Chapter 30 Progress in RAFT/MADIX Polymerization: Synthesis, Use, and RecoveryofChain Transfer Agents 1
2
1
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
1
Sébastien Perrier , Pittaya Takolpuckdee , Steven Brown , Thomas M. Legge , Debashish Roy , Murray R. Wood , Steven P. Rannard , and David J. Duncalf 1
3
1
3
1
Department of Colour and Polymer Chemistry, The UniversityofLeeds, Leeds LS2 9JT, United Kingdom Chemistry Program, FacultyofScience and Technology, Valayalongkorn Rajabhat University, Phathumtani 13180, Thailand Unilever Research and Development, Port Sunlight Laboratories, Quarry Road East, Bebington, Wirral L63 3JW, United Kingdom
2
3
W e report the synthesis of n o v e l c h a i n transfer agents f o r
RAFT/MADIX
p o l y m e r i z a t i o n , a n d their
use to m e d i a t e the p o l y m e r i z a t i o n of a variety of m o n o m e r s , in order to p r o d u c e a range of functional materials. A f t e r p o l y m e r i z a t i o n , the c h a i n transfer agent i s r e c o v e r e d in a one p o t reaction, w h i c h also p e r m i t s t o introduce functional groups at the c h a i n - e n dofthe p o l y m e r s .
438
© 2006 American Chemical Society
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
439
Introduction Since
the first
polymerization RAFT/MADIX
reports
i n the early
techniques have
3 , 4
such
received
as
1990's,
living
ATRP,1
a strong
radical
NMP2
and
from
both
interest
a c a d e m i c a n d i n d u s t r i a l laboratories. R A F T a n d M A D I X are b o t h based o n a r a d i c a l l y i n d u c e d degenerative c h a i n transfer r e a c t i o n between
a
thiocarbonyl-thio
containing
compound
and
a
p r o p a g a t i n g r a d i c a l , f o l l o w i n g the p r i n c i p l e o f degenerative c h a i n Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
transfer first reported b y Z a r d ' s g r o u p i n the late 8 0 ' s . 5 T h e process offers a l l advantages
o f living polymerization
techniques ( e . g .
p r o d u c t i o n o f c o m p l e x p o l y m e r i c architectures) w i t h o u t s u f f e r i n g from
traditional
downfalls
attached
t o s u c h techniques ( l o w
temperatures, ultra-pure reactants, etc.). M o r e o v e r , the v e r s a t i l i t y o f R A F T / M A D I X towards f u n c t i o n a l groups p e r m i t s the synthesis o f a w i d e range o f f u n c t i o n a l m a c r o m o l e c u l e s . 6 F o r the last f e w years,
our group
has f o c u s e d
o n the d e s i g n
of
alternative
techniques f o r the synthesis o f p o l y m e r i z a t i o n mediators
(chain
transfer agents, C T A ' s ) , a n d their use i n p o l y m e r i z a t i o n reactions. W e report here o u r latest results, a n d p r o v i d e s i m p l e techniques o f CTA
synthesis,
a n d their use to p r o d u c e
specific
functional
m a t e r i a l s . T h e last s e c t i o n o f this chapter c o v e r s a straight f o r w a r d t e c h n i q u e to replace the t h i o c a r b o n y l - t h i o m o i e t y present at the c h a i n - e n d o f the p o l y m e r b y a f u n c t i o n a l g r o u p , w h i l s t r e c y c l i n g the c h a i n transfer agent.
Experimental Section Materials. A l l s o l v e n t s , m o n o m e r s , a n d other c h e m i c a l s w e r e p u r c h a s e d from A l d r i c h at the highest p u r i t y a v a i l a b l e a n d u s e d as
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
440 r e c e i v e d unless o t h e r w i s e stated. A l l m o n o m e r s
were
filtered
b e f o r e u t i l i z a t i o n t h r o u g h a basic a l u m i n a ( B r o c k m a n n I) c o l u m n , to e l i m i n a t e the r a d i c a l i n h i b i t o r . T e t r a h y d r o f u r a n ( T H F , R i e d e l d e H a ë n , H P L C grade) w a s d r i e d o v e r m o l e c u l a r sieves 4 Â . 2 , 2 Azobisisobutyronitrile
(AIBN,
9 9 % , Fisher)
was recrystallized
t w i c e from e t h a n o l . D i e t h y l ether, e t h y l acetate a n d n-hexane w e r e p u r c h a s e d f r o m R i e d e l - d e H a ë n ( A R grade). M a g n e s i u m t u r n i n g (AnalaR)
was purchased
from
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
methoxycarbonyl-a-phenylmethyl Merrifield
supported
dithiobenzoate
8,9
BDH.
C e l l u l o s e supported
dithiobenzoate7
and
S-
silica
/
S-methoxycarbonyl-a-phenylmethyl
w e r e synthesised as p r e v i o u s l y reported. A i r a n d
m o i s t u r e sensitive c o m p o u n d s w e r e m a n i p u l a t e d u s i n g standard S c h l e n k techniques under a n i t r o g e n atmosphere.
