Chapter 20 Spatial Heterogeneity in Ionic Liquids Yanting Wang, Wei Jiang, and Gregory A. Voth Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, UT 84112-0850
Electronically polarizable atomistic molecular dynamics models have been developed for the 1-alkyl-3methylimidazolium nitrate ionic liquids with the alkyl-chain length ranging from 2 to 12. The molecular dynamics simulations with these models confirm the spatial heterogeneity previously discovered by the multiscale coarse -grainedmodels (Wang & Voth, J. Am. Chem. Soc. 2005, 127, 12192). The global structures are monitored by a heterogeneity order parameter. The tail groups of cations are found to aggregate and distribute more heterogeneously than the headgroups of cations and the anions, forming discrete tail domains. The anions always stay close to the headgroups. The charged groups retain their local structures relatively unchanged, forming a continuous polar network, and leading to different global structures when varying the side-chain length. The ionic diffusion is slower with increasing alkyl -chain length. Based on these simulation results, a refined mechanism can be proposed, considering the competition among the Coulombic interactions, the collective short-range interactions, and the geometrical constraint from the intramolecular bonds. This mechanism can explain many experimental and simulation results, and is expected to be general for most kinds of ionic liquids. The finite size effects due to the limited simulation size are also discussed.
272
© 2007 American Chemical Society
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
273
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
Introduction Understanding the structural properties of ionic liquids is essential for the systematic design and application of ionic liquids. Ionic liquids are room temperature molten salts which may be used as a potential substitute for the traditional environment-unfriendly organic solvents. They have a much lower melting point compared to the inorganic molten salts, which is achieved by involving a bulky organic cation (7). Generally most of the partial charges on the cation are distributed around its headgroup. When the side chain is short, the tail groups also have non-zero effective partial charges. With increasing side-chain length, the partial charges on the tail groups become smaller, and the amphiphilic feature for cations increases accordingly. Because there are numerous ionic liquid systems (2) to be chosen from to meet specific applications, a theoretical understanding of the "tunability" of ionic liquids, such as the changes of their physical properties with various side-chain lengths, is important for guiding their efficient design and applications. Experiments have been done to investigate the behavior of ionic liquids with various cationic side-chain lengths. A liquid crystal phase has been observed for pure ionic liquids with long side chains (5-^ © -0.0826 C W / 0.2085 H4
_ y CW -0.1754 \ H4 0.2439 0
Q
9
2
2
5
C
0.0143 0.0063 0.0063 HI 0.0143 H1 0.0064 H1 0.0064 HI HI .HI
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
302
A2.5. CIO 0.0094 0.0094 0.0251 0.2221 0.1165 H1.
0.1165 ni ?
-0.1001
CT
H
H5 ι I
0.0596V
Λ
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
•0.0956
H1
Λ
0.0353 C T ^0 0182
©
J
C W
C W
/ 0.2101 H 4
HI
\
M
HI
0.0900
Ε
C T
/
X
C
^ H1
0
"00131 X /
T
C
/ H1
0.0144
J
Q
Q
0
H1
0
008
0
Q
H1
T
CT
Q
-0.0032 CT /
H1
0
0
5
9
0
0
H1
CT /
0.0174
H1
0.0031 0.0031
0
0
2
5
O.0055
.0069 H1
HC
\ / CT /
χ
\
0.0250
0
HC
\ /
χ
\
Q
5
H1
\ /
-nnnn
H1 0.0144
Q
H1
\ /
\ ^ « . CT 0 . 0 5 4 ^
HI
0 . 0 5 8 7 ^ ^ 0.1165
V ,
0.0900
^v.
