Subscriber access provided by INDIANA UNIV PURDUE UNIV AT IN
Article
meta-Selective C–H Bond Alkylation with Secondary Alkyl Halides Nora Hofmann, and Lutz Ackermann J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/ja401466y • Publication Date (Web): 27 Mar 2013 Downloaded from http://pubs.acs.org on April 1, 2013
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of the American Chemical Society
meta‐Selective C–H Bond Alkylation with Secondary Alkyl Halides Nora Hofmann, and Lutz Ackermann* Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität, Tammannstrasse 2, 37077 Göttin‐ gen, Germany ABSTRACT: Ruthenium catalysts enabled C–H bond functionalizations on arenes with challenging secondary alkyl ha‐ lides. Particularly, ruthenium(II) biscarboxylate complexes proved to be the key to success for direct alkylations with excellent levels of unusual meta‐selectivity. The direct alkylations occurred under mild reaction conditions with ample scope, and tolerated valuable functional groups. Detailed mechanistic studies were performed, including various competi‐ tion experiments as well as reactions with isotopically labeled substrates. These studies provided strong support for an initial reversible cyclometalation. The cycloruthenation thereby activates the arene for a subsequent remote electrophilic‐ type substitution with the secondary alkyl halides. Independently prepared cycloruthenated complexes were found to be catalytically active provided that a carboxylate ligand was present, thereby highlighting the key importance of carboxylate assistance for effective meta‐selective C–H bond alkylations.
Scheme 1. Traditional Cross‐Coupling versus Direct C–H Bond Alkylation
INTRODUCTION Transition‐metal‐catalyzed cross‐coupling reactions are among the most important tools for the selective assem‐ bly of substituted arenes.1‐4 Thus, catalytic coupling reac‐ tions between aryl halides and aromatic organometallic reagents have found numerous applications in inter alia natural product synthesis, medicinal chemistry, and ma‐ terial sciences. In contrast to the widely utilized C(sp2)– C(sp2) bond forming processes, the corresponding trans‐ formations of unactivated alkyl halides are less developed, with considerable recent progress being accomplished by the research groups of Fu,5 Hu,6 Kambe,7 Knochel,8 and Nakamura,9 among others.10 Particularly, secondary alkyl halides have proven to be extremely challenging sub‐ strates, because these alkyl halides are more sterically demanding and electron‐rich, thereby rendering the ele‐ mentary step of oxidative addition rather difficult.11 More importantly, the formed metal alkyl intermediates have a strong tendency to undergo β‐hydride elimination reac‐ tions, overall leading to undesired β‐eliminations of the organic electrophiles.11, 12 Generally, transition‐metal‐catalyzed cross‐coupling reactions rely on the use of prefunctionalized nucleophilic substrates (Scheme 1a).2, 4 The preparation of the prere‐ quisite organometallic ‐ or main‐group element ‐ reagents unfortunately involves time‐consuming reaction steps that generate undesired waste. A significantly more atom‐ and step‐economical approach is, hence, represented by the direct use of ubiquitous C–H bonds as latent func‐ tional groups (Scheme 1b).13
In recent years, remarkable progress was accomplished in metal‐catalyzed direct arylations and alkenylations,13, 14 whereas catalyzed C–H bond functionalizations with unactivated, β‐hydrogen containing alkyl halides under non‐acidic reaction conditions are scarce.15, 16 Yet, remark‐ able recent advances are constituted by ortho‐selective palladium‐, nickel‐, copper‐, and cobalt‐catalyzed direct alkylations as reported by Yu,17 Daugulis,18, 19 Hu,20, 21 Mi‐ ura/Satoh,22‐24 Nakamura/Yoshikai,25‐27 and others.15, 28 We, on the contrary, recently devised reaction conditions for versatile ruthenium(II)‐catalyzed direct alkylations of arenes with primary alkyl29, 30 and benzyl31 halides.15
ACS Paragon Plus Environment
Journal of the American Chemical Society
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