General synthesis method of trithiocarbonates / xanthates using Ι,Γ-thiocarbonyl diimidazole - Typical synthesis of 2ethylsulfanylthioearbonyl-sulfanylpropionic acid ethyl ester (ETSPE, 14, Figure 2). D r y toluene ( 6 0 m L ) w a s added to a stoppered
three-necked
flask.
Ι,Γ-Thiocarbonyl
diimidazole
( T C D I ) ( ( 9 5 % ) 3 . 6 0 g , 19.2 m m o l ) a n d p o t a s s i u m h y d r o x i d e ( 0 . 0 5 g , 0 . 8 6 m m o l ) w a s a d d e d , i n o n e p o r t i o n , under n i t r o g e n . T o the solution w a s added ethyl 2-mercaptopropionate ((95%) 2.63 m L , 2.71 g , 19.2 m m o l ) d r o p w i s e . T h e r e a c t i o n m i x t u r e w a s heated to 6 0 ° C a n d r e f l u x e d f o r 7 h . A f t e r this t i m e , the m i x t u r e w a s a l l o w e d to c o o l to r o o m temperature a n d left to stand, u n d e r n i t r o g e n , o v e r n i g h t . E t h a n e t h i o l ( ( 9 9 % ) 1.34 m L ,
1.49 g , 19.2
m m o l ) w a s a d d e d d r o p w i s e , under n i t r o g e n , to the stirred s o l u t i o n . T h e r e a c t i o n m i x t u r e w a s heated to 6 0 ° C , r e f l u x e d f o r 6 h , t h e n left to c o o l to r o o m temperature o v e r n i g h t . T h e s o l u t i o n w a s filtered,
concentrated
under
vacuum
a n d subjected to
flash
c h r o m a t o g r a p h y ( s i l i c a , 5 % e t h y l acetate i n hexane as eluent). T h e d e s i r e d fraction w a s concentrated under v a c u u m a n d subjected to K u g e l r o h r d i s t i l l a t i o n , a f f o r d i n g the p r o d u c t as a b r i g h t y e l l o w o i l . (62 % ) . ' H - N M R ( 4 0 0 M H z , C D C 1 3 ) δ 1 . 2 6 - 1 . 3 0 ( 3 H , t, J = 7 . 2 H z ,
SCH2CH3), 1.34-1.38 ( 3 H , t, J= 4 . 2 H z , OCH2CH3), 1.57-1.61
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
441 (3H,
d , J = 7.7 H z , S C H C H 3 ) , 3 . 3 4 - 3 . 4 0
( 2 H , q , J= 6.5 H z ,
SCH2CH3), 4 . 1 7 - 4 . 2 3 ( 2 H , q , J = 3 . 8 H z , O C H 2 C H 3 ) , ( 1 H , q , J= 7.4 H z , SCHCH3) 61.9,
4 8 . 0 , 31.5, 31.1,
1 3
4.78-4.83
C - N M R ( 1 0 0 M H z ) δ 2 2 1 . 9 , 171.1,
17.0,
14.3, T O F - M S
( E S + ) m/z=
239.023(MH ) +
General polymerization and end-group modification method.
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
To
a n ampoule
w a s added
mmol),
bromophenyl
mmol)
and A I B N
methyl
methacrylate
acetic a c i d dithiobenzoate (0.002g,
0.012 mmol).
(6.10g, 6 0 . 9
(0.035g, 0.122
The solution w a s
degassed w i t h N2 f o r 10 m i n s then heated to 6 0 ° C f o r 8 h . T h e s o l u t i o n w a s c o o l e d a n d the p o l y m e r precipitated b y d r o p w i s e addition
o f the s o l u t i o n into
poly(methyl
methacrylate)
c o l d hexane
to y i e l d 3 4 % o f
a n d characterized b y size e x c l u s i o n
c h r o m a t o g r a p h y ( M n = 13 5 0 0 , P D I = 1.18). T h e i s o l a t e d p o l y m e r was added to a n ampoule (0.063g,
0.380 mmol)
(0.256g,
0.019 mmol)
with
AIBN
a n d toluene (5 m L ) . T h e s o l u t i o n w a s
degassed w i t h N2 f o r 10 m i n s then heated to 8 0 ° C f o r 2 . 5 h . T h e s o l u t i o n w a s c o o l e d a n d the p o l y ( m e t h y l methacrylate) precipitated b y d r o p w i s e a d d i t i o n o f the s o l u t i o n into c o l d hexane. T h e p o l y m e r was
filtered
off
and
characterized
by
size
exclusion
c h r o m a t o g r a p h y ( M n = 13 4 0 0 , P D I = 1 . 1 7 ) .
Results and Discussions Synthesis of chain transfer agents. Synthesis
of
functional
chain
transfer
agents.
