Geochemistry of Sulfur in Fossil Fuels - American Chemical Society

Sixty-four sediment samples from Great Salt Lake were collected from two cores — 29 for. s u l f u r and r e l a t e d element Chemistry (core l e n...
0 downloads 0 Views 3MB Size
Chapter 7

Geochemistry of Organic and Inorganic Sulfur in Ancient and Modern Lacustrine Environments Case Studies of Freshwater and Saline Lakes

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

Michele L. Tuttle, Cynthia A. Rice, and Martin B. Goldhaber U.S. Geological Survey, MS 916, Box 25046, Denver Federal Center, Denver, CO 80225

Abundances of sulfur species (monosulfide, disulfide, and organosulfur) and their isotopic compositions were used to determine sulfur geochemistry in sediment from two freshwater lakes and three saline lakes, and in two Paleogene lacustrine o i l shales. Concentrations of reactants (SO 2-, organic matter, and iron) as well as their reactivity are controls on the extent of sulfate reduction, sulfide-mineral formation, and sulfidization of organic matter. In freshwater lakes containing low sulfate concentrations and in the freshwater oil shale of the Rundle Formation, sulfate availability limits the amount of sulfide-mineral formation and the mineral isotopic values are near those of the lake sulfate. Iron and organic-carbon availability limit sulfide-mineral formation in relatively short-lived, high sulfate lakes and the isotopic composition of these minerals is generally depleted in 34S relative to the initial sulfate. In high-pH saline lakes, the rate of iron sulfidization is significantly decreased. In lakes undergoing rapid fluctuation in lake level, diagenetic processes such as H S diffusion complicate the sulfur geochemistry. In very long-lived lakes such as those that deposited the Green River Formation oil shale, the isotopic composition of sulfide minerals is enriched in S relative to the original sulfate entering the lakes. The sulfate reservoir in these long4

2

34

This chapter not subject to U.S. copyright Published 1990 AmericanChemicalSociety

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

7. TUTTLEET AL.

GeoChemistry of Sulfur in Lacustrine Environments 115 34

lived lakes evolves to S-enriched values. Formation of organosulfur in saline lakes occurs predominantly from the sulfidization of organic matter by bacteriogenic H S. The sulfur found in lacustrine shale o i l may evolve from this bacteriogenic sulfur.

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

2

S u l f u r g e o C h e m i s t r y i s r e c o g n i z e d as a p o w e r f u l a p p r o a c h t o understanding t h e d e p o s i t i o n a l and d i a g e n e t i c h i s t o r i e s of sedimentary environments. Sulfur i s ubiquitous i n n a t u r e and i n v o l v e d i n both a b i o t i c and b i o t i c p r o c e s s e s (Figure 1). Also, sulfur transformations are sensitive t o b o t h pH a n d r e d o x c o n d i t i o n s . U s i n g i n t e r p r e t i v e r e s u l t s f r o m s u l f u r s t u d i e s i n modern l a k e s , o u r r e s e a r c h s e e k s t o r e c o n s t r u c t t h e s u l f u r geoChemistry d u r i n g d e p o s i t i o n and diagenesis of lacustrine o i l shales. T o t a l s u l f u r c o n c e n t r a t i o n s and s u l f u r i s o t o p i c c o m p o s i t i o n s a r e t h e two most common p a r a m e t e r s u s e d t o i n t e r p r e t s u l f u r g e o C h e m i s t r y i n modern and a n c i e n t sediments. S i n c e t o t a l s u l f u r i n c l u d e s i n p u t s from m u l t i p l e processes i n t h e sedimentary s u l f u r c y c l e , i m p o r t a n t i n f o r m a t i o n r e g a r d i n g i n d i v i d u a l p r o c e s s e s may be l o s t . A more f r u i t f u l a p p r o a c h would be t o d i s t i n g u i s h s e p a r a t e r e s i d e n c e s o f s u l f u r and t o a n a l y z e t h e i r i n d i v i d u a l i s o t o p i c compositions. We have e x t e n s i v e l y employed t h e a d d i t i o n a l i n s i g h t s t h a t t h i s l a t t e r a p p r o a c h provides. I n k e e p i n g w i t h t h e theme o f t h i s symposium, we f o c u s o u r i n v e s t i g a t i o n on o r g a n o s u l f u r ( s u l f u r bound i n organic matter). However, i n o r d e r t o u n d e r s t a n d processes c o n t r o l l i n g the incorporation of s u l f u r into o r g a n i c m a t t e r , we c o n s i d e r d a t a from a l l t y p e s o f lacustrine sulfur. F i r s t we r e v i e w c o n t r o l s on t h e amount and i s o t o p i c c o m p o s i t i o n o f v a r i o u s forms o f s u l f u r i n l a c u s t r i n e environments. Next, we summarize t h e d i v e r s e b e h a v i o r o f s u l f u r i n sediment f r o m two f r e s h w a t e r e n v i r o n m e n t s ; i n s e d i m e n t f r o m t h r e e modern, p r o d u c t i v e , s a l i n e l a k e s ; a n d i n o i l s h a l e s d e p o s i t e d i n freshwater and s a l i n e l a c u s t r i n e environments. L a s t l y , our r e s u l t s are i n t e g r a t e d i n o r d e r t o p r o d u c e models t h a t 1) p r e d i c t t h e e x t e n t o f f o r m a t i o n and i s o t o p i c c o m p o s i t i o n o f s u l f i d e m i n e r a l s i n r e s p o n s e t o major c o n t r o l s on s u l f u r g e o C h e m i s t y ; a n d 2) show t h e f o r m a t i o n a l pathway o f o r g a n o s u l f u r i n l a c u s t r i n e o i l s h a l e and i t s d e r i v a t i v e oil. C o n t r o l s on S e d i m e n t a r y S u l f u r Chemistry. The v a r i a b i l i t y o f s u l f u r geoChemistry i n l a c u s t r i n e e n v i r o n m e n t s i s due, i n p a r t , t o t h e l a r g e c o n c e n t r a t i o n

