Chapter 7
Geochemistry of Organic and Inorganic Sulfur in Ancient and Modern Lacustrine Environments Case Studies of Freshwater and Saline Lakes
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
Michele L. Tuttle, Cynthia A. Rice, and Martin B. Goldhaber U.S. Geological Survey, MS 916, Box 25046, Denver Federal Center, Denver, CO 80225
Abundances of sulfur species (monosulfide, disulfide, and organosulfur) and their isotopic compositions were used to determine sulfur geochemistry in sediment from two freshwater lakes and three saline lakes, and in two Paleogene lacustrine o i l shales. Concentrations of reactants (SO 2-, organic matter, and iron) as well as their reactivity are controls on the extent of sulfate reduction, sulfide-mineral formation, and sulfidization of organic matter. In freshwater lakes containing low sulfate concentrations and in the freshwater oil shale of the Rundle Formation, sulfate availability limits the amount of sulfide-mineral formation and the mineral isotopic values are near those of the lake sulfate. Iron and organic-carbon availability limit sulfide-mineral formation in relatively short-lived, high sulfate lakes and the isotopic composition of these minerals is generally depleted in 34S relative to the initial sulfate. In high-pH saline lakes, the rate of iron sulfidization is significantly decreased. In lakes undergoing rapid fluctuation in lake level, diagenetic processes such as H S diffusion complicate the sulfur geochemistry. In very long-lived lakes such as those that deposited the Green River Formation oil shale, the isotopic composition of sulfide minerals is enriched in S relative to the original sulfate entering the lakes. The sulfate reservoir in these long4
2
34
This chapter not subject to U.S. copyright Published 1990 AmericanChemicalSociety
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
7. TUTTLEET AL.
GeoChemistry of Sulfur in Lacustrine Environments 115 34
lived lakes evolves to S-enriched values. Formation of organosulfur in saline lakes occurs predominantly from the sulfidization of organic matter by bacteriogenic H S. The sulfur found in lacustrine shale o i l may evolve from this bacteriogenic sulfur.
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
2
S u l f u r g e o C h e m i s t r y i s r e c o g n i z e d as a p o w e r f u l a p p r o a c h t o understanding t h e d e p o s i t i o n a l and d i a g e n e t i c h i s t o r i e s of sedimentary environments. Sulfur i s ubiquitous i n n a t u r e and i n v o l v e d i n both a b i o t i c and b i o t i c p r o c e s s e s (Figure 1). Also, sulfur transformations are sensitive t o b o t h pH a n d r e d o x c o n d i t i o n s . U s i n g i n t e r p r e t i v e r e s u l t s f r o m s u l f u r s t u d i e s i n modern l a k e s , o u r r e s e a r c h s e e k s t o r e c o n s t r u c t t h e s u l f u r geoChemistry d u r i n g d e p o s i t i o n and diagenesis of lacustrine o i l shales. T o t a l s u l f u r c o n c e n t r a t i o n s and s u l f u r i s o t o p i c c o m p o s i t i o n s a r e t h e two most common p a r a m e t e r s u s e d t o i n t e r p r e t s u l f u r g e o C h e m i s t r y i n modern and a n c i e n t sediments. S i n c e t o t a l s u l f u r i n c l u d e s i n p u t s from m u l t i p l e processes i n t h e sedimentary s u l f u r c y c l e , i m p o r t a n t i n f o r m a t i o n r e g a r d i n g i n d i v i d u a l p r o c e s s e s may be l o s t . A more f r u i t f u l a p p r o a c h would be t o d i s t i n g u i s h s e p a r a t e r e s i d e n c e s o f s u l f u r and t o a n a l y z e t h e i r i n d i v i d u a l i s o t o p i c compositions. We have e x t e n s i v e l y employed t h e a d d i t i o n a l i n s i g h t s t h a t t h i s l a t t e r a p p r o a c h provides. I n k e e p i n g w i t h t h e theme o f t h i s symposium, we f o c u s o u r i n v e s t i g a t i o n on o r g a n o s u l f u r ( s u l f u r bound i n organic matter). However, i n o r d e r t o u n d e r s t a n d processes c o n t r o l l i n g the incorporation of s u l f u r into o r g a n i c m a t t e r , we c o n s i d e r d a t a from a l l t y p e s o f lacustrine sulfur. F i r s t we r e v i e w c o n t r o l s on t h e amount and i s o t o p i c c o m p o s i t i o n o f v a r i o u s forms o f s u l f u r i n l a c u s t r i n e environments. Next, we summarize t h e d i v e r s e b e h a v i o r o f s u l f u r i n sediment f r o m two f r e s h w a t e r e n v i r o n m e n t s ; i n s e d i m e n t f r o m t h r e e modern, p r o d u c t i v e , s a l i n e l a k e s ; a n d i n o i l s h a l e s d e p o s i t e d i n freshwater and s a l i n e l a c u s t r i n e environments. L a s t l y , our r e s u l t s are i n t e g r a t e d i n o r d e r t o p r o d u c e models t h a t 1) p r e d i c t t h e e x t e n t o f f o r m a t i o n and i s o t o p i c c o m p o s i t i o n o f s u l f i d e m i n e r a l s i n r e s p o n s e t o major c o n t r o l s on s u l f u r g e o C h e m i s t y ; a n d 2) show t h e f o r m a t i o n a l pathway o f o r g a n o s u l f u r i n l a c u s t r i n e o i l s h a l e and i t s d e r i v a t i v e oil. C o n t r o l s on S e d i m e n t a r y S u l f u r Chemistry. The v a r i a b i l i t y o f s u l f u r geoChemistry i n l a c u s t r i n e e n v i r o n m e n t s i s due, i n p a r t , t o t h e l a r g e c o n c e n t r a t i o n
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
S
3
cl
Ώ
ne
ο
1
Β
η
Β
h* h*
7.