Living
r a d i c a l p o l y m e r i z a t i o n techniques offer the potential t o introduce specific
functionalities
within
instance, b y using tailor-made
polymeric
architectures.10 F o r
c h a i n transfer agents, o n e c a n
i n t r o d u c e c h a i n - e n d f u n c t i o n a l i t i e s into p o l y m e r i c c h a i n s . W e a n d others have
s h o w n that derivatives o f a m e t h y l
phenylacetate
r a d i c a l ( R , F i g u r e 1) are attractive l e a v i n g / r e - i n i t i a t i n g ( R ) g r o u p 1
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
442 f o r c h a i n transfer a g e n t s . 1 1 Indeed, their potential f o r from
fragmentation
the t h i o c a r b o n y l - t h i o m o i e t y i s p r o m o t e d b y the s t a b i l i z a t i o n
o f the r e s u l t i n g r a d i c a l b y the p h e n y l g r o u p o n the α - C o f the r a d i c a l , w h i l s t its a b i l i t y to reinitiate p o l y m e r i z a t i o n i s e n h a n c e d b y the l o w steric h i n d r a n c e o f the secondary r a d i c a l . F u r t h e r m o r e , the presence o f a c a r b o x y l i c m o i e t y a l l o w s the i n t r o d u c t i o n o f a v a r i e t y o f f u n c t i o n a l i t i e s . W e h a v e s y n t h e s i z e d a series o f dithiobenzoates a n d trithiocarbonates s h o w i n g a range o f f u n c t i o n a l groups v i a
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
e s t e r i f i c a t i o n o f a m o l e c u l e b e a r i n g the relevant f u n c t i o n a l i t y w i t h 2-chloro-2-phenylacetyl
c h l o r i d e o r α - b r o m o p h e n y l acetic a c i d ,
i n c l u d i n g ( F i g u r e 1) m e t h y l ester (1 a n d 2 ) , c a r b o x y l i c a c i d (3 a n d 4) a n d its s o d i u m salt (5 a n d 6 ) , a m i d e (7), h y d r o x y l (8) a n d a l s o m u l t i f u n c t i o n a l C T A ' s (e.g. 9 ) .
Figure 1. Functional CTA's producedfrom 2-chloro-2-phenylacetyl chloride or a-bromophenyl acetic acid and derivatives.
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
443
Synthesis of trithiocarbonates via one pot reaction from 1 , 1 ' thiocarbonyl diimidazole. T h e syntheses o f trithiocarbonates a n d xanthates f o l l o w i n g t r a d i t i o n a l routes h a v e s i g n i f i c a n t d r a w b a c k s f o r laboratories that are u n f a m i l i a r w i t h c o m p o u n d s o f c o n s i d e r a b l e safety concerns ( e . g . h i g h f l a m m a b i l i t y , risks o f e x p l o s i o n , water s e n s i t i v i t y , a n d so o n ) a n d have contributed t o the l i m i t e d spread o f RAFT
and M A D I X
i n academic
and industrial
laboratories
w o r l d w i d e . T h e r e have b e e n m a n y reports o f alternative synthetic
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
routes f o r the p r o d u c t i o n o f C T A ' s , b u t v e r y f e w o f t h e m c o n c e r n s trithiocarbonate
derivatives.6
W e have
developed
a
synthetic
m e t h o d based o n the use o f Ι , Γ - t h i o c a r b o n y l d i i m i d a z o l e ( T C D I , 10) t o p r o d u c e i n a one-pot r e a c t i o n a range o f trithiocarbonates a n d xanthates. S u c h syntheses present clear advantages i n terms o f y i e l d , reaction time and simplicity (Figure 2).
Figure 2. Synthetic schemes for the production of trithiocarbonates and xanthates using 7,1 '-thiocarbonyl diimidazole (10). W i t h t w o equivalents o f a p r i m a r y t h i o l reacted onto T C D I , the symmetrically Furthermore,
disubstituted
product
(11)
is readily
obtained.
w h e n T C D I i s reacted w i t h a secondary t h i o l o r
secondary a l c o h o l , o n l y the intermediate 5/O-ester o f i m i d a z o l e - N t h i o n o c a r b o x y l i c a c i d i s p r o d u c e d (12 a n d 13). 12 a n d 13 m a y b e further reacted w i t h a p r i m a r y t h i o l , to g i v e a trithiocarbonate (14) o r a xanthate (15).
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
444 ιοοΗ • 80-Ι
•
• • •
100:1:1.5 500:1:1.5
À J
0
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
0
25
50
75
100
125
150
175
200
time (min)
Figure 3. Conversion vs. time for the polymerization of methyl acrylate mediated by 2-ethylsulfanylthiocarbonylsulfanylpropionic acid ethyl ester (ETSPE) at various Monomer: CTA ratios.