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

S

3

cl

Ώ

ne

ο

1

Β

η

Β

h* h*

7.

GeoChemistry of Sulfur in Lacustrine Environments 117

TUTTLE ET AL.

r a n g e s o f r e a c t a n t s i n v o l v e d i n key r e a c t i o n s o f t h e sedimentary s u l f u r c y c l e — t h e b a c t e r i a l l y mediated r e d u c t i o n o f s u l f a t e and t h e p r o d u c t i o n o f i r o n - s u l f i d e minerals. The s u l f a t e - r e d u c t i o n r e a c t i o n i n i t s s i m p l i f i e d form i s (1) : 2CH 0 +

S O 4

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

2

2

—>

-

HS 2

+ 2HC0 ~, 3

(1)

where C H 2 O i s a g e n e r i c c a r b o h y d r a t e m o l e c u l e u s e d b a c t e r i a l l y as an e n e r g y s o u r c e w i t h s u l f a t e as t h e electron acceptor. The amount o f o r g a n i c m a t t e r ( C H 2 O ) i n l a k e s e d i m e n t i s d i r e c t l y r e l a t e d t o b o t h l a k e p r o d u c t i v i t y and p r e s e r v a t i o n d u r i n g d e p o s i t i o n and e a r l y d i a g e n e s i s . O r g a n i c p r o d u c t i v i t y i n l a k e s i s h i g h l y v a r i a b l e , as low as 0.6 g C m" yr"" i n o l i g o t r o p h i c t u n d r a l a k e s t o as h i g h as 640 g C m" y r " i n eutrophic e q u a t o r i a l lakes (2.) . P r e s e r v a t i o n o f o r g a n i c m a t t e r i n l a k e s e d i m e n t i s r e l a t e d t o the l e n g t h of time the o r g a n i c matter i s i n contact with oxygenated waters. In l a k e s w i t h o x y g e n a t e d b o t t o m water, a e r o b i c m i n e r a l i z a t i o n p r o d u c e s r e f r a c t o r y o r g a n i c components i n c a p a b l e o f y i e l d i n g t h e f e r m e n t a t i v e d e g r a d a t i o n p r o d u c t s u t i l i z a b l e by s u l f a t e - r e d u c i n g bacteria. I f anoxic c o n d i t i o n s are e s t a b l i s h e d q u i c k l y , e i t h e r i n t h e b o t t o m w a t e r o r j u s t below t h e s e d i m e n t w a t e r i n t e r f a c e , a e r o b i c m i n e r a l i z a t i o n i s m i n i m a l and metabolizable organic matter supports extensive b a c t e r i a l s u l f a t e r e d u c t i o n (3-4). The o t h e r major r e a c t a n t i n E q u a t i o n 1 i s s u l f a t e (S04 ~) . S u l f a t e c o n c e n t r a t i o n s a r e h i g h l y v a r i a b l e i n l a k e w a t e r s , f r o m 3 χ 10~ mol/L i n s o f t - w a t e r l a k e s i n c r y s t a l l i n e - r o c k d r a i n a g e b a s i n s t o 1.6 mol/L i n h y p e r s a l i n e l a k e s (2). In p r o d u c t i v e , f r e s h w a t e r l a k e s , s u l f a t e r e d u c t i o n t y p i c a l l y goes n e a r l y t o c o m p l e t i o n (5.) . As s u l f a t e c o n c e n t r a t i o n s i n c r e a s e , amounts o f o r g a n i c m a t t e r e v e n t u a l l y become i n s u f f i c i e n t f o r c o m p l e t e s u l f a t e reduction to occur. T h i s i s the case i n "normal" marine s e d i m e n t where a l i n e a r r e l a t i o n between t o t a l r e d u c e d s u l f u r and o r g a n i c - c a r b o n c o n c e n t r a t i o n s i s o b s e r v e d . Sea-water s u l f a t e c o n c e n t r a t i o n i s 0.028 mol/L and t h e r a t i o of t o t a l reduced s u l f u r t o o r g a n i c - c a r b o n c o n c e n t r a t i o n s ( o f t e n r e f e r r e d t o as S/C) i n m a r i n e s e d i m e n t i s 0.33 (£). The amount o f r e d u c e d s u l f u r i n f r e s h w a t e r l a c u s t r i n e sediment and i n most m a r i n e s e d i m e n t i s a f u n c t i o n of the a v a i l a b i l i t y of the l i m i t i n g r e a c t a n t during sulfate reduction—whether s u l f a t e or o r g a n i c matter. T h i s s i m p l e two end-member model must f r e q u e n t l y be m o d i f i e d f o r s a l i n e l a c u s t r i n e sediment and f o r some m a r i n e sediment i n o r d e r t o r e f l e c t t h e c a p a c i t y o f t h e 2