GeoChemistry of Sulfur in Lacustrine Environments 117
TUTTLE ET AL.
r a n g e s o f r e a c t a n t s i n v o l v e d i n key r e a c t i o n s o f t h e sedimentary s u l f u r c y c l e — t h e b a c t e r i a l l y mediated r e d u c t i o n o f s u l f a t e and t h e p r o d u c t i o n o f i r o n - s u l f i d e minerals. The s u l f a t e - r e d u c t i o n r e a c t i o n i n i t s s i m p l i f i e d form i s (1) : 2CH 0 +
S O 4
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
2
2
—>
-
HS 2
+ 2HC0 ~, 3
(1)
where C H 2 O i s a g e n e r i c c a r b o h y d r a t e m o l e c u l e u s e d b a c t e r i a l l y as an e n e r g y s o u r c e w i t h s u l f a t e as t h e electron acceptor. The amount o f o r g a n i c m a t t e r ( C H 2 O ) i n l a k e s e d i m e n t i s d i r e c t l y r e l a t e d t o b o t h l a k e p r o d u c t i v i t y and p r e s e r v a t i o n d u r i n g d e p o s i t i o n and e a r l y d i a g e n e s i s . O r g a n i c p r o d u c t i v i t y i n l a k e s i s h i g h l y v a r i a b l e , as low as 0.6 g C m" yr"" i n o l i g o t r o p h i c t u n d r a l a k e s t o as h i g h as 640 g C m" y r " i n eutrophic e q u a t o r i a l lakes (2.) . P r e s e r v a t i o n o f o r g a n i c m a t t e r i n l a k e s e d i m e n t i s r e l a t e d t o the l e n g t h of time the o r g a n i c matter i s i n contact with oxygenated waters. In l a k e s w i t h o x y g e n a t e d b o t t o m water, a e r o b i c m i n e r a l i z a t i o n p r o d u c e s r e f r a c t o r y o r g a n i c components i n c a p a b l e o f y i e l d i n g t h e f e r m e n t a t i v e d e g r a d a t i o n p r o d u c t s u t i l i z a b l e by s u l f a t e - r e d u c i n g bacteria. I f anoxic c o n d i t i o n s are e s t a b l i s h e d q u i c k l y , e i t h e r i n t h e b o t t o m w a t e r o r j u s t below t h e s e d i m e n t w a t e r i n t e r f a c e , a e r o b i c m i n e r a l i z a t i o n i s m i n i m a l and metabolizable organic matter supports extensive b a c t e r i a l s u l f a t e r e d u c t i o n (3-4). The o t h e r major r e a c t a n t i n E q u a t i o n 1 i s s u l f a t e (S04 ~) . S u l f a t e c o n c e n t r a t i o n s a r e h i g h l y v a r i a b l e i n l a k e w a t e r s , f r o m 3 χ 10~ mol/L i n s o f t - w a t e r l a k e s i n c r y s t a l l i n e - r o c k d r a i n a g e b a s i n s t o 1.6 mol/L i n h y p e r s a l i n e l a k e s (2). In p r o d u c t i v e , f r e s h w a t e r l a k e s , s u l f a t e r e d u c t i o n t y p i c a l l y goes n e a r l y t o c o m p l e t i o n (5.) . As s u l f a t e c o n c e n t r a t i o n s i n c r e a s e , amounts o f o r g a n i c m a t t e r e v e n t u a l l y become i n s u f f i c i e n t f o r c o m p l e t e s u l f a t e reduction to occur. T h i s i s the case i n "normal" marine s e d i m e n t where a l i n e a r r e l a t i o n between t o t a l r e d u c e d s u l f u r and o r g a n i c - c a r b o n c o n c e n t r a t i o n s i s o b s e r v e d . Sea-water s u l f a t e c o n c e n t r a t i o n i s 0.028 mol/L and t h e r a t i o of t o t a l reduced s u l f u r t o o r g a n i c - c a r b o n c o n c e n t r a t i o n s ( o f t e n r e f e r r e d t o as S/C) i n m a r i n e s e d i m e n t i s 0.33 (£). The amount o f r e d u c e d s u l f u r i n f r e s h w a t e r l a c u s t r i n e sediment and i n most m a r i n e s e d i m e n t i s a f u n c t i o n of the a v a i l a b i l i t y of the l i m i t i n g r e a c t a n t during sulfate reduction—whether s u l f a t e or o r g a n i c matter. T h i s s i m p l e two end-member model must f r e q u e n t l y be m o d i f i e d f o r s a l i n e l a c u s t r i n e sediment and f o r some m a r i n e sediment i n o r d e r t o r e f l e c t t h e c a p a c i t y o f t h e 2
1
2
1
2
5
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
118
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
s e d i m e n t t o remove H 2 S . I n c o r p o r a t i o n o f H 2 S by t h e s e d i m e n t i s d o m i n a n t l y c o n t r o l l e d by t h e r e a c t i o n o f i r o n and r e d u c e d s u l f u r s p e c i e s as shown by t h e f o l l o w i n g r e a c t i o n s ( m o d i f i e d f r o m e q u a t i o n s i n 7-8):
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
FeOOH + H
+
2-
+ 3/2S -» FeS + l/16Se + FeS + 1/8S8 -> FeS2.