T r i t h i o c a r b o n a t e s h a v e the added advantages b y c o m p a r i s o n to other C T A ' s (e.g. dithiobenzoates) i n that they i n d u c e v e r y l i t t l e , o r n o , retardation i n R A F T p o l y m e r i z a t i o n . 6 Indeed, p o l y m e r i z a t i o n s mediated
by
2-ethylsulfanylthiocarbonylsulfanyl-propionic
acid
e t h y l ester ( E T S P E ) s h o w s i m i l a r k i n e t i c s , despite i n c r e a s i n g the m o n o m e r c o n c e n t r a t i o n b y a factor 5 ( F i g u r e 3 a n d 4).
RAFT/MADIX polymerization process. In a d d i t i o n to a l l o w i n g the
introduction
architectures,
of
specific
RAFT/MADIX
functionalities polymerization
into
polymeric
benefits
from
a
straight f o r w a r d process. Indeed, the p o l y m e r i z a t i o n relies o n the s i m p l e i n t r o d u c t i o n o f a s m a l l a m o u n t o f c h a i n transfer agent into a c l a s s i c a l free r a d i c a l system ( m o n o m e r + initiator). T h e transfer o f the C T A
b e t w e e n g r o w i n g r a d i c a l c h a i n s , present at v e r y
c o n c e n t r a t i o n , a n d dormant
polymer
c h a i n s , present at
low
higher
c o n c e n t r a t i o n (three or f o u r orders o f m a g n i t u d e ) , w i l l regulate the growth
of
the
molecular
weight,
and
limit
the
termination
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
445
40000
30000
τ
ô Ε σ> 20000
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
ϊ 10000-
0 0
10 20
30 40
50 60
70
80
90 100
Conversion / %
Figure 4. Molecular weight and PDI evolution with conversion for the polymerization of methyl acrylate mediated by 2ethylsulfanylthiocarbonylsulfanyl-propionic acid ethyl ester (ETSPE) at various Monomer: CTA ratios. reactions. In the s y s t e m , the c o n c e n t r a t i o n o f r a d i c a l i n i t i a t o r i s a k e y parameter.
Free r a d i c a l s are r e q u i r e d at the start o f
the
p o l y m e r i z a t i o n i n order to trigger the degenerative c h a i n transfer reactions
which
control
the
polymerization.
However,
these
r a d i c a l s also generate ' d e a d ' p o l y m e r i c c h a i n s , w h i c h affect the level o f control over molecular weight distribution. Therefore, an increase i n the c o n c e n t r a t i o n o f free r a d i c a l initiator leads to faster polymerizations,
but
increases the
probability
of
irreversible
terminations between growing chains, resulting i n a worse control over molecular weight distribution.6 I n order to p r o m o t e faster p o l y m e r i z a t i o n s w h i l s t k e e p i n g g o o d c o n t r o l o v e r the m o l e c u l a r w e i g h t d i s t r i b u t i o n , w e investigated microwave-assisted R A F T
polymerizations.
Microwave-assisted
p o l y m e r i z a t i o n s have b e e n s h o w n to p e r f o r m faster, a n d to h i g h e r y i e l d s , t h a n e q u i v a l e n t reactions p e r f o r m e d under m o r e t r a d i t i o n a l h e a t i n g c o n d i t i o n s , a n d this effect i s g e n e r a l l y attributed to
a
temperature effect. B u l k R A F T p o l y m e r i z a t i o n o f m e t y l acrylate,
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
446 m e t h y l methacrylate a n d styrene w a s attempted i n the presence o f 2-ethylsulfanylthiocarbonylsulfanyl-propionic
acid
ethyl
ester
( E T S P E ) as the c h a i n transfer agent. W e o b s e r v e d f o r m e t h y l acrylate
and
methyl
methacrylate
that
the
kinetics
of
p o l y m e r i z a t i o n w e r e greatly e n h a n c e d , w i l s t k e e p i n g a n e x c e l l e n t c o n t r o l o v e r the m o l e c u l a r w e i g h t (PDI < 1.10) ( F i g u r e 5 a n d 6 ) . O n the other h a n d , the p o l y m e r i z a t i o n o f styrene d i d n o t s h o w a n y increase i n rate. S i m i l a r p o l y m e r i z a t i o n k i n e t i c s w e r e reported f o r
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
the
free
radical
polymerization
o f these
monomers,12"14
but
p r e v i o u s studies h a v e s h o w n n o n o t i c e a b l e effect o f m i c r o w a v e h e a t i n g o n other L R P t e c h n i q u e s . 1 5
Synthesis of functional polymeric architectures. T h e versatility o f the R A F T
process towards
f u n c t i o n a l groups p e r m i t s the
synthesis o f a range o f f u n c t i o n a l m a t e r i a l s a n d i n d e e d p o l y m e r i c architectures.
T h e use o f m e t h y l
phenylacetate
d e r i v a t i v e s as
l e a v i n g groups does not o n l y p e r m i t to introduce f u n c t i o n a l e n d g r o u p s , but a l s o to synthesize m o r e c o m p l e x architectures, as illustrated b e l o w .