One of the major challenges in developing methods for synthetically useful C–H bond functionalizations is represented by achieving site‐selectivity in intermolecular transformations. Heteroarenes are electronically biased, and can, hence, be functionalized in the α‐, β‐ or γ‐ position to the heteroatom with high levels of regiocon‐ trol, exploiting the heteroatoms as intramolecular direct‐ ing groups.32 On the contrary, controlling the site‐ selectivity of intermolecular direct C–H bond functionali‐ zation of mono‐substituted unactivated arenes is consi‐ derably more difficult, and was almost exclusively accom‐ plished in an ortho‐selective fashion by means of chela‐ tion assistance.33 Thus, only few C–H bond activation‐ based C–C bond forming reactions are thus far available that provide access to meta‐disubstituted34 arenes.35‐37 In pioneering studies, Yu elegantly devised palladium‐ catalyzed oxidative alkenylations with excellent levels of meta‐selectivity.38‐40 Furthermore, two‐step alkylations of arenes were very recently accomplished by Hartwig through sterically controlled iridium‐catalyzed direct borylations,41 while copper‐catalyzed meta‐selective direct arylations proved viable with select aromatic sub‐ strates.42,43 Intriguingly, Frost disclosed ruthenium‐ catalyzed meta‐selective sulfonations through rate‐ determining C–H bond metalation employing sulfonyl chlorides.44 In contrast, metal‐catalyzed meta‐selective C– H bond alkylations under non‐acidic reaction conditions have unfortunately as of yet proven elusive, irrespective of the nature of the transition metal catalyst.
Page 2 of 10
Within our research program on sustainable C–H bond functionalizations for organic synthesis,52 we now devised unprecedented direct C–H bond alkylations of arenes with unactivated secondary alkyl halides under non‐ acidic reaction conditions (Scheme 2b). Herein, we wish to disclose the development and scope of this first highly meta‐selective direct C–H bond alkylation, along with detailed mechanistic studies that provide strong support for an initial remote ortho‐C–H activation with subse‐ quent meta‐functionalization (Figure 1). Figure 1. meta‐Functionalization through Remote ortho‐C–H Bond Activation
RESULTS AND DISCUSSION Optimization. At the outset of our studies, we tested the effect of the stoichiometric base and the cocatalytic addi‐ tive on the desired direct alkylation with secondary alkyl halide 2a (Table 1). Preliminary experiments indicated that 1,4‐dioxane proved to be optimal among a variety of solvents (NMP, m‐xylene, PhMe, n‐hexane, PivOH, t‐ AmOH, MeOH, MeCN, diglyme).53 Low conversions of the arene 1a were unfortunately observed in the absence of cocatalytic additives (entries 1–4). Likewise, the use of trifluoroacetic acid or trifluorosulfonic acid led to unsatis‐ factory results (entries 5 and 6). Conversely, particularly sterically hindered 1‐AdCO2H generated a highly active ruthenium(II) catalyst, which interestingly led to C–H bond functionalization at the meta‐position of substrate 1a.54 Among various carboxylic acids (entries 8–15), Mes‐ CO2H was found to be ideal both with respect to selectiv‐ ity and catalytic efficacy (entries 15 and 16). This reactivity pattern can be rationalized in terms of steric interactions and relative solubilities of the corresponding potassium salts.
Scheme 2. ortho‐Selective C–H Bond Functionaliza‐ tion versus meta‐Selective Direct Alkylation
Recently, we introduced carboxylates as key cocatalytic additives for robust and reliable ruthenium(II)‐catalyzed C–H bond arylations,45‐48 which also proved instrumental for the development of ruthenium‐catalyzed oxidative alkenylations49 and alkyne annulations.50,51 Ruthenium(II) carboxylate catalysts further enabled direct C–H bond alkylations with primary alkyl halides, which occurred exclusively at the ortho‐position (Scheme 2a).29, 30
2
ACS Paragon Plus Environment
Page 3 of 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of the American Chemical Society
Table 1. Optimization of meta‐Selective C–H Bond Alkylationa
Scheme 3. Variation of the Pyridine Substitution Pattern
entry
additive
base
yield (%)
1
‐‐‐
K2CO3
‐‐‐
2
‐‐‐
KOAc
19
3
‐‐‐
CsOAc
45
4
‐‐‐
KOPiv
34
5
F3CCO2H
K2CO3
‐‐‐
6
F3CSO3H
K2CO3
35
7
1‐AdCO2H
K2CO3
56
8
PhCO2H
K2CO3
38
9
2,2’‐(C6H4CO2H)2
K2CO3
31
10
PhCH2CH2CO2H
K2CO3
34
11
2‐MeOC6H4CO2H
K2CO3
46
12
4‐MeOC6H4CO2H
K2CO3
52
13
4‐(F3C)C6H4CO2H
K2CO3
55
14
2‐(Ph2P)C6H4CO2H
K2CO3
‐‐‐
15
MesCO2H
K2CO3
60
16
MesCO2H
‐‐‐
‐‐‐
a
The corresponding di‐meta‐alkylated products were also isolated (see the SI).