1

2

1

2

5

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

118

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

s e d i m e n t t o remove H 2 S . I n c o r p o r a t i o n o f H 2 S by t h e s e d i m e n t i s d o m i n a n t l y c o n t r o l l e d by t h e r e a c t i o n o f i r o n and r e d u c e d s u l f u r s p e c i e s as shown by t h e f o l l o w i n g r e a c t i o n s ( m o d i f i e d f r o m e q u a t i o n s i n 7-8):

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

FeOOH + H

+

2-

+ 3/2S -» FeS + l/16Se + FeS + 1/8S8 -> FeS2.

20H~

(2) (3)

The e l e m e n t a l s u l f u r (Se) i n E q u a t i o n 3 i s g e n e r a l l y d i s s o l v e d as a p o l y s u l f i d e i o n . In i r o n - p o o r sediment o r sediment i n which i r o n r e s i d e s l a r g e l y i n r e f r a c t o r y m i n e r a l s , o n l y s m a l l amounts o f s u l f i d e m i n e r a l s f o r M . Excess H 2 S i n these sediments s l o w l y r e a c t s w i t h o r g a n i c m a t t e r t o form o r g a n o s u l f u r . In summary, t h e r e a r e t h r e e m a s t e r v a r i a b l e s c o n t r o l l i n g s u l f i d e - m i n e r a l f o r m a t i o n i n m a r i n e and l a c u s t r i n e environments. In m a r i n e s e d i m e n t , metabolizable organic matter l i m i t s s u l f i d e - m i n e r a l f o r m a t i o n e x c e p t i n c a r b o n a t e - r i c h sediment o r e u x i n i c ( H 2 S - b e a r i n g ) b a s i n s where i r o n may be l i m i t i n g . Sulfidem i n e r a l f o r m a t i o n i n f r e s h w a t e r sediment i s g e n e r a l l y sulfate limited. In s a l i n e l a k e s c o n t a i n i n g h i g h amounts o f d i s s o l v e d s u l f a t e , we e x p e c t s u l f i d e - m i n e r a l f o r m a t i o n t o be l i m i t e d by e i t h e r o r g a n i c m a t t e r o r by i r o n . The r e s u l t s summarized i n t h i s p a p e r c o n f i r m our e x p e c t a t i o n and i d e n t i f y key p r o c e s s e s c o n t r o l l i n g t h e s e v a r i a b l e s . C o n t r o l s on S e d i m e n t a r y S u l f u r T s o t o p y . Processes c o n t r o l l i n g l a c u s t r i n e s u l f u r g e o C h e m i s t r y ( F i g u r e 1) a r e r e c o r d e d n o t o n l y by t h e amounts o f m i n e r a l o g i c a l s u l f u r and o r g a n o s u l f u r , but a l s o by t h e i r i s o t o p i c c o m p o s i t i o n . The s u l f u r i s o t o p i c c o m p o s i t i o n (5 S) o f a s u l f u r phase i s d e t e r m i n e d by m e a s u r i n g i t s S / S (R) and c o m p a r i n g t h e r a t i o t o t h a t o f t h e Canon D i a b l o t r o i l i t e (CDT), t h e s t a n d a r d most o f t e n u s e d f o r s u l f u r : 34

3 4

δ

3 4

β

i n %o=

[(Rsample " ^standard)

3 2

/ ^standard 1 * 1000.

(4)

S u l f u r i s o t o p e systematics i n sedimentary environments are r e v i e w e d i n s e v e r a l e x c e l l e n t r e f e r e n c e s (JL, 9-11) , and are only b r i e f l y d i s c u s s e d i n t h i s paper. The p r e d o m i n a n t o r g a n i s m s i n h i g h l y p r o d u c t i v e l a k e s a r e g e n e r a l l y a l g a e and b a c t e r i a . These o r g a n i s m s c o n t a i n low l e v e l s o f n a t u r a l l y o c c u r r i n g o r g a n o s u l f u r formed by a s s i m i l a t i n g s u l f a t e , r e d u c i n g i t t o s u l f i d e , and u s i n g t h e s u l f i d e i n p r o d u c t i o n o f compounds s u c h as amino acids. T h i s p r o c e s s i s termed a s s i m i l a t o r y r e d u c t i o n o f sulfate. A s s i m i l a t e d s u l f u r has an i s o t o p i c c o m p o s i t i o n s i m i l a r t o t h e d i s s o l v e d s u l f a t e i n t h e l a k e (JJL) . In c o n t r a s t , d i s s i m i l a t o r y s u l f a t e r e d u c t i o n o c c u r s when