V
0.0251
°T
0
/
-0.1006 X
.0363
\
H1
H
C
0.0250
H1
-0.0015 -0.0015 0.0019 0.0019
-0.1592
\ H 4 0.2394
A2.6. C12
0 2 2 0 1
n i 1
,
0
1
1
5
9
H
5
0
0
9
0
9
0
H1 Τ -0.0977V 01159
0
0
5
9
/
\
I «
H
»
0.0037 0.0037 0.0013 -0.0013 -0.0067 -0.0067 0.0013 00013 0.0211 0.0211 0.0238 0 0238 H1 H1 H1 HI H1 HI H1 H1 HC HC H1 HI \ / \ / \ / \ / \ / \ / CT 0.0053 CT 0.0091 CT 0.0147 CT 0.0080 CT -0.0899
i
J * ™ " , 5 ' ^ 0 2 2 9 7^.0005
/ 0 0 0 8 1
^
s *
0 0 1 6 4
/
X / * ™™
^
/ j*
HI H1 H1 H1 HI H1 H1 H1 Hi HI 0.0127 0.0127 0.0011 0.0011 -0 0032-0.0032 -0.0052-0.0052 0.0000 0.0000
5
-0.1023 CW / 0.2129 H4
X
CW -0 1549 \ H4 0.2374
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
\
303 A3.
Force Field Parameters 2
Bond parameters [k in kcal/(mol À ) and r
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
r
eq
in A ] .
bond
Κ
eq
bond
Κ
feq
CR-NA
954.0
1.343
CW-NA
854.0
1.381
CT-NA
674.0
1.475
CT-CT
620.0
1.526
CW-H4
734.0
1.080
CT-H1
680.0
1.090
CWCW
1040.0
1.370
CR-H5
734.0
1.080
CT-HC
680.0
1.090
NA-OS
600.0
1.260
r
2
Angle parameters [k in kcal/(mol radian ) and 0 in degree]. e
angle
eq
0
angle CW-NA-CT
k 140.0
125.8
120.0
NA-CR-H5
70.0
120.0
70.0
120.0
CW-CW-H4
70.0
128.2
NA-CT-H1
70.0
109.5
CT-CT-H1
100.0
109.5
H1-CT-H1
70.0
109.5
HC-CT-HC
70.0
109.5
CR-NA-CT
140.0
125.8
NA-CW-CW
140.0
120.0
NA-CT-CT
160.0
111.2
CT-CT-HC
100.0
109.5
CT-CT-CT
80.0
109.5
OS-NA-OS
300.0
120.0
CR-NA-CW
ke 140.0
120.0
NA-CR-NA
140.0
NA-CW-H4
eq
e
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
304
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
Dihedral angle parameters [V„ in kcal/mol and χ in degree]. dihedral
v„
r
η
dihedral
v„
r
Ν
HC-CT-CTNA
0.156
0.0
3
HC-CT-CTHl
0.156
0.0
3
CT-NA-CRH5
2.325
180.0
2
CT-NACR-NA
2.325
180.0
2
CT-NACW-CW
1.500
180.0
2
CT-NACW-H4
1.500
180.0
2
NA-CRNA-CW
2.325
180.0
2
CR-NACW-H4
1.500
180.0
2
CW-NACR-H5
2.325
180.0
2
CR-NACW-CW
1.500
180.0
2
NA-CWCW-NA
5.375
180.0
2
NA-CWCW-H4
5.375
180.0
2
CT-CT-CTHl
0.156
0.0
3
CT-CT-CTCT
0.156
0.0
3
Hl-CT-CTHl
0.156
0.0
3
NA-CT-CTCT
0.156
0.0
3
NA-CT-CTHl
0.156
0.0
3
HC-CT-CTCT
0.156
0.0
3
Hl-CT-NACW
0.0
0.0
2
Hl-CT-NACR
0.0
0.0
2
CW-NACT-CT
0.0
0.0
2
CR-NACT-CT
0.0
0.0
2
H4-CWCW-H4
5.375
180.0
2
H5-CR-NANA°
1.100
180.0
2
CR-CWNA-cr
1.100
180.0
2
H4-CWCW-NA"
1.100
180.0
2
OS-OS-NAOS°
50.000
180.0
2
"Improper torsions.
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
Van der Waals parameters [ε in kcal/mol and σ ί η Â].
