. Anal. Chem. 2006, 2, 279–296. (22) Zhao, W.; Xu, J.-J.; Chen, H.-Y. Electroanalysis 2006, 18, 1737–1748.
Langmuir 2010, 26(11), 8441–8449
polyelectrolytes,9,19-21 proteins,11,22 DNA,11,22,23 polymers20,23-28 and nanoparticles,20,29-31 to be incorporated in the film structure. The first reported LbL assembly was based on the electrostatic interaction between oppositely charged polyelectrolytes32 and remains widely used today.11,20-22,33 LbL strategies have since been developed based on hydrogen bonding,9,20,23 DNA hybridization,23 ionic interactions,20,24,34-37 hydrophobic interactions,38 and covalent coupling.20,22,23,25-28,35,39 Assembly methods which employ covalent bond formation or strong ionic interactions are desirable because the films produced have very high stability and do not degrade with changes in pH, solvent, or temperature.22,23 Self-assembled monolayers (SAMs) are attractive substrates for the construction of complex, three-dimensional (3D) assemblies because they have highly organized, well-defined structures with a uniform density of terminal groups.40,41 SAMs also offer a great deal of synthetic flexibility.40,41 Furthermore, there are (23) Quinn, J. F.; Johnston, A. P. R.; Such, G. K.; Zelikin, N.; Caruso, F. Chem. Soc. Rev. 2007, 36, 707–718. (24) Kohli, P.; Blanchard, G. J. Langmuir 1999, 15, 1418–1422. (25) Chan, E. W. L.; Lee, D.-C.; Ng, M.-K.; Wu, G.; Lee, K. Y. C.; Yu, L. J. Am. Chem. Soc. 2002, 124, 12238–12243. (26) Kohli, P.; Blanchard, G. J. Langmuir 2000, 16, 4655–4661. (27) Major, J. S.; Blanchard, G. J. Chem. Mater. 2002, 14, 2567–2573. (28) Major, J. S.; Blanchard, G. J. Chem. Mater. 2002, 14, 2574–2581. (29) Lee, D.; Gemici, Z.; Rubner, M. F.; Cohen, R. E. Langmuir 2007, 23, 8833– 8837. (30) Lee, D.; Rubner, M. F.; Cohen, R. E. Nano Lett. 2006, 6, 2305–2312. (31) Wu, Z.; Walish, J.; Nolte, A.; Zhai, L.; Cohen, R. E.; Rubner, M. F. Adv. Mater. 2006, 18, 2699–2702. (32) Lvov, Y.; Decher, G.; Moehwald, H. Langmuir 2002, 9, 481–486. (33) Constantine, C. A.; Mello, S. V.; Dupont, A.; Cao, X.; Santos, D., Jr.; Oliveira, O. N., Jr.; Strixino, F. T.; Pereira, E. C.; Cheng, T.-C.; Defrank, J. J.; Leblanc, R. M. J. Am. Chem. Soc. 2003, 125, 1805–1809. (34) Bakiamoh, S. B.; Blanchard, G. J. Langmuir 1999, 15, 6379–6385. (35) Kohli, P.; Blanchard, G. J. Langmuir 2000, 16, 8518–8524. (36) Ansell, M. A.; Zeppenfeld, A. C.; Yoshimoto, K.; Cogan, E. B.; Page, C. J. Chem. Mater. 1996, 8, 591–594. (37) Daniel, T. A.; Uppili, S.; McCarty, G.; Allara, D. L. Langmuir 2007, 23, 638–648. (38) Serizawa, T.; Hashiguchi, S.; Akashi, M. Langmuir 1999, 15, 5363–5368. (39) Kohli, P.; Taylor, K. K.; Harris, J. J.; Blanchard, G. J. J. Am. Chem. Soc. 1998, 120, 11962–11968. (40) Ulman, A. Chem. Rev. 1996, 96, 1533–1554. (41) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151–256.
Published on Web 04/19/2010
DOI: 10.1021/la904891h
8441
Article
many ways to pattern SAMs including UV photopatterning,42-48 electron beam lithography,49-55 nanoimprinting,56 dip pen nanolithography,56-58 and microcontact printing.56,59 The assembly of multilayers on SAMs using electrostatic interactions has been studied previously.37,60,61 Chemistries employed include the interaction of Zr4þ and Hf4þ ions with phosphonate functionalized layers,34,62-65 Co2þ with diisocyanide,36 Cu2þ with thiols,39 pyrazines with Ru2þ,66 sulfonates with Hf 4þ and Zr4þ,34 and carboxylates with Hf 4þ, Zr4þ, and Cu2þ ions.37,60,61 Films 20-30 layers thick can easily be grown using these methods.36,63 However, the resulting assemblies are not necessarily well-ordered because the adlayers are often incomplete.36,60,62,67 For example, Anderson et al.,68 and McCarty et al.69 have demonstrated that Cu-mercaptoalkanoic acid “molecular ruler” films can be employed as resists to produce