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

7. TUTTLEET AL.

GeoChemistry of Sulfur in Lacustrine Environments 119

b a c t e r i a u s e s u l f a t e a s an e l e c t r o n a c c e p t o r d u r i n g decomposition o f organic matter. This process involves a s u b s t a n t i a l f r a c t i o n a t i o n o f s u l f u r isotopes with the product, H 2 S , being depleted i n S r e l a t i v e t o t h e reactant, sulfate. The s y s t e m a t i c s o f s u l f u r i s o t o p i c evolution during d i s s i m i l a t o r y reduction are depicted i n a R a y l e i g h f r a c t i o n a t i o n p l o t ( F i g u r e 2 ) . The p l o t shows the e v o l u t i o n o f 8 S o f t h e r e s i d u a l s u l f a t e , i n s t a n t a n e o u s l y p r o d u c e d H 2 S , and a c c u m u l a t e d s u l f i d e r e s e r v o i r s as a f u n c t i o n o f t h e extent o f r e d u c t i o n o f t h e i n i t i a l sulfate reservoir. The c u r v e s on t h e p l o t were c a l c u l a t e d using Rayleigh f r a c t i o n a t i o n equations (2.) , an i n i t i a l s u l f a t e i s o t o p i c composition o f 8 S = 1 0 % o — t y p i c a l f o r s u l f a t e i n r i v e r s and l a k e s (9,12), a n d an i n s t a n t a n e o u s f r a c t i o n a t i o n v a l u e (Aso4-H2s) o f 3 0 % o — t h e v e r t i c a l d i s t a n c e between t h e " s u l f a t e " a n d "instantaneous H 2 S " curves. The c h o i c e o f 30%o i s i n t e r m e d i a t e ; w i t h i n t h e l a c u s t r i n e r a n g e o f 10%o i n some f r e s h w a t e r l a k e s (j)) t o 60%o i n some s a l i n e l a k e s (X2.) . For d i s c u s s i o n o f f a c t o r s c o n t r o l l i n g t h e magnitude o f Aso4-H2S ( l ^ - l i l ) . As t h e s u l f a t e r e s e r v o i r i s d e p l e t e d (moving f r o m l e f t t o r i g h t on t h e a b s c i s s a i n F i g u r e 2 ) , b o t h t h e s u l f a t e a n d i n s t a n t a n e o u s l y p r o d u c e d H 2 S become p r o g r e s s i v e l y e n r i c h e d i n S . Given a system i n which only p a r t i a l reduction o f d i s s o l v e d s u l f a t e occurs (less t h a n 20% f o r t h e c a s e modeled i n F i g u r e 2 ) , t h e a c c u m u l a t e d H 2 S w i l l be d e p l e t e d i n S r e l a t i v e t o t h e o r i g i n a l s u l f a t e r e s e r v o i r b y a v a l u e a p p r o a c h i n g Aso4-H2SMarine sediments i n c o n t a c t with ocean-water s u l f a t e exhibit similar isotope systematics. In a system with a s u l f a t e r e s e r v o i r t h a t i s a p p r e c i a b l y r e d u c e d a s i n many low s u l f a t e , f r e s h w a t e r l a k e s , t h e a c c u m u l a t e d H 2 S w i l l approach t h e i n i t i a l i s o t o p i c composition o f t h e s u l f a t e reservoir. Subsequent a b i o t i c s u l f i d i z a t i o n r e a c t i o n s i n v o l v i n g H 2 S have r e l a t i v e l y s m a l l i s o t o p e f r a c t i o n a t i o n s so t h a t t h e s o l i d phase p r o d u c t s d o m i n a n t l y r e f l e c t t h e b i o t i c sulfate-reductive processes. 3 4

3 4

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

3 4

s

e

e

3 4

3 4

Case S t u d i e s . The d i s c u s s i o n o f i n d i v i d u a l s t u d i e s i n t h i s p a p e r a r e i n t e n d e d a s b r i e f summaries o f i m p o r t a n t r e s u l t s f r o m a v a r i e t y o f a n c i e n t a n d modern l a k e s e d i m e n t s d i s c u s s e d i n o t h e r p a p e r s (13-16). These s t u d i e s i n c l u d e two P a l e o g e n e l a c u s t r i n e o i l s h a l e s — t h e G r e e n R i v e r F o r m a t i o n ( C o l o r a d o , Utah, a n d Wyoming) a n d t h e R u n d l e F o r m a t i o n (Queensland, A u s t r a l i a ) . The l o c a t i o n s o f t h e s e f o r m a t i o n s a r e shown i n F i g u r e 3, a n d key c h a r a c t e r i s t i c s o f t h e d e p o s i t s a r e compared i n Table I . A l s o i n c l u d e d a r e r e s u l t s from s t u d i e s o f t h r e e modern p r o d u c t i v e s a l i n e l a k e s (Soap Lake, W a s h i n g t o n ; G r e a t S a l t Lake, Utah; a n d Walker Lake, Nevada) a n d two

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

120

Figure 2. R a y l e i g h f r a c t i o n a t i o n c u r v e s o f 8 S as a f u n c t i o n of the percent of the i n i t i a l s u l f a t e reduced. 34

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

TUTTLE ET AL.