20H~
(2) (3)
The e l e m e n t a l s u l f u r (Se) i n E q u a t i o n 3 i s g e n e r a l l y d i s s o l v e d as a p o l y s u l f i d e i o n . In i r o n - p o o r sediment o r sediment i n which i r o n r e s i d e s l a r g e l y i n r e f r a c t o r y m i n e r a l s , o n l y s m a l l amounts o f s u l f i d e m i n e r a l s f o r M . Excess H 2 S i n these sediments s l o w l y r e a c t s w i t h o r g a n i c m a t t e r t o form o r g a n o s u l f u r . In summary, t h e r e a r e t h r e e m a s t e r v a r i a b l e s c o n t r o l l i n g s u l f i d e - m i n e r a l f o r m a t i o n i n m a r i n e and l a c u s t r i n e environments. In m a r i n e s e d i m e n t , metabolizable organic matter l i m i t s s u l f i d e - m i n e r a l f o r m a t i o n e x c e p t i n c a r b o n a t e - r i c h sediment o r e u x i n i c ( H 2 S - b e a r i n g ) b a s i n s where i r o n may be l i m i t i n g . Sulfidem i n e r a l f o r m a t i o n i n f r e s h w a t e r sediment i s g e n e r a l l y sulfate limited. In s a l i n e l a k e s c o n t a i n i n g h i g h amounts o f d i s s o l v e d s u l f a t e , we e x p e c t s u l f i d e - m i n e r a l f o r m a t i o n t o be l i m i t e d by e i t h e r o r g a n i c m a t t e r o r by i r o n . The r e s u l t s summarized i n t h i s p a p e r c o n f i r m our e x p e c t a t i o n and i d e n t i f y key p r o c e s s e s c o n t r o l l i n g t h e s e v a r i a b l e s . C o n t r o l s on S e d i m e n t a r y S u l f u r T s o t o p y . Processes c o n t r o l l i n g l a c u s t r i n e s u l f u r g e o C h e m i s t r y ( F i g u r e 1) a r e r e c o r d e d n o t o n l y by t h e amounts o f m i n e r a l o g i c a l s u l f u r and o r g a n o s u l f u r , but a l s o by t h e i r i s o t o p i c c o m p o s i t i o n . The s u l f u r i s o t o p i c c o m p o s i t i o n (5 S) o f a s u l f u r phase i s d e t e r m i n e d by m e a s u r i n g i t s S / S (R) and c o m p a r i n g t h e r a t i o t o t h a t o f t h e Canon D i a b l o t r o i l i t e (CDT), t h e s t a n d a r d most o f t e n u s e d f o r s u l f u r : 34
3 4
δ
3 4
β
i n %o=
[(Rsample " ^standard)
3 2
/ ^standard 1 * 1000.
(4)
S u l f u r i s o t o p e systematics i n sedimentary environments are r e v i e w e d i n s e v e r a l e x c e l l e n t r e f e r e n c e s (JL, 9-11) , and are only b r i e f l y d i s c u s s e d i n t h i s paper. The p r e d o m i n a n t o r g a n i s m s i n h i g h l y p r o d u c t i v e l a k e s a r e g e n e r a l l y a l g a e and b a c t e r i a . These o r g a n i s m s c o n t a i n low l e v e l s o f n a t u r a l l y o c c u r r i n g o r g a n o s u l f u r formed by a s s i m i l a t i n g s u l f a t e , r e d u c i n g i t t o s u l f i d e , and u s i n g t h e s u l f i d e i n p r o d u c t i o n o f compounds s u c h as amino acids. T h i s p r o c e s s i s termed a s s i m i l a t o r y r e d u c t i o n o f sulfate. A s s i m i l a t e d s u l f u r has an i s o t o p i c c o m p o s i t i o n s i m i l a r t o t h e d i s s o l v e d s u l f a t e i n t h e l a k e (JJL) . In c o n t r a s t , d i s s i m i l a t o r y s u l f a t e r e d u c t i o n o c c u r s when