Telechelic polymers and A B A triblock copolymers. T h e use o f c o m p o u n d (9) as c h a i n transfer agent to mediate the p o l y m e r i z a t i o n o f methacrylate o r acrylate d e r i v a t i v e s l e a d to the p r o d u c t i o n o f t e l e c h e l i c h o m o p o l y m e r s w i t h a dithiobenzoate f u n c t i o n a l i t y . T h e r e s u l t i n g t e l e c h e l i c p o l y m e r s c a n b e further reacted w i t h radical
initiators
(see
below)
to
produce
free
α,ω-functional
h o m o p o l y m e r s . P o l y m e r i z a t i o n o f m e t h y l methacrylate a n d b u t y l methacrylate y i e l d e d t e l e c h e l i c h o m o p o l y m e r s w i t h w e l l c o n t r o l l e d m o l e c u l a r w e i g h t s . P o l y m e r i z a t i o n o f b u t y l acrylate, o n the other hand,
l e d to p o l y m e r s
distribution.
We
showing multimodal molecular
explained
these
observations
by
the
weight initial
f r a g m e n t a t i o n o f the R group o c c u r r i n g at different rates o n e a c h side d u e to o n e side o v e r c o m i n g s i n g l e p o l y m e r u n i t i n h i b i t i o n s i g n i f i c a n t l y earlier that the other. S u c h a situation m a y e x i s t to a lesser
extent
f o r methacrylate
derivatives,
d u e to the faster
f r a g m e n t a t i o n o f methacrylate p o l y m e r u n i t s . 1 6
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
447
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
100
Time (mins)
Figure 5. Conversion vs. time for the microwave-assisted polymerization of methyl acrylate and methyl methacrylate mediated by ETSPE using a ratio Monomer :ETSPΕ :AIBN = 500:1:0.25.
Conversion / %
Figure 6. Molecular weight and PDI evolution with conversion of the microwave-assisted polymerization of methyl acrylate and methyl methacrylate mediated by ETSPE using a ratio Monomer:ETSPE:AIBN = 500:1:0.25.
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
448
Table 1. (Co)polymers synthesized via RAFT in toluene at 60 °C M
1
CTA-.LM.S
BMA
f
1:0.2:500:100
BMA
f
1:0.4: 500:100
810
83.4
1:0.4:500:100
810
88.8
1:0.4:500:100
2868
79.8
MMA BA Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
time com / min /%
f
t
810
82.5
M„ 37,900°
Mi/Aeo
PDf
59,500
1.18
48,400
e
59,300
1.23
30,000
e
44,500
1.26
51,200
e
51,200
1.70
d
95,800
1.36
d
39,800
1.20
BA*
1:0.4:800:1200
1030
96
53,300
BA*
1:0.4:800:1200
175
40
15,700
BA*
1:0.25:800:1200
860
18
21,700
d
19,800
1.55
73,900
d
82,000
1.73
90,700
d
100,700
1.24
BA*
1:0.25:800:1200
3000
80
BMA*
1:0.25:800:1200
4180
91
CTA = 9, Figure 2; * CTA = P M M A a
b
CTA = chain transfer agent, I = initiator, M = monomer, S = solvent; determined by gravimetric analysis; determined by SEC using poly(methyl methacrylate) as standards; determined by H NMR by comparing the integrations of known proton signals from each block, and standardized using the molecular weight of the original macroCTA (determined by SEC). c
d
!
B M A = Η-butyl methacrylate, M M A = methyl methacrylate, B A = w-butyl acrylate. B l o c k e x t e n s i o n o f the p o l y ( m e t h y l methacrylate) w i t h b u t y l methacrylate a n d b u t y l acrylate l e d to the f o r m a t i o n o f A B A t r i b l o c k c o p o l y m e r s . W h i l s t the use o f the methacrylate d e r i v a t i v e s yielded block copolymers o f w e l l controlled molecular weights for c o n v e r s i o n s a b o v e 9 0 % , the b l o c k e x t e n s i o n u s i n g b u t y l acrylate s h o w e d the presence o f a s e c o n d p e a k at h i g h m o l e c u l a r w e i g h t s f o r c o n v e r s i o n a b o v e 4 0 % . I n s p e c t i o n o f the m o l e c u l a r w e i g h t d i s t r i b u t i o n data suggested that c r o s s - t e r m i n a t i o n s b y c o m b i n a t i o n m a y e x p l a i n the presence o f these h i g h m o l e c u l a r w e i g h t p e a k s .
Cellulose supported RAFT polymerization. T h e treatment o f c e l l u l o s e fiber (cotton f a b r i c a n d paper substrate) w i t h 2 - c h l o r o - 2 phenylacetyl chloride f o l l o w e d b y reaction w i t h a dithiobenzoate salt leads t o the f o r m a t i o n o f c e l l u l o s e supported c h a i n transfer agents ( C e l l u l o s e - C T A ) , attached to the c e l l u l o s e v i a the R g r o u p ( R - s u p p o r t e d C T A ' s ) . W e use these R - s u p p o r t e d C T A ' s t o m e d i a t e
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
449 the p o l y m e r i z a t i o n o f styrene a n d d i m e t h y l a m i n o e t h y l methacrylate ( D M A E M A ) . T h e use o f free c h a i n transfer agent i n s o l u t i o n w a s f o u n d to i m p r o v e the graft r a t i o , a n d l i m i t the p r o d u c t i o n o f free polymeric chains i n solution.