6
pair
ε
σ
pair
ε
σ
CW— CW*
0.0860
3.400
CW— NA
0.121
3.325
CW—H5
0.0359
2.911
CW— HC
0.0371
3.025
CT—CT
0.109
3.400
CT—HI
0.0418
2.936
CT—HC
0.0418
3.025
CT—H4
0.0404
2.955
CT—CW
0.0968
3.400
HI—HI
0.0160
2.471
HI—HC
0.0160
2.560
HI—H4
0.0155
2.491
2.422
H5—HC
0.0155
2.536
H5—H5
0.0150
H5—NA
0.0505
2.836
HC—HC
0.0160
2.650
HC—NA
0.0522
2.950
H4—H4
0.0150
2.511
CW—HI
0.0371
2.936*
CW--H4
0.0359
2.955
CT--H5
0.0404
2.911
CT---NA
0.136
3.325
HI—H5
0.0155
2.446
HI—NA
0.0522
2.861
H5—H4
0.0150
2.466
HC—H4
0.0155
2.580
H4—NA
0.0505
2.880
OS—OS
0.170
3.001
NA—NA
0.170
3.250
NA—OS
0.170
3.125
HI—OS
0.0522
2.736
H4—OS
0.0505
2.756
CW—OS
0.121
3.200
CT—OS
0.136
3.200
H5—OS
0.0505
2.711
HC—OS
0.0522
2.825
C R type atom has the same van der Waals parameters as C W atom.
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
306
References 1. 2.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
24. 25.
Wasserschied, P.; Keim, W., Angew. Chem., Int. Ed. 2000, 39, 3772. Seddon, K . R., The International George Papatheodorou Symposium: Proceedings. In Institute of Chemical Engineering and High Temperature Chemical Processes, Boghosian, S., Ed. Patras, Greece, 1999. Lee, K . M . ; Lee, C. K . ; Lin, I. J. B., Chem. Commun. 1997, 899. Gordon, C . M . ; Holbrey, J. D.; Kennedy, A . R.; Seddon, K . R., J. Mater. Chem. 1998, 8, 2627. Holbrey, J. D.; Seddon, K . R., J. Chem. Soc., Dalton Trans. 1999, 2133. Lee, C. K . ; Huang, H . W.; Lin, I. J. B., Chem. Commun. 2000, 1911. Tokuda, H . ; Hayamizu, K . ; Ishii, K . ; B i n Hasan Susan, Μ. Α.; Watanabe, M . , J. Phys. Chem. Β 2005, 109, 6103. Seddon, K . R.; Stark, Α.; Torres, M.-J., Alternative Media for Chemical Reactions and Processing. In Clean Solvents, Abraham, M . ; Moens, L., Eds. American Chemical Society: Washington D . C., 2002; V o l . A C S Symp. Ser. 819. Huddleston, J. G.; Visser, A . E.; Reichert, W. M . ; Willauer, H . D.; Broker, G. Α.; Rogers, R. D., Green Chemistry 2001, 3, 156. Wakai, C.; Oleinikova, Α.; Ott, M . ; Weingärtner, H . , J. Phys. Chem. Β 2005, 109, 17028. Bonhôte, P.; Dias, A.-P.; Papageorgiou, N . ; Kalyanasundaram, K . ; Grätzel, M . , Inorg. Chem. 1996, 35, 1168. Urahata, S. M . ; Ribeiro, M . C. C., J. Chem. Phys. 2005, 122, 024511. Urahata, S. M . ; Ribeiro, M . C. C., J. Chem. Phys. 2004, 120, 1855. Margulis, C. J., Molec. Phys. 2004, 102, 829. Del Popolo, M . G.; Voth, G . A., J. Phys. Chem. Β 2004, 108, (5), 1744. Lopes, J. N . A . C.; Pádua, Α. A . H., J. Phys. Chem. Β 2006, 110, 3330. Izvekov, S.; Voth, G . Α., J. Chem. Phys. 2005, 123, 134105. Izvekov, S.; Voth, G . Α., J. Phys. Chem. Β 2005, 109, 2469. Wang, Y . ; Izvekov, S.; Yan, T.; Voth, G . Α., J. Phys. Chem. Β 2006, 110, 3564. Wang, Y . ; Voth, G . Α., J. Am. Chem. Soc. 2005, 121, 12192. Yan, T.; Burnham, C. J.; Del Pópolo, M . G.; Voth, G. Α., J. Phys. Chem. Β 2004, 108, (32), 11877. Yan, T.; Burnham, C. J.; Wang, Y . ; Gao, X . ; Voth, G. Α., J. Phys. Chem. Β (submitted) 2006. Cornell, W . D . ; Cieplak, P.; Bayly, C . I.; Gould, I. R.; Merz, Κ. M . ; Ferguson, D . M . ; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. Α., J. Am. Chem. Soc. 1995, 117, 5179. Sprik, M . , J. Phys. Chem. 1991, 95, 2283. Car, R.; Parrinello, M . , Phys. Rev. Lett. 1985, 55, 2471.