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
7. TUTTLEET AL.
GeoChemistry of Sulfur in Lacustrine Environments 119
b a c t e r i a u s e s u l f a t e a s an e l e c t r o n a c c e p t o r d u r i n g decomposition o f organic matter. This process involves a s u b s t a n t i a l f r a c t i o n a t i o n o f s u l f u r isotopes with the product, H 2 S , being depleted i n S r e l a t i v e t o t h e reactant, sulfate. The s y s t e m a t i c s o f s u l f u r i s o t o p i c evolution during d i s s i m i l a t o r y reduction are depicted i n a R a y l e i g h f r a c t i o n a t i o n p l o t ( F i g u r e 2 ) . The p l o t shows the e v o l u t i o n o f 8 S o f t h e r e s i d u a l s u l f a t e , i n s t a n t a n e o u s l y p r o d u c e d H 2 S , and a c c u m u l a t e d s u l f i d e r e s e r v o i r s as a f u n c t i o n o f t h e extent o f r e d u c t i o n o f t h e i n i t i a l sulfate reservoir. The c u r v e s on t h e p l o t were c a l c u l a t e d using Rayleigh f r a c t i o n a t i o n equations (2.) , an i n i t i a l s u l f a t e i s o t o p i c composition o f 8 S = 1 0 % o — t y p i c a l f o r s u l f a t e i n r i v e r s and l a k e s (9,12), a n d an i n s t a n t a n e o u s f r a c t i o n a t i o n v a l u e (Aso4-H2s) o f 3 0 % o — t h e v e r t i c a l d i s t a n c e between t h e " s u l f a t e " a n d "instantaneous H 2 S " curves. The c h o i c e o f 30%o i s i n t e r m e d i a t e ; w i t h i n t h e l a c u s t r i n e r a n g e o f 10%o i n some f r e s h w a t e r l a k e s (j)) t o 60%o i n some s a l i n e l a k e s (X2.) . For d i s c u s s i o n o f f a c t o r s c o n t r o l l i n g t h e magnitude o f Aso4-H2S ( l ^ - l i l ) . As t h e s u l f a t e r e s e r v o i r i s d e p l e t e d (moving f r o m l e f t t o r i g h t on t h e a b s c i s s a i n F i g u r e 2 ) , b o t h t h e s u l f a t e a n d i n s t a n t a n e o u s l y p r o d u c e d H 2 S become p r o g r e s s i v e l y e n r i c h e d i n S . Given a system i n which only p a r t i a l reduction o f d i s s o l v e d s u l f a t e occurs (less t h a n 20% f o r t h e c a s e modeled i n F i g u r e 2 ) , t h e a c c u m u l a t e d H 2 S w i l l be d e p l e t e d i n S r e l a t i v e t o t h e o r i g i n a l s u l f a t e r e s e r v o i r b y a v a l u e a p p r o a c h i n g Aso4-H2SMarine sediments i n c o n t a c t with ocean-water s u l f a t e exhibit similar isotope systematics. In a system with a s u l f a t e r e s e r v o i r t h a t i s a p p r e c i a b l y r e d u c e d a s i n many low s u l f a t e , f r e s h w a t e r l a k e s , t h e a c c u m u l a t e d H 2 S w i l l approach t h e i n i t i a l i s o t o p i c composition o f t h e s u l f a t e reservoir. Subsequent a b i o t i c s u l f i d i z a t i o n r e a c t i o n s i n v o l v i n g H 2 S have r e l a t i v e l y s m a l l i s o t o p e f r a c t i o n a t i o n s so t h a t t h e s o l i d phase p r o d u c t s d o m i n a n t l y r e f l e c t t h e b i o t i c sulfate-reductive processes. 3 4
3 4
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
3 4
s
e
e
3 4
3 4
Case S t u d i e s . The d i s c u s s i o n o f i n d i v i d u a l s t u d i e s i n t h i s p a p e r a r e i n t e n d e d a s b r i e f summaries o f i m p o r t a n t r e s u l t s f r o m a v a r i e t y o f a n c i e n t a n d modern l a k e s e d i m e n t s d i s c u s s e d i n o t h e r p a p e r s (13-16). These s t u d i e s i n c l u d e two P a l e o g e n e l a c u s t r i n e o i l s h a l e s — t h e G r e e n R i v e r F o r m a t i o n ( C o l o r a d o , Utah, a n d Wyoming) a n d t h e R u n d l e F o r m a t i o n (Queensland, A u s t r a l i a ) . The l o c a t i o n s o f t h e s e f o r m a t i o n s a r e shown i n F i g u r e 3, a n d key c h a r a c t e r i s t i c s o f t h e d e p o s i t s a r e compared i n Table I . A l s o i n c l u d e d a r e r e s u l t s from s t u d i e s o f t h r e e modern p r o d u c t i v e s a l i n e l a k e s (Soap Lake, W a s h i n g t o n ; G r e a t S a l t Lake, Utah; a n d Walker Lake, Nevada) a n d two
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
120
Figure 2. R a y l e i g h f r a c t i o n a t i o n c u r v e s o f 8 S as a f u n c t i o n of the percent of the i n i t i a l s u l f a t e reduced. 34
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
TUTTLE ET AL.
GeoChemistry of Sulfur in Lacustrine Environments
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
Flodelle Creek
Figure 3. L o c a t i o n s o f F l o d e l l e Creek, Washington; Soap Lake, Washington; Lake M i c h i g a n ; Lake O n t a r i o ; G r e a t S a l t Lake, U t a h ; Walker Lake, Nevada; a p p r o x i m a t a r e a l e x t e n t o f Green R i v e r F o r m a t i o n , Utah, C o l o r a d o , Wyoming; and a p p r o x i m a t e a r e a l e x t e n t o f R u n d l e Formation, Queensland, A u s t r a l i a .