Table 2. Graft polymerizationa of styrene (Sty) and dimethyl aminoethylmethacrylate (DMAEMA) mediated by a celluloseC T A in a molar ratio Monomer/Cellulose-CTA/AIBN = a
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
100/l/0.1 Monomer Sty
DMAEMA
Monomer Time/ h Graft ratio /wt Monomer concentration % conversion% 0.5M 0.5M 0.5M 0.5M 0.5M 0.5M 2M 2M 2M 2M
14
8 16 24 4 20 48 4 20 48 20
b
7 11 17 13 60 75 29 78 94 66"
16 195 1 7 11 8 12 25 20
b
b
a
7
b
Solvent = toluene; Temperature =60 °C. See reference for expérimentais; Undertaken in the presence offreeCTA (MCPDB) in a ratio cellulose-CTA/free CTA = 1/1
R e c o v e r y o f c h a i n t r a n s f e r a g e n t s . A k e y feature o f l i v i n g r a d i c a l p o l y m e r i z a t i o n systems i s the presence o f a f u n c t i o n a l group at the polymeric chain-end (e.g. halogen, alkoxyamine, thiocarbonyl-thio group
for A T R P ,
NMP
and R A F T ,
respectively),
which is
r e s p o n s i b l e f o r the l i v i n g character o f the p o l y m e r i z a t i o n .
There
has b e e n a variety o f studies a i m i n g to m o d i f y this e n d g r o u p f o r ATRP,17'18
NMP19'20
and
RAFT.6
In
the
case
of
RAFT
p o l y m e r i z a t i o n , w e f o u n d that the i n - s i t u a d d i t i o n o f a r a d i c a l to the reactive C = S b o n d o f the t h i o c a r b o n y l - t h i o p o l y m e r e n d - g r o u p leads to the f o r m a t i o n o f a n intermediate r a d i c a l , w h i c h c a n t h e n either fragment b a c k to the o r i g i n a l a t t a c k i n g r a d i c a l o r t o w a r d s the p o l y m e r i c c h a i n r a d i c a l . I n the presence o f a n excess o f free r a d i c a l s , the e q u i l i b r i u m i s d i s p l a c e d t o w a r d the f o r m a t i o n o f the
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
450 p o l y m e r i c c h a i n r a d i c a l , w h i c h c a n then r e c o m b i n e i r r e v e r s i b l y w i t h one o f the free r a d i c a l s present i n excess i n s o l u t i o n , thus f o r m i n g a d e a d p o l y m e r i c c h a i n . T h e process w a s s h o w n to w o r k i n a variety o f c o n d i t i o n s a n d i s easy to undertake ( F i g u r e Besides
the
color
removal,
the
system
also
7).
21
allows
the
p r o d u c t i o n o f e n d - f u n c t i o n a l p o l y m e r s a n d the r e c o v e r y o f the c h a i n transfer agent
(up
to
three p o l y m e r i z a t i o n
cycles
were
u n d e r t a k e n u s i n g the same r e c o v e r e d C T A e a c h t i m e ) .
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
T h e r e c o v e r y o f the C T A m i g h t h o w e v e r be a p r o b l e m f o r large scale p r o d u c t i o n . W h i l s t i n a t y p i c a l laboratory set-up o n the m u l t i g r a m s c a l e , the p o l y m e r c h e m i s t w o u l d precipitate the after r a d i c a l m o d i f i c a t i o n a n d r e c o v e r the C T A
from
polymer
the s o l u t i o n ,
larger p r o d u c t i o n s require a n alternative technique o f r e c o v e r y . p o t e n t i a l s o l u t i o n i s the use o f a s o l i d - s u p p o r t e d C T A ,
A
covalently
l i n k e d to a s o l i d support v i a its Ζ group. S u c h Z - s u p p o r t e d
CTA
c a n be e a s i l y i s o l a t e d after r a d i c a l cleavage b y s i m p l e f i l t r a t i o n f r o m the p o l y m e r product. T h e process a l s o a l l o w s r e m o v a l o f a l l side
products,
terminated),
including dead
and
non-reacted
polymeric monomer
chains by
a
(irreversibly
filtration
after
p o l y m e r i z a t i o n . T h i s a d d i t i o n a l feature m a k e s this p r o c e s s u n i q u e , as it i s the o n l y r a d i c a l p o l y m e r i z a t i o n system able to p r o v i d e c h a i n s that are
100%
living (All
non-living
chains, i.e.
not
t e r m i n a t e d b y the t h i o c a r b o n y l - t h i o m o i e t y , are w a s h e d o f f after p o l y m e r i z a t i o n - o n the other h a n d , 1 0 0 % o f the p o l y m e r i c c h a i n s recovered
have
kept
their
end-group
functionality,
and
are
therefore able to re-initiate p o l y m e r i z a t i o n ) . 8 , 9 A direct o u t c o m e o f s u c h s y s t e m i s the p o s s i b i l i t y to p r o d u c e ' p u r e ' b l o c k c o p o l y m e r s via
radical polymerization.