GeoChemistry of Sulfur in Lacustrine Environments

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

Flodelle Creek

Figure 3. L o c a t i o n s o f F l o d e l l e Creek, Washington; Soap Lake, Washington; Lake M i c h i g a n ; Lake O n t a r i o ; G r e a t S a l t Lake, U t a h ; Walker Lake, Nevada; a p p r o x i m a t a r e a l e x t e n t o f Green R i v e r F o r m a t i o n , Utah, C o l o r a d o , Wyoming; and a p p r o x i m a t e a r e a l e x t e n t o f R u n d l e Formation, Queensland, A u s t r a l i a .

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

122

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

f r e s h w a t e r e n v i r o n m e n t s (the G r e a t Lakes and a s p r i n g p o o l i n a p e a t bog l o c a t e d n e a r F l o d e l l e Creek, W a s h i n g t o n ) . The m o r p h o m e t r i c and geochemical c h a r a c t e r i s t i c s of the modern l a k e s a r e g i v e n i n T a b l e I I and t h e i r l o c a t i o n s shown i n F i g u r e 3.

T a b l e I . Comparison o f c h a r a c t e r i s t i c s o f o i l - s h a l e d e p o s i t s o f t h e Green R i v e r and Rundle F o r m a t i o n s

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

Green

River

Rundle

Characteristic

Formation

Formation

Age

Paleogene

Paleogene

Environment of d e p o s i t i o n

Lacustrine

Lacustrine

Classification

Lamosite

Avg o i l y i e l d (L/tonne) Area of d e p o s i t (km )

3

(algal)

Lamosite

(algal)

126

105

4500

45

2

Thickness

3

(m)

B a r r e l s of o i l e q u i v . Data a

up t o a

source

Green

1.2

640

χ 10

1 3

(17)

40-350 2.7

xlO

9

(13.)

River data f o r Piceance basin only.

Sampling

and A n a l y t i c a l

Methods

Sediment c o r e s were o b t a i n e d w i t h a g r a v i t y , a p i s t o n , o r a hand-driven Livingston corer. A l l samples e x c e p t t h o s e from Walker Lake were c o l l e c t e d under a n i t r o g e n atmosphere and p o r e water e x t r a c t e d by c e n t r i f u g i n g e a c h c o r e sample. Samples o f t h e water column were t a k e n w i t h a Van Dorn s a m p l e r . A l l samples were k e p t f r o z e n u n t i l analyzed. T w e n t y - f i v e sediment samples were c o l l e c t e d from Soap L a k e — n i n e from above t h e Chemocline (core l e n g t h o f 0.28 meters) and 16 from below t h e Chemocline ( c o r e l e n g t h o f 0.71 m e t e r s ) . S i x t y - f o u r sediment samples from G r e a t S a l t Lake were c o l l e c t e d from two c o r e s — 2 9 f o r s u l f u r and r e l a t e d element Chemistry ( c o r e l e n g t h 3.7

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

2

(km )

type

)

330

1,280

3

.03 .34 0.12

0.20

0.001

0.028

n.d.

0.00020

n.d.

0.000028

n.d.

Sulfate (mol/L) surface bottom water

H S

(mol/L)

9.8

7.4 9.4

8.3

7.4

pH

2

26,200 144,400

254,000

Na-C0 -S04

10,500

Na-Cl-C0

Na-Mg-Cl

360

145

130

1.1

1.5

1.2 1 U α (d α (d υ Ό -Η α -μ (d (d Ι e υ (d μ Ή (d ο -Η υ π ο -ρ -Η

8 cο

M-l

Φ

Φ



φ >> u- 13 ce

u ο

4J

Φ M

ο CO

CO

+ CÛ +

Ο "CO ffl CO

-Ρ Φ

+ -

CO

CM

JO Ο >



"S CO

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

φ

φ

U

3 Φ -Η h

C

Cn -Η CO φ Ό

126

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

R e s u l t s and D i s c u s s i o n

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

The Chemical and i s o t o p i c d a t a a r e p r e s e n t e d i n T a b l e I I I as a v e r a g e v a l u e s and s t a n d a r d d e v i a t i o n s . The R u n d l e d a t a were b e t t e r r e p r e s e n t e d by g e o m e t r i c means and deviations. A l l Chemical d a t a a r e on a c a r b o n a t e - f r e e (CF), d r y - w e i g h t b a s i s . The m o d e r n - l a k e s t u d i e s , l o w e s t s u l f a t e t o highest s u l f a t e , are d i s c u s s e d f i r s t . Freshwater Environment. We e v a l u a t e d t h e s u l f u r g e o C h e m i s t r y o f two f r e s h w a t e r e n v i r o n m e n t s . One e n v i r o n m e n t i s an a r e a o f l o c a l g r o u n d - w a t e r u p w e l l i n g w i t h i n a p e a t bog n e a r F l o d e l l e C r e e k , n o r t h e a s t e r n Washington. The s p r i n g p o o l i s s m a l l ( T a b l e I I ) and s u b s u r f a c e d e p o s i t s g r a d e upward from c o a r s e - g r a i n e d t o g r a n u l a r sand, t o f i n e - g r a i n e d o r g a n i c - C - r i c h u n i t s i n t e r f i n g e r i n g w i t h sandy u n i t s , t o woody p e a t and o r g a n i c - C - r i c h s i l t / c l a y u n i t s (2Λ). Of t h e l a k e s s t u d i e d , t h e s p r i n g p o o l i s t h e most d i l u t e ( T a b l e I I ) w i t h a t o t a l d i s s o l v e d s o l i d (TDS) c o n c e n t r a t i o n o n l y 0.3% t h a t o f s e a w a t e r w i t h 34,800 ppm TDS ( ϋ £ ) . Primary p r o d u c t i v i t y r a t e s have not been measured; however, W e t z e l 2

- 1

(2) p r e d i c t s r a t e s -Ρ G

d) B

D

ω

χ



ν.