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
122
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
f r e s h w a t e r e n v i r o n m e n t s (the G r e a t Lakes and a s p r i n g p o o l i n a p e a t bog l o c a t e d n e a r F l o d e l l e Creek, W a s h i n g t o n ) . The m o r p h o m e t r i c and geochemical c h a r a c t e r i s t i c s of the modern l a k e s a r e g i v e n i n T a b l e I I and t h e i r l o c a t i o n s shown i n F i g u r e 3.
T a b l e I . Comparison o f c h a r a c t e r i s t i c s o f o i l - s h a l e d e p o s i t s o f t h e Green R i v e r and Rundle F o r m a t i o n s
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
Green
River
Rundle
Characteristic
Formation
Formation
Age
Paleogene
Paleogene
Environment of d e p o s i t i o n
Lacustrine
Lacustrine
Classification
Lamosite
Avg o i l y i e l d (L/tonne) Area of d e p o s i t (km )
3
(algal)
Lamosite
(algal)
126
105
4500
45
2
Thickness
3
(m)
B a r r e l s of o i l e q u i v . Data a
up t o a
source
Green
1.2
640
χ 10
1 3
(17)
40-350 2.7
xlO
9
(13.)
River data f o r Piceance basin only.
Sampling
and A n a l y t i c a l
Methods
Sediment c o r e s were o b t a i n e d w i t h a g r a v i t y , a p i s t o n , o r a hand-driven Livingston corer. A l l samples e x c e p t t h o s e from Walker Lake were c o l l e c t e d under a n i t r o g e n atmosphere and p o r e water e x t r a c t e d by c e n t r i f u g i n g e a c h c o r e sample. Samples o f t h e water column were t a k e n w i t h a Van Dorn s a m p l e r . A l l samples were k e p t f r o z e n u n t i l analyzed. T w e n t y - f i v e sediment samples were c o l l e c t e d from Soap L a k e — n i n e from above t h e Chemocline (core l e n g t h o f 0.28 meters) and 16 from below t h e Chemocline ( c o r e l e n g t h o f 0.71 m e t e r s ) . S i x t y - f o u r sediment samples from G r e a t S a l t Lake were c o l l e c t e d from two c o r e s — 2 9 f o r s u l f u r and r e l a t e d element Chemistry ( c o r e l e n g t h 3.7
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
2
(km )
type
)
330
1,280
3
.03 .34 0.12
0.20
0.001
0.028
n.d.
0.00020
n.d.
0.000028
n.d.
Sulfate (mol/L) surface bottom water
H S
(mol/L)
9.8
7.4 9.4
8.3
7.4
pH
2
26,200 144,400
254,000
Na-C0 -S04
10,500
Na-Cl-C0
Na-Mg-Cl
360
145
130
1.1
1.5
1.2 1 U α (d α (d υ Ό -Η α -μ (d (d Ι e υ (d μ Ή (d ο -Η υ π ο -ρ -Η
8 cο
M-l
Φ
Φ
"Ό
φ >> u- 13 ce
u ο
4J
Φ M
ο CO
CO
+ CÛ +
Ο "CO ffl CO
-Ρ Φ
+ -
CO
CM
JO Ο >
"Ό
"S CO
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
φ
φ
U
3 Φ -Η h
C
Cn -Η CO φ Ό
126
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
R e s u l t s and D i s c u s s i o n
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
The Chemical and i s o t o p i c d a t a a r e p r e s e n t e d i n T a b l e I I I as a v e r a g e v a l u e s and s t a n d a r d d e v i a t i o n s . The R u n d l e d a t a were b e t t e r r e p r e s e n t e d by g e o m e t r i c means and deviations. A l l Chemical d a t a a r e on a c a r b o n a t e - f r e e (CF), d r y - w e i g h t b a s i s . The m o d e r n - l a k e s t u d i e s , l o w e s t s u l f a t e t o highest s u l f a t e , are d i s c u s s e d f i r s t . Freshwater Environment. We e v a l u a t e d t h e s u l f u r g e o C h e m i s t r y o f two f r e s h w a t e r e n v i r o n m e n t s . One e n v i r o n m e n t i s an a r e a o f l o c a l g r o u n d - w a t e r u p w e l l i n g w i t h i n a p e a t bog n e a r F l o d e l l e C r e e k , n o r t h e a s t e r n Washington. The s p r i n g p o o l i s s m a l l ( T a b l e I I ) and s u b s u r f a c e d e p o s i t s g r a d e upward from c o a r s e - g r a i n e d t o g r a n u l a r sand, t o f i n e - g r a i n e d o r g a n i c - C - r i c h u n i t s i n t e r f i n g e r i n g w i t h sandy u n i t s , t o woody p e a t and o r g a n i c - C - r i c h s i l t / c l a y u n i t s (2Λ). Of t h e l a k e s s t u d i e d , t h e s p r i n g p o o l i s t h e most d i l u t e ( T a b l e I I ) w i t h a t o t a l d i s s o l v e d s o l i d (TDS) c o n c e n t r a t i o n o n l y 0.3% t h a t o f s e a w a t e r w i t h 34,800 ppm TDS ( ϋ £ ) . Primary p r o d u c t i v i t y r a t e s have not been measured; however, W e t z e l 2
- 1
(2) p r e d i c t s r a t e s -Ρ G
d) B
D
ω
χ
-Ρ
ν.