Thereafter, we tested different Lewis‐basic directing groups for the direct alkylation with secondary alkyl bro‐ mide 2b (Scheme 4). It is noteworthy that the catalytic system comprising [RuCl2(p‐cymene)]2 and MesCO2H was not restricted to pyridine‐substituted arenes 1. Indeed, direct C–H bond alkylations also proceeded meta‐ selectively with synthetically useful pyrazolyl‐, imida‐ zolyl‐, and benzimidazolyl‐substituted arenes 4, 6, and 8, even when displaying a reactive free NH‐moiety (Scheme 4b). It is noteworthy that the direct functionalization of substrate 6 solely furnished the mono‐meta‐substituted product 7b, highlighting the excellent chemo‐ and site‐ selectivity of the optimized catalytic system.
a
Reaction conditions: 1a (0.50 mmol), 2a (1.50 mmol), base (1.00 mmol), [RuCl2(p‐cymene)]2 (2.5 mol %), additive (30 mol %), 1,4‐dioxane (2.0 mL), 20 h, 100 °C.
Subsequently, we evaluated the effect exerted by the subs‐ tituents at the pyridine moiety onto the performance of the ruthenium‐catalyzed meta‐selective C–H bond func‐ tionalization (Scheme 3). Pyridines bearing substituents in the 4‐ or 5‐position did not furnish improved yields of the desired products 3, while substrates displaying an electron‐donating group in the 3‐position gave results comparable to the one observed with the parent unsubsti‐ tuted compound 1a.
3
ACS Paragon Plus Environment
Journal of the American Chemical Society
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Scheme 4. Azole‐Substituted Arenes as Substrates
Page 4 of 10
Scheme 6. Scope of Ruthenium‐Catalyzed Direct meta‐C–H Bond Alkylation
Contrarily, the less electron‐rich pyrimidine derivative 10 delivered both the mono‐ as well as the di‐meta‐ substituted products 11b and 12b (Scheme 5).
Scheme 5. meta‐Selective Direct Alkylation with Py‐ rimidine Derivative 10
The remarkably high chemo‐selectivity of the ruthe‐ nium(II) catalyst was further highlighted by meta‐ selective C–H bond alkylations performed in water as a nonflammable and nontoxic reaction medium55,56 as well as by high yielding direct alkylations in the absence of solvents (Scheme 7).
Scope and Limitations. Having identified the pyridyl‐ substituent as the most effective and most chemo‐ selective directing group, we subsequently explored the scope and limitations of the meta‐selective arene alkyla‐ tion using secondary alkyl halides 2 (Scheme 6). The in‐ situ generated ruthenium(II) biscarboxylate catalyst was found to be broadly applicable, as illustrated by the effi‐ cient conversion of various secondary alkyl halides 2, even when being more sterically congested. Arenes 1 bearing either electron‐donating or electron‐withdrawing substi‐ tuents in the para‐position selectively delivered the meta‐ substituted products 3.54 Furthermore, the optimized catalyst displayed a synthetically useful chemo‐selectivity. Indeed, the ruthenium(II) biscarboxylate proved tolerant of electrophilic functional groups, such as a valuable ester substituent, and allowed for the conversion of cyclic sec‐ ondary alkyl halides as well.