Indeed,
homopolymers
impurities
a r i s i n g from t e r m i n a t i o n reactions are separated from the ' l i v i n g ' (controlled) c h a i n s b y f i l t r a t i o n . A f t e r
filtration,
the i s o l a t e d l i v i n g
c h a i n s , attached to the support, c a n be c h a i n extended to p r o d u c e b l o c k c o p o l y m e r s ( F i g u r e 8). In this s y s t e m , the c o n c e n t r a t i o n i n dead p o l y m e r i c c h a i n s (non-attached to the s o l i d support) i s n o t i c e a b l y h i g h e r than that o b s e r v e d i n the case o f h o m o g e n o u s R A F T p o l y m e r i z a t i o n .
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
We
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
451
Figure 7. Schematic of the RAFT/MADIXpolymerization and CTA recovery cycle. (Reproducedfrom reference 8. Copyright 2005 American Chemical Society.)
attributed
this
effect
to
the
presence
of
two
competing
p o l y m e r i z a t i o n reactions i n the system. Free r a d i c a l p o l y m e r i z a t i o n o c c u r s i n s o l u t i o n , l e a d i n g to the f o r m a t i o n o f u n c o n t r o l l e d , h i g h m o l e c u l a r w e i g h t p o l y m e r s that r e m a i n free i n s o l u t i o n . O n
the
other h a n d , R A F T p o l y m e r i z a t i o n o c c u r s i n presence o f the s o l i d support, a n d leads to attached l i v i n g p o l y m e r i c c h a i n s . F o l l o w i n g these o b s e r v a t i o n s , a n d i n order to i m p r o v e
the c o n t r o l
over
attached p o l y m e r i c c h a i n s a n d reduce the amount o f dead c h a i n s left i n s o l u t i o n , w e i n t r o d u c e d a free c h a i n transfer agent into the s y s t e m (ratio free C T A
: Z-supported C T A
= 1 : 1 ) . After cleavage,
the m o l e c u l a r w e i g h t f o r b o t h attached a n d free p o l y m e r i c c h a i n s i s greatly r e d u c e d b y c o m p a r i s o n to a system w i t h o u t free c h a i n transfer agent,
as the p o l y m e r i z a t i o n
presence o f a free C T A
is slowed d o w n
i n solution. Moreover,
by
the
the m o l e c u l a r
w e i g h t o f the attached c h a i n s i s c l o s e to that expected a n d the P D F s r e m a i n b e l o w 1.2 f o r b o t h types o f chains. q u a n t i f i c a t i o n o f the ratio o f attached:
Furthermore,
free p o l y m e r i c
r e v e a l e d that the p r o p o r t i o n o f free c h a i n s has decreased.
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
chains
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
452
Figure 8. Schematic of the (co)polymerization process using Z-supported RAFT polymerization.
Conclusion R A F T / M A D I X p o l y m e r i z a t i o n is one o f the m o s t versatile l i v i n g r a d i c a l p o l y m e r i z a t i o n techniques to date. W e h a v e demonstrated the use o f s i m p l e synthetic schemes i n order to p r o d u c e e f f e c t i v e c h a i n transfer agents able to c o n t r o l p o l y m e r i z a t i o n , the use o f these
c h a i n transfer agents
to
synthesize
complex
functional
p o l y m e r i c architectures ( b l o c k c o p o l y m e r s a n d graft c o p o l y m e r s ) , the o p t i m i z a t i o n o f the p o l y m e r i z a t i o n processes to increase the p o l y m e r i z a t i o n rate w h i l s t k e e p i n g g o o d c o n t r o l o v e r the p r o d u c t s , a n d the r e c o v e r y o f the c h a i n transfer agent f o r further use.
We
b e l i e v e the s i m p l i c i t y o f this synthetic c y c l e m a k e s it p o s s i b l e f o r n o n - s p e c i a l i s t s scientists to p r o d u c e c o m p l e x f u n c t i o n a l p o l y m e r i c architectures w h i c h , to date, w e r e o n l y a v a i l a b l e to the w e l l - t r a i n e d polymer chemists.
Acknowledgement W e a c k n o w l e d g e the support o f U n i l e v e r , I C I , E P S R C , the R o y a l Thai
Government,
the
Green
Chemistry
Centre
for
Industrial
C o l l a b o r a t i o n a n d Y o r k s h i r e F o r w a r d , the U n i v e r s i t y o f L e e d s a n d the D e p a r t m e n t o f C o l o u r a n d P o l y m e r C h e m i s t r y f o r f u n d i n g .