•H
G O
Φ M
73
co
co
73 Φ
Μ Φ
-ρ Μ
α τ 3 -Η co
ο α
m
-Ρ
d)
Ο
-Ρ
G
M U Η Ο - Η cO Ή S W — -d - Ρ co
3 &
Λ
+ι ^ α Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
Ό
co
ο
(0
G
Μ Φ
-Η
χ}
uο
Ό G
co
0)
uu
— mi Η
cO CO coj ~ ^ > rH ο
Ό ^ 73 Μ
cO
Ο CO — cO
CO
α > (0 Φ en£ Β
CO
α ι α
co
Φ
Ή
Ο
Φ
-Ρ
h
CO CO U >
M cO
G Φ
ϋ α
.fd Ο cO U 73 Η
α
-Η
G (0
ο
Φ
Φ -H
ΗΗ
Φ
iT>
rd
-Ρ
n ο
Φ
> cO O -H
α ο
•P Ο w -H _ 73 C
cO
4J ·«. tn — G γ-ΗΙ - H CN^ ^ CO co ίδ - H
OP -Η g Φ Λ
G Φ
H
Β
Φ
>
Λ
£ ,Ο Ο
+i 00 co
+i +i H h
+i
+i 00 ο
VD LO
CM CO rH rH CN CM
CN Ο
00
+i
+i +i ο ^ ιο ^
+i oo
+i ο
CO
73
+i +i ^ en ο ο
CM CM
+i +i H h
LO
Ο
CO CM
+i h oo
ο
-Ρ
C
Φ
S
73
CO
ο υ
Λ
ο
ο\°
Φ
^
Ο
y Ο
α co
-Ρ
Η Η CO r H ϋ φ - Η 73 Ο φ rH Λ Pu U Ο
co »G cO CO - Η CO Ή 73 cO CO vT>73 · ν »δ cO G Λ Ο M cO Ο CO ~ 73 -Ρ Ο cO ^ -Ρ - Ρ φ CO G rG - Ρ Vν G e n cO cO Ρ «0 -Ρ 73 CO < Φ -Η φ co 73
•Ρ Ο -Ρ CO
CN
I -—' rH
+i ο
Ο
Ο
CN
hi
UU
Μ
Φ
en
e
α
CO Ο G U CO - Η CO Ο - Η -Η φ rH
Φ
U Ο
>
5
-Η -Ρ φ > ι CO CO -p Μ r H r H CO 73 φ CO r H Φ Ο G rH CO H cO Ο rH G -Η Ο
U
• .ε ^a d η cO U cO co c H Β UΒ co p -Ρ
-Ρ Φ
Λ
EH
Ο Φ φ CO - Η -p - Ρ 73 Ρ CO . . M cO G Ή -Η Ο 73 - Η Ο - Η - ρ —
β
C!
^ ^
J
73
4-ι .
73
β
73
-P
-
^73 4-1 CO φ rH - H C Ρ 73 -H CO ϋ ϋ rH φ -Η * CO - Ρ φι—I CO -p φ Η ^ 73 (0
73
si
-p 1
o ml Λ U U CO H G CO 73 CO u — Λ Η CO - H U Mr H ο ^ cO -Η -P c 2 u ο 73 co υ 4-> φ q ο α G G - Η U CO φ Ο U -enΡ —Ρ gΟ CO Q - •Η> co G Ο Φ M -H CO Λ cO en-Η Ο G_ 73
Φ
Μ Η φ
£
οΟ
Ο Ρ ~ co co I -Η -H — M
cO co M ^ U rH 73
m
Ή
Φ
rH +1
Φ
UG ο ο CO„ -GΗ- S s* α-Η ρ e
rH (O ϋ - H -H g -Ρ CO Φ
c ο
CN
M Ο
-Ρ
2
CO
Φ
-Ρ
Φ
-Ρ
ο
Μ
Φ
CO fO ΜΦ
d) H ^ H
co
Φ
Ο
Φ
tu en
Β
Bϋ
φ" φ" Φ
Μ Φ Φ
M
rd fd
Μ Ο
ο
Φ
M co
M
4->
ΥΆ
fd
β Ο Φ 73
Ο
Φ φ Μ Μ fd fd •-3
4-)
H co
0.6 - 0.8%
of heavy oil
46
0.4 - 0.8%'47
Generation and migration
Retort
Data
stagnant layer with anoxic bottom water
-circulating layer with oxic bottom water
F i g u r e 11. S C h e m a t i c showing t h e q u a n t i t a t i v e e v o l u t i o n o f s u l f u r i n l a c u s t r i n e organic matter, f r o m 1,46-47•
co J2
Φ
ο
CO
Φ
co
Ε
0.24%
1
Algae 1.2%
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
146
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
p r e f e r e n t i a l l y l o s t and secondary s u l f i d i z a t i o n o f t h e o r g a n i c m a t t e r b y H2S a c c o u n t s f o r up t o 50% o f t h e organosulfur. The o r g a n i c - C c o n c e n t r a t i o n s i n s e d i m e n t d e p o s i t e d i n t h e a n o x i c , e u x i n i c b o t t o m w a t e r (9.6%) i s o v e r t w i c e t h a t i n sediment d e p o s i t e d i n s e a s o n a l l y o x i c waters (4.0%), r e f l e c t i n g t h e p r e s e r v a t i o n o f o r g a n i c matter deposited i n permanently anoxic waters. The d a s h e d a r r o w between c o n c e n t r a t i o n s