Scheme 7. Solvent Effect on Direct meta‐Alkylation
Arenes 1l–n displaying meta‐substituents also furnished site‐selectively the meta‐alkylated products (Scheme 8),
4
ACS Paragon Plus Environment
Page 5 of 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of the American Chemical Society
but were found to be considerably less reactive as com‐ pared to the corresponding para‐substituted analogues (Scheme 8 versus Scheme 6). These experimental findings are particularly noteworthy, since steric interactions would suggest an inverse order of reactivity (vide infra).
formed detailed mechanistic studies to delineate its mode of action. To this end, we conducted intermolecular com‐ petition studies with differently substituted arenes 1 (Scheme 10), which indicated the electron‐rich methoxy‐ substituted arene 1h to react preferentially, thereby being suggestive of an electrophilic‐type activation manifold.
Scheme 8. meta‐Alkylation with meta‐Substituted Arenes
Scheme 10. Intermolecular Competition Experiments
Intramolecular competition experiments with ortho‐ substituted arenes 1 furnished the two corresponding products of meta‐selective C–H bond functionalizations. As to the catalysts working mode, it is particularly note‐ worthy that the more sterically congested arenes 3oa’’ and 3pa’’ were counterintuitively formed as the major products (Scheme 9).
Intermolecular competition experiments between primary and secondary alkyl halides 2a and 13a revealed that the electrophiles were chemo‐specifically transformed into the corresponding ortho‐ and meta‐alkylated products 3aa and 14a, respectively (Scheme 11). These experimental findings can be rationalized with the varying steric inte‐ raction and the electrophilicities of primary and second‐ ary alkyl halides.57 Moreover, our experiments suggested the ortho‐ and the meta‐alkylation to proceed with com‐ parable catalytic efficacies.
Scheme 9. Intramolecular Competition Experiments with ortho‐Substituted Substrates
Scheme 11. Intermolecular Competition Experiments between Primary and Secondary Alkyl Halides 2a and 13a
The direct meta‐alkylation with enantiomerically enriched substrate (S)‐2a58 clearly showed that a racemi‐
Mechanistic Studies. Given the unique meta‐selectivity of our ruthenium‐catalyzed direct alkylation, we per‐
5
ACS Paragon Plus Environment
Journal of the American Chemical Society
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
zation of the chiral organic electrophile occurred under the reaction conditions (Scheme 12), which bears consi‐ derable potential for the future development of enanti‐ odivergent5 C–H bond functionalizations.
Page 6 of 10
The initial formation of the cyclometalated complexes as key intermediates directly explains the reduced efficacies of the direct alkylation with meta‐substituted arenes (Scheme 8) due to the considerable steric interactions between the C‐3 substituent and the ruthenium fragment in the ortho‐position (Figure 2a). Moreover, the a priori unexpected formation of the more sterically hindered C‐3 alkylated products observed in the direct alkylations of ortho‐substituted arenes is thus governed through a steric shielding by the bulky ruthenium moiety (Figure 2b).
Scheme 12. Direct meta‐Alkylation with Substrate (S)‐ 2a
Figure 2. Sterically‐Controlled Reactivity and Selec‐ tivity with meta‐ and ortho‐Substituted Substrates Moreover, we conducted experiments with isotopically labeled substrates (Scheme 13). Thus, reactions performed with the arene [D5]‐1a provided strong support for the C– H bond metalation to initially proceed in the ortho‐ position of the arene (Scheme 13a). Moreover, the D/H‐ exchange by adventitious water in the stoichiometric base and the additive MesCO2H indicated the ortho‐C–H bond metalation to be reversible in nature. Subsequently, we performed experiments with the partially deuterated starting material [D3]‐1a, which was prepared by carbox‐ ylate‐assisted ruthenium(II)‐catalyzed D/H‐exchange46e on compound [D5]‐1a in H2O. These studies were sugges‐ tive of the meta‐C–H bond cleavage not to be kinetically relevant (Scheme 13b). This observation can be rationa‐ lized in terms of a SEAr‐type alkylative substitution in the meta‐position. This electrophilic substitution is facilitated by the strong activation as well as the ortho‐/para‐ directing effect induced by the Ru–C(sp2) σ‐bond.59‐61