•H

G O

Φ M

73

co

co

73 Φ

Μ Φ

-ρ Μ

α τ 3 -Η co

ο α

m



d)

Ο



G

M U Η Ο - Η cO Ή S W — -d - Ρ co

3 &

Λ

+ι ^ α Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

Ό

co

ο

(0

G

Μ Φ



χ}

uο

Ό G

co

0)

uu

— mi Η

cO CO coj ~ ^ > rH ο

Ό ^ 73 Μ

cO

Ο CO — cO

CO

α > (0 Φ en£ Β

CO

α ι α

co

Φ

Ή

Ο

Φ



h

CO CO U >

M cO

G Φ

ϋ α

.fd Ο cO U 73 Η

α



G (0

ο

Φ

Φ -H

ΗΗ

Φ

iT>

rd



n ο

Φ

> cO O -H

α ο

•P Ο w -H _ 73 C

cO

4J ·«. tn — G γ-ΗΙ - H CN^ ^ CO co ίδ - H

OP -Η g Φ Λ

G Φ

H

Β

Φ

>

Λ

£ ,Ο Ο

+i 00 co

+i +i H h

+i

+i 00 ο

VD LO

CM CO rH rH CN CM

CN Ο

00

+i

+i +i ο ^ ιο ^

+i oo

+i ο

CO

73

+i +i ^ en ο ο

CM CM

+i +i H h

LO

Ο

CO CM

+i h oo

ο



C

Φ

S

73

CO

ο υ

Λ

ο

ο\°

Φ

^

Ο

y Ο

α co



Η Η CO r H ϋ φ - Η 73 Ο φ rH Λ Pu U Ο

co »G cO CO - Η CO Ή 73 cO CO vT>73 · ν »δ cO G Λ Ο M cO Ο CO ~ 73 -Ρ Ο cO ^ -Ρ - Ρ φ CO G rG - Ρ Vν G e n cO cO Ρ «0 -Ρ 73 CO < Φ -Η φ co 73

•Ρ Ο -Ρ CO

CN

I -—' rH

+i ο

Ο

Ο

CN

hi

UU

Μ

Φ

en

e

α

CO Ο G U CO - Η CO Ο - Η -Η φ rH

Φ

U Ο

>

5

-Η -Ρ φ > ι CO CO -p Μ r H r H CO 73 φ CO r H Φ Ο G rH CO H cO Ο rH G -Η Ο

U

• .ε ^a d η cO U cO co c H Β UΒ co p -Ρ

-Ρ Φ

Λ

EH

Ο Φ φ CO - Η -p - Ρ 73 Ρ CO . . M cO G Ή -Η Ο 73 - Η Ο - Η - ρ —

β

C!

^ ^

J

73

4-ι .

73

β

73

-P

-

^73 4-1 CO φ rH - H C Ρ 73 -H CO ϋ ϋ rH φ -Η * CO - Ρ φι—I CO -p φ Η ^ 73 (0

73

si

-p 1

o ml Λ U U CO H G CO 73 CO u — Λ Η CO - H U Mr H ο ^ cO -Η -P c 2 u ο 73 co υ 4-> φ q ο α G G - Η U CO φ Ο U -enΡ —Ρ gΟ CO Q - •Η> co G Ο Φ M -H CO Λ cO en-Η Ο G_ 73

Φ

Μ Η φ

£

οΟ

Ο Ρ ~ co co I -Η -H — M

cO co M ^ U rH 73

m

Ή

Φ

rH +1

Φ

UG ο ο CO„ -GΗ- S s* α-Η ρ e

rH (O ϋ - H -H g -Ρ CO Φ

c ο

CN

M Ο



2

CO

Φ



Φ



ο

Μ

Φ

CO fO ΜΦ

d) H ^ H

co

Φ

Ο

Φ

tu en

Β



φ" φ" Φ

Μ Φ Φ

M

rd fd

Μ Ο

ο

Φ

M co

M

4->

ΥΆ

fd

β Ο Φ 73

Ο

Φ φ Μ Μ fd fd •-3

4-)