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
453 References 1.
M a t y j a s z e w s k i , Κ . ; Xia, J. H. Chem. Rev. 2001, 101, 2 9 2 1 .
2.
H a w k e r , C. J.; B o s m a n , A. W.; H a r t h , E. Chem.
Rev.
2001,
101, 3 6 6 1 . 3.
C h i e f a r i , J.; C h o n g , Y. K.; E r c o l e , F.; K r s t i n a , J.; Jeffery,
J.;
L e , T . P. T . ; M a y a d u n n e , R . T . Α . ; M e i j s , G. F.; M o a d , C. L.; M o a d , G.; R i z z a r d o , E.; T h a n g , S. H. Macromolecules
1998,
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
31, 5 5 5 9 . 4.
D.
C h a r m o t , P. C o r p a r t , H. A d a m , S. Z. Z a r d , T . B i a d a t t i , G.
B o u h a d i r , Macromol. 5.
Symp. 2000, 150, 2 3 .
D e l d u c , P., T a i l h a n , C., Z a r d , S. Z. J. Chem. Commun.
Soc.-Chem.
1988, 3 0 8 .
6.
Perrier, S., T a k o l p u c k d e e , P. J. Polym.
Sci. Pol. Chem.
7.
R o y , D.; G u t h r i e , J. T . ; Perrier, S.; Macromolecules
2005,
43, 5 3 4 7 . 2005, 38,
10363 8.
Perrier, S; T a k o l p u c k d e e , P; M a r s , CA Macromolecules
2005,
38, 6 7 7 0 . 9.
T a k o l p u c k d e e , P ; M a r s , CA; Perrier, S Org. Lett. 2005, 7 (16), 3449.
10. M a t y j a s z e w s k i ,
K.;
Polymerization. (Proceedings Polymerization
Editor
Progress of
a
Controlled/Living
in
ATRP,
Symposium
NMP,
on
held on 22-24 August
Radical and
RAFT.
Controlled
1999,
Radical
in New
Orleans.)
[In: ACS Symp. Ser., 2000; 768], 2000. 11. Perrier, S., T a k o l p u c k d e e , Macromolecules
2004, 37,
P.,
W e s t w o o d , J., L e w i s ,
2709;
Mayadunne,
R.
D.M.
Τ.
Α.;
R i z z a r d o , E.; C h i e f a r i , J.; K r s t i n a , J.; M o a d , G.; P o s t m a , Α . ; T h a n g , S. H. Macromolecules
2000; 33, 2 4 3 ; L e b r e t o n ,
A m e d u r i , B.; B o u t e v i n , B.; C o r p a r t , J. M. Macromol.
P.;
Chem.
Phys. 2002, 203, 5 2 2 . 12.
F.Y.C.
B o e y , H.L. C h i a a n d J. J a c o b , J. Appl.
Polym.
1997, 63, 7 8 7 . 13. V. K a r m o r e a n d G. M a d r a s , Polym.
Int., 2001, 50, 1324.
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.
Sci.
454 14.
F.Y.C. Polym.
B o e y , H.L. Chia a n d J. J a c o b , J. Polym.
A:
Chem. 2000, 34, 2 0 8 7 .
15. Schubert, U.S., Z h a n g , H. Macromol. 25,
Sci., Part
1225; Leenen,
M.,
Schubert, U. S. e-Polymers
Rap. Commun.,
2004,
W i e s b r o c k , F., H o o g e n b o o m , R . , 2005.
16. M o a d , G.; C h i e f a r i , J.; C h o n g , Y. K.; K r s t i n a , J.; M a y a d u n n e , R . Τ . Α.; P o s t m a , Α.; R i z z a r d o , E.; T h a n g , S. H. Polym.
Int.
2000, 49, 9 9 3 .
Downloaded by UNIV OF OKLAHOMA on March 9, 2013 | http://pubs.acs.org Publication Date: September 7, 2006 | doi: 10.1021/bk-2006-0944.ch030
17. Bon S.A.F., S t e w a r d A.G., H a d d l e t o n D.M. J. Polym.
Sci. Pol.
Chem 2000, 38, 2 6 7 8 . 18. S n i j d e r Α . , K l u m p e r m a n B., Van der L i n d e R.J. Polym.
Sci.
Pol. Chem 2002, 40, 2 3 5 0 . 19. H a r t h
E.,
Hawker
Macromolecules
C.J.,
Fan
W.,
Waymouth,
R.M.
2001, 34, 3 8 5 6 .
2 0 . B e y o u , E., C h a u m o n t , P . , C h a u v i n , F., D e v a u x , C., Z y d o w i c z , N. Macromolecules
1998, 31, 6 8 2 8 .
2 1 . P e r r i e r , S.; T a k o l p u c k d e e , P . ; M a r s ,
C.
A.
Macromolecules
2005, 3 8 , 2 0 3 3 .
In Controlled/Living Radical Polymerization; Matyjaszewski, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 2006.