Since our mechanistic studies indicated cycloruthenated complexes to be key intermediates, we consequently be‐ came intrigued by probing the reactivity of well‐ characterized ruthenium(II) complexes, first evaluating ruthenium(II) biscarboxylate 1529 (Scheme 14). Thus, the isolated complex 15 selectively delivered the meta‐ alkylation product 3ha in a high isolated yield. Likewise, the independently prepared cyclometalated complex 16 bearing a carboxylate ligand was found to be catalytically competent (Scheme 14b). In stark contrast, the corres‐ ponding chloro‐ruthenacycle 17 did not furnish product 3ha. In this case, the catalytic activity could , however, be restored by adding cocatalytic amounts of the carboxylic acid MesCO2H (Scheme 14c), clearly highlighting the key importance of carboxylate assistance.47
Scheme 13. Studies with Isotopically Labeled Com‐ pounds
6
ACS Paragon Plus Environment
Page 7 of 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of the American Chemical Society
Scheme 14. Well‐Defined Ruthenium(II) Complexes as the Catalysts
Scheme 15. Proposed Catalytic Cycle
CONCLUSIONS In summary, we have reported on the first metal‐ catalyzed meta‐selective direct alkylation reaction of arenes with secondary alkyl halides under non‐acidic reaction conditions. Thus, ruthenium(II) biscarboxylates enabled C–H bond alkylations on various arenes with ample scope. Detailed mechanistic studies were suppor‐ tive of an initial reversible cycloruthenation. This cyclo‐ metalation increases the reactivity of the arenes to under‐ go an electrophilic‐type substitution. The strong directing group effect of the Ru–C(sp2) σ‐bond thereby overall al‐ lows for an efficient and site‐selective meta‐alkylation. Experiments with independently prepared, well‐defined ruthena(II)cycles clearly highlighted their key importance as crucial intermediates, and provided strong evidence for carboxylate assistance.
Based on our mechanistic studies we propose the catalytic cycle to involve an initial reversible formation of the cyc‐ lometalated complex 16 (Scheme 15). This cyclometalation activates the aromatic substrates 1 for a SEAr‐type alkyla‐ tion with the secondary alkyl halides 2 through the strong directing group effect of the Ru–C(sp2) σ‐bond,61 thus leading to a functionalization in the para‐ or ortho‐ position of the Ru–C(sp2) bond.62 Finally, proto‐ demetalation provides the desired meta‐substituted product 3 and regenerates the catalytically active species 15.
ASSOCIATED CONTENT Supporting Information. 1 Experimental procedures, characterization data, and H and 13 C NMR spectra for new compounds. This material is availa‐ ble free of charge via the Internet at http://pubs.acs.org.
AUTHOR INFORMATION Corresponding Author
[email protected]‐goettingen.de
ACKNOWLEDGMENT Generous support by the CaSuS PhD program (fellowship to N.H.), AstraZeneca, and the European Research Council
7
ACS Paragon Plus Environment
Journal of the American Chemical Society
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 10
kuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503‐4513. (f) Dau‐ gulis, O. Top. Curr. Chem. 2010, 292, 57‐84. (g) Livendahl, M.; Echavarren, A. M. Isr. J. Chem. 2010, 50, 630‐651. (h) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212‐11222. (i) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador‐Bahamonde, A. I. Dalton Trans. 2009, 5820‐5831. (j) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem. Int. Ed. 2009, 48, 9792‐9826. (k) Thansandote, P.; Lautens, M. Chem. Eur. J. 2009, 15, 5874‐ 5883 and references cited therein. 14. For a representative recent ruthenium‐catalyzed ortho‐selective direct alkynylation, see: Ano, Y.; Tobisu, M.; Chatani, N. Synlett 2012, 2736‐2767 and reference cited there‐ in. 15. Ackermann, L. Chem. Commun. 2010, 46, 4866–4877. 16. Messaoudi, S.; Brion, J.‐D.; Alami, M. Eur. J. Org. Chem. 2010, 6495‐6516. 17. Zhang, Y.‐H.; Shi, B.‐F.; Yu, J.‐Q. Angew. Chem. Int. Ed. 2009, 48, 6097‐6100. 18. Tran, L. D.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 5188‐5191. 19. Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965‐3972. 20. Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X. Org. Lett. 2012, 14, 1748‐1751. 21. Vechorkin, O.; Proust, V.; Hu, X. Angew. Chem. Int. Ed. 2010, 49, 3061‐3064. 22. Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2012, 51, 775‐779. 23. Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2