H co

0.6 - 0.8%

of heavy oil

46

0.4 - 0.8%'47

Generation and migration

Retort

Data

stagnant layer with anoxic bottom water

-circulating layer with oxic bottom water

F i g u r e 11. S C h e m a t i c showing t h e q u a n t i t a t i v e e v o l u t i o n o f s u l f u r i n l a c u s t r i n e organic matter, f r o m 1,46-47•

co J2

Φ

ο

CO

Φ

co

Ε

0.24%

1

Algae 1.2%

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

146

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

p r e f e r e n t i a l l y l o s t and secondary s u l f i d i z a t i o n o f t h e o r g a n i c m a t t e r b y H2S a c c o u n t s f o r up t o 50% o f t h e organosulfur. The o r g a n i c - C c o n c e n t r a t i o n s i n s e d i m e n t d e p o s i t e d i n t h e a n o x i c , e u x i n i c b o t t o m w a t e r (9.6%) i s o v e r t w i c e t h a t i n sediment d e p o s i t e d i n s e a s o n a l l y o x i c waters (4.0%), r e f l e c t i n g t h e p r e s e r v a t i o n o f o r g a n i c matter deposited i n permanently anoxic waters. The d a s h e d a r r o w between c o n c e n t r a t i o n s o f o r g a n i c m a t t e r d e p o s i t e d i n a n o x i c w a t e r s and i n t h e o i l s h a l e i n d i c a t e s t h a t t h e r i c h o i l s h a l e s were p r o b a b l y d e p o s i t e d i n p e r m a n e n t l y anoxic waters. O i l p r o d u c t s from r e t o r t i n g a n d c a t a g e n e s i s c o n t a i n between 11 a n d 15% o f t h e o r g a n o s u l f u r i n t h e o i l - s h a l e s o u r c e r o c k a s s u m i n g an a v e r a g e o i l y i e l d o f 58 L / t o n n e (Mahogany zone o f t h e P i c e a n c e b a s i n , t h i s s t u d y ) and s p e c i f i c g r a v i t y o f 0.89 ( c a l c u l a t e d f r o m d a t a i n J_7) . The s o u r c e o f t h i s o r g a n o s u l f u r i n t h e l a c u s t r i n e o i l has been d e b a t e d . I t may be i n d i g e n o u s t o t h e b i t u m e n f r a c t i o n o f t h e o i l s h a l e , o r i t may r e s u l t f r o m s u l f i d i z a t i o n o f t h e b i t u m e n by H2S p r o d u c e d d u r i n g decomposition o f s u l f i d e m i n e r a l s o r kerogen d u r i n g o i l generation. Because t h e i s o t o p i c c o m p o s i t i o n o f t h e v a r i o u s s u l f u r forms i n t h e o i l s h a l e a r e s i m i l a r t o t h o s e i n t h e o i l ( A i ) , d i f f e r e n t i a t i n g between t h e s e two pathways i s d i f f i c u l t . Conclusions The s u l f u r g e o C h e m i s t r y i n s a l i n e , p r o d u c t i v e l a k e s i s complex a n d does n o t r e a d i l y l e n d i t s e l f t o i n t e r p r e t a t i o n by t r a d i t i o n a l methods b a s e d on m a r i n e o r f r e s h w a t e r - l a k e studies. The p r o b l e m i s m a g n i f i e d when w o r k i n g w i t h a n c i e n t s a l i n e l a k e sediment as d i a g e n e t i c o v e r p r i n t i n g may e r a s e any r e c o r d o f d e p o s i t i o n a l p r o c e s s e s . Given a b a s i c u n d e r s t a n d i n g o f t h e key c o n t r o l s on s u l f u r g e o C h e m i s t r y i n t h e s e d i m e n t a r y e n v i r o n m e n t , we c a n t e s t c e r t a i n h y p o t h e s e s about t h e b e h a v i o r o f s u l f u r i n modern l a c u s t r i n e environments. The r e s u l t s e n a b l e us t o u n d e r s t a n d much about t h e d e p o s i t i o n and d i a g e n e s i s o f l a c u s t r i n e , o r g a n i c - C - r i c h s e d i m e n t s s u c h as t h o s e f o r m i n g t h e Green R i v e r and R u n d l e o i l - s h a l e d e p o s i t s .

Literature Cited 1. 2.

Goldhaber, M. B.; Kaplan, J. R. In The Sea; Goldberg, D., Ed.; John Wiley & Sons: New York, 1974; Vol. 5, pp 569-655. Wetzel, R. G. Limnology; Saunders College Publishing: Philadelphia, 1983; 767 p.

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

7. TUTTLE ET AK

3. 4. 5. 6. 7. 8. 9.

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.