o f o r g a n i c m a t t e r d e p o s i t e d i n a n o x i c w a t e r s and i n t h e o i l s h a l e i n d i c a t e s t h a t t h e r i c h o i l s h a l e s were p r o b a b l y d e p o s i t e d i n p e r m a n e n t l y anoxic waters. O i l p r o d u c t s from r e t o r t i n g a n d c a t a g e n e s i s c o n t a i n between 11 a n d 15% o f t h e o r g a n o s u l f u r i n t h e o i l - s h a l e s o u r c e r o c k a s s u m i n g an a v e r a g e o i l y i e l d o f 58 L / t o n n e (Mahogany zone o f t h e P i c e a n c e b a s i n , t h i s s t u d y ) and s p e c i f i c g r a v i t y o f 0.89 ( c a l c u l a t e d f r o m d a t a i n J_7) . The s o u r c e o f t h i s o r g a n o s u l f u r i n t h e l a c u s t r i n e o i l has been d e b a t e d . I t may be i n d i g e n o u s t o t h e b i t u m e n f r a c t i o n o f t h e o i l s h a l e , o r i t may r e s u l t f r o m s u l f i d i z a t i o n o f t h e b i t u m e n by H2S p r o d u c e d d u r i n g decomposition o f s u l f i d e m i n e r a l s o r kerogen d u r i n g o i l generation. Because t h e i s o t o p i c c o m p o s i t i o n o f t h e v a r i o u s s u l f u r forms i n t h e o i l s h a l e a r e s i m i l a r t o t h o s e i n t h e o i l ( A i ) , d i f f e r e n t i a t i n g between t h e s e two pathways i s d i f f i c u l t . Conclusions The s u l f u r g e o C h e m i s t r y i n s a l i n e , p r o d u c t i v e l a k e s i s complex a n d does n o t r e a d i l y l e n d i t s e l f t o i n t e r p r e t a t i o n by t r a d i t i o n a l methods b a s e d on m a r i n e o r f r e s h w a t e r - l a k e studies. The p r o b l e m i s m a g n i f i e d when w o r k i n g w i t h a n c i e n t s a l i n e l a k e sediment as d i a g e n e t i c o v e r p r i n t i n g may e r a s e any r e c o r d o f d e p o s i t i o n a l p r o c e s s e s . Given a b a s i c u n d e r s t a n d i n g o f t h e key c o n t r o l s on s u l f u r g e o C h e m i s t r y i n t h e s e d i m e n t a r y e n v i r o n m e n t , we c a n t e s t c e r t a i n h y p o t h e s e s about t h e b e h a v i o r o f s u l f u r i n modern l a c u s t r i n e environments. The r e s u l t s e n a b l e us t o u n d e r s t a n d much about t h e d e p o s i t i o n and d i a g e n e s i s o f l a c u s t r i n e , o r g a n i c - C - r i c h s e d i m e n t s s u c h as t h o s e f o r m i n g t h e Green R i v e r and R u n d l e o i l - s h a l e d e p o s i t s .
Literature Cited 1. 2.
Goldhaber, M. B.; Kaplan, J. R. In The Sea; Goldberg, D., Ed.; John Wiley & Sons: New York, 1974; Vol. 5, pp 569-655. Wetzel, R. G. Limnology; Saunders College Publishing: Philadelphia, 1983; 767 p.
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
7. TUTTLE ET AK
3. 4. 5. 6. 7. 8. 9.