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: August 30, 2007 | doi: 10.1021/bk-2007-0975.ch020
307 26. Case, D . Α.; Pearlman, D. Α.; Caldwell, J. W.; Cheatham, T. Ε., III; Ross, W. S.; Simmerling, C. L . ; Darden, R. Α.; Merz, Κ. M . ; Stanton, R. V . ; Cheng, A . L . ; Vincent, J. J.; Crowley, M . ; Tsui, V . ; Radmer, R. J.; Duan, Y . ; Pitera, J.; Massova, I.; Seibel, G . L . ; Singh, U . C.; Weiner, P . K . ; Kollman, P. Α., Amber 6. University of California: San Francisoco, C A , 1999. 27. Frisch, M . J.; Trucks, G . W.; Schlegel, H . B . ; et a l , Gausian 03. Gaussian Inc.: Wallingford C T , 2004. 28. Besler, Β . H . ; Merz Jr., Κ. M . ; Kollman, P. Α., J. Comp. Chem. 1990, 11, 431. 29. Singh, U . C.; Kollman, P. Α., J. Comp. Chem. 1984, 5, 129. 30. de Andrade, J.; Böes, E. S.; Stassen, H., J. Phys. Chem. Β 2002, 106, 13344. 31. Wang, Y . ; Voth, G . Α., J. Phys. Chem. Β 2006, In preparation. 32. Allen, M . P.; Tildesley, D . J., Computer Simulation of Liquids. Clarendon Press: Oxford, 1987. 33. Melchionna, S.; Ciccotti, G.; Holian, B . L., Molec. Phys. 1993, 78, 533. 34. Hoover, W. G., Phys. Rev. A 1985, 31, 1695. 35. Schmalian, J.; Wolynes, P. G., Phys. Rev. Lett. 2000, 85, (4), 836. 36. Hu, Z . ; Margulis, C. J., Proc. Natl. Acad. Sci. USA 2006, 103, (4), 831. 37. Fannin, Α. Α.; Floreani, D . Α.; King, L . Α.; Landers, J. S.; Piersma, B . J.; Stech, D . J.; Vaughn, R. L . ; Wilkes, J. S.; Williams, J. L . , J. Phys. Chem. 1984, 88, 2614. 38. Dieter, K . M . ; Dymek, C. J.; Heimer, Ν. E.; Rovang, J. W.; Wilkes, J. S., J. Am. Chem. Soc. 1988, 110, 2722. 39. Hardacre, C.; Holbrey, J. D.; McMath, S. E. J.; Bowron, D . T.; Soper, A . K., J. Chem. Phys. 2003, 118, (1), 273. 40. Hayashi, S.; Ozawa, R.; Hamaguchi, H.-o., Chem. Lett. 2003, 32, (6), 498. 41. Ozawa, R.; Hayashi, S.; Saha, S.; Kobayashi, Α.; Hamaguchi, H.-o., Chem. Lett. 2003, 32, (10), 948. 42. Wu, S.; Westfahl Jr., H . ; Schmalian, J.; Wolynes, P. G., Chem. Phys. Lett. 2002, 359, 1.
In Ionic Liquids IV; Brennecke, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2007.