GeoChemistry of Sulfur in Lacustrine Em

147

Pfennig, Ν.; Widdel, F. Royal Soc. London Philos. Trans. Series Β 1982, 298, 433-441. Westrich, J . T.; Berner, R. A. Limnnol. Oceanogr. 1984, 29, 236-249. Berner, R. Α.; Raiswell, R. Geochim. Cosmochim. Acta 1983, 47, 855-862. Sweeney, R. Ε. Ph.D. Thesis, University of California, Los Angeles, 1972. Rickard, D. T. Am. Jour. Sci. 1974, 274, 941-952. Rickard, D. T. Am. Jour. Sci. 1975, 275, 636-652. Nakai, N.; Jensen, M. L. Geochim. Cosmochim. Acta 1964, 28, 1893-1912. Chambers, L. Α.; Trudinger, P. A. Geomicrobiology J . 1979, 1, 249-293. Nielsen,Η. In Lectures in Isotope Geology; Jäger, E . ; Hunziker, J . C., Eds.; Springer-Verlag: Berlin, 1979; pp 283-312. Holser, W. T.; Kaplan, I. R. Chem. Geol. 1966, 1, pp 93-135. Tuttle, M. L. Ph.D. Thesis, Colorado School of Mines, Golden, 1988. Goldhaber, M. B.; Tuttle, M. L . ; Baedecker, M. J . Geol. Soc. Am. Annual Mtg., 1984, abstract no. 33625. Tuttle, M. L . ; Goldhaber, M. B. Geol. Soc. Am. Annual Mtg., 1986, abstract no. 108714. Tuttle, M.L.; Goldhaber, M. B.; Rice, C. A. Geol. Soc. Am. Annual Mtg., 1987, abstract no. 130630. Donnell, J . R. Oil and Gas J . 1980, 78, pp 218-224. Rowley, P. G.; Brown, T. In Oil Shale--the Environmental Challenges II; Petersen, Κ. K., Ed.; Colorado School of Mines: Golden, 1982; pp 1-28. Johnson, S. Y.; Otton, J . K.; Macke, D. L. Geol. Soc.Am.Bull. 1987, 98, pp 77-85. Zielinski, R. Α.; Otton, J . K.; Wanty, R. B.; Pierson, C. T.;Chem.Geol. 1987, 62, pp 263-289. Nriagu, J . O.; Coker, R. D. Limnol. Oceanogr. 1976, 21, pp 485-489. Benson, L. V. Quat. Research 1981, 16, pp 390-403. Benson, L. V.; Spencer, R. J . U.S. Geol. Survey Open-File Report 83-740 1983, 53 p. Benson, L. V.; Mifflin, M. D. U.S. Geol. Survey Water Res. Inv. 85-4262 1986, 14 p. Eugster, H. P.; Hardie, L. A. In Lakes--chemistry, geology, physics; Lerman, Α.; Ed.; Springer-Verlag: New York, 1978; pp 237-294. Utah Dept. of Natural Resources Bull. 116; Gwynn, J . W.; Ed.; 1980; 400 p. Anderson, G. C. Limnol. Oceanogr. 1958, 3, 259-270.

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

148

GEOChemISTRY OF SULFUR IN FOSSIL FUELS

Downloaded by MIT on February 25, 2013 | http://pubs.acs.org Publication Date: June 29, 1990 | doi: 10.1021/bk-1990-0429.ch007

28.

Edmondson, W. T. In Limnology in North America; Frey, D. G.; Ed.; Univ. of Wisconsin Press: Madison, 1963; pp 371-392. 29. Friedman, I.; Redfield, A. C. Water Res. Research 1971, 7, 874-898. 30. Tuttle, M. L.; Goldhaber, M. B.; Williamson, D. L.; Talanta 1986, 33, 953-961. 31. Tissot, B. P.; Welte, D. H. Petroleum Formation and Occurrence, Second Edition; Springer-Verlag: Berlin, 1984; 699 p. 32. Berner, R. A. Geochim. Cosmochim. Acta 1984, 48, 605-615. 33. Ingamells, C. O. Anal. Chim. Acta 1970, 52, 323-334. 34. Broecker, W. S.; Peng, T. Tracers in the Sea; Lamont-Doherty Geol. Observatory Pub.: New York, 1982; 690 p. 35. Berner, R. A. In The Black Sea--geology, chemistry, and biology; Degens, E. T.; Ross, D. Α.; Eds.; Am. Assoc. Pet. Geol. Memoir 20: Tulsa, 1974; pp 524531. 36. Leventhal, J. S. Geochim. Cosmochim. Acta 1983, 47, 133-137. 37. Eugster, H. P.; Surdam, R. C. Am. Assoc. Pet. Geol. Bull. 1973. 84, 1115-1120. 38. Ryder, R. T.; Fouch, T. D.; Elison, J. H. Geol. Soc. Am. Bull. 1976, 87, 496-512. 39. Johnson, R. C. Geology 1981, 9, 55-62. 40. Johnson, R. C. In Cenozoic Paleogeography of Western United States; Flores, R. M.; Kaplan, S. S.; Eds.; Rocky Mountain Paleogeography Symposium 3; Society of Economic Paleontologists and Mineralogists: Denver, 1985; pp 247-276. 41. Mauger, R. L. 24th Int'l. Geol. Congress, 1972, pp 19-27. 42. Rye, R. O.; Luhr, J. F . ; Wasserman, M. D. J. Volc. Geothermal Research 1984, 23, 109-123. 43. Coshell, L. Proc. 1st Australian Workshop on Oil Shale, 1983, pp 25-30. 44. Patterson, J. H. Chem. Geol. 1988, 68, 207-219. 45. Crisp, P. T.; E l l i s , J.; Hutton, A. C.; Korth, J.; Martin, F. Α.; Saxby, J. D. Australian o i l Shales: a compendium of geological and chemical data, CSIRO Institute of Energy and Earth Resources: North Ride NSW, Australia, 1987. 46. Ingram, L. L.; E l l i s , J.; Crisp, P. T.; Cook, A. C. Chem. Geol. 1983, 38, pp 185-212. 47. Peer, E. L. Proc. 1st Int'l. Conf. on Future of Heavy Crude Oils and Tar Sands, 1979, pp 651-654. RECEIVED March 16, 1990

In Geochemistry of Sulfur in Fossil Fuels; Orr, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.