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
GeoChemistry of Sulfur in Lacustrine Em
147
Pfennig, Ν.; Widdel, F. Royal Soc. London Philos. Trans. Series Β 1982, 298, 433-441. Westrich, J . T.; Berner, R. A. Limnnol. Oceanogr. 1984, 29, 236-249. Berner, R. Α.; Raiswell, R. Geochim. Cosmochim. Acta 1983, 47, 855-862. Sweeney, R. Ε. Ph.D. Thesis, University of California, Los Angeles, 1972. Rickard, D. T. Am. Jour. Sci. 1974, 274, 941-952. Rickard, D. T. Am. Jour. Sci. 1975, 275, 636-652. Nakai, N.; Jensen, M. L. Geochim. Cosmochim. Acta 1964, 28, 1893-1912. Chambers, L. Α.; Trudinger, P. A. Geomicrobiology J . 1979, 1, 249-293. Nielsen,Η. In Lectures in Isotope Geology; Jäger, E . ; Hunziker, J . C., Eds.; Springer-Verlag: Berlin, 1979; pp 283-312. Holser, W. T.; Kaplan, I. R. Chem. Geol. 1966, 1, pp 93-135. Tuttle, M. L. Ph.D. Thesis, Colorado School of Mines, Golden, 1988. Goldhaber, M. B.; Tuttle, M. L . ; Baedecker, M. J . Geol. Soc. Am. Annual Mtg., 1984, abstract no. 33625. Tuttle, M. L . ; Goldhaber, M. B. Geol. Soc. Am. Annual Mtg., 1986, abstract no. 108714. Tuttle, M.L.; Goldhaber, M. B.; Rice, C. A. Geol. Soc. Am. Annual Mtg., 1987, abstract no. 130630. Donnell, J . R. Oil and Gas J . 1980, 78, pp 218-224. Rowley, P. G.; Brown, T. In Oil Shale--the Environmental Challenges II; Petersen, Κ. K., Ed.; Colorado School of Mines: Golden, 1982; pp 1-28. Johnson, S. Y.; Otton, J . K.; Macke, D. L. Geol. Soc.Am.Bull. 1987, 98, pp 77-85. Zielinski, R. Α.; Otton, J . K.; Wanty, R. B.; Pierson, C. T.;Chem.Geol. 1987, 62, pp 263-289. Nriagu, J . O.; Coker, R. D. Limnol. Oceanogr. 1976, 21, pp 485-489. Benson, L. V. Quat. Research 1981, 16, pp 390-403. Benson, L. V.; Spencer, R. J . U.S. Geol. Survey Open-File Report 83-740 1983, 53 p. Benson, L. V.; Mifflin, M. D. U.S. Geol. Survey Water Res. Inv. 85-4262 1986, 14 p. Eugster, H. P.; Hardie, L. A. In Lakes--chemistry, geology, physics; Lerman, Α.; Ed.; Springer-Verlag: New York, 1978; pp 237-294. Utah Dept. of Natural Resources Bull. 116; Gwynn, J . W.; Ed.; 1980; 400 p. Anderson, G. C. Limnol. Oceanogr. 1958, 3, 259-270.
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
148
GEOChemISTRY OF SULFUR IN FOSSIL FUELS
Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007
28.
Edmondson, W. T. In Limnology in North America; Frey, D. G.; Ed.; Univ. of Wisconsin Press: Madison, 1963; pp 371-392. 29. Friedman, I.; Redfield, A. C. Water Res. Research 1971, 7, 874-898. 30. Tuttle, M. L.; Goldhaber, M. B.; Williamson, D. L.; Talanta 1986, 33, 953-961. 31. Tissot, B. P.; Welte, D. H. Petroleum Formation and Occurrence, Second Edition; Springer-Verlag: Berlin, 1984; 699 p. 32. Berner, R. A. Geochim. Cosmochim. Acta 1984, 48, 605-615. 33. Ingamells, C. O. Anal. Chim. Acta 1970, 52, 323-334. 34. Broecker, W. S.; Peng, T. Tracers in the Sea; Lamont-Doherty Geol. Observatory Pub.: New York, 1982; 690 p. 35. Berner, R. A. In The Black Sea--geology, chemistry, and biology; Degens, E. T.; Ross, D. Α.; Eds.; Am. Assoc. Pet. Geol. Memoir 20: Tulsa, 1974; pp 524531. 36. Leventhal, J. S. Geochim. Cosmochim. Acta 1983, 47, 133-137. 37. Eugster, H. P.; Surdam, R. C. Am. Assoc. Pet. Geol. Bull. 1973. 84, 1115-1120. 38. Ryder, R. T.; Fouch, T. D.; Elison, J. H. Geol. Soc. Am. Bull. 1976, 87, 496-512. 39. Johnson, R. C. Geology 1981, 9, 55-62. 40. Johnson, R. C. In Cenozoic Paleogeography of Western United States; Flores, R. M.; Kaplan, S. S.; Eds.; Rocky Mountain Paleogeography Symposium 3; Society of Economic Paleontologists and Mineralogists: Denver, 1985; pp 247-276. 41. Mauger, R. L. 24th Int'l. Geol. Congress, 1972, pp 19-27. 42. Rye, R. O.; Luhr, J. F . ; Wasserman, M. D. J. Volc. Geothermal Research 1984, 23, 109-123. 43. Coshell, L. Proc. 1st Australian Workshop on Oil Shale, 1983, pp 25-30. 44. Patterson, J. H. Chem. Geol. 1988, 68, 207-219. 45. Crisp, P. T.; E l l i s , J.; Hutton, A. C.; Korth, J.; Martin, F. Α.; Saxby, J. D. Australian o i l Shales: a compendium of geological and chemical data, CSIRO Institute of Energy and Earth Resources: North Ride NSW, Australia, 1987. 46. Ingram, L. L.; E l l i s , J.; Crisp, P. T.; Cook, A. C. Chem. Geol. 1983, 38, pp 185-212. 47. Peer, E. L. Proc. 1st Int'l. Conf. on Future of Heavy Crude Oils and Tar Sands, 1979, pp 651-654. RECEIVED March 16, 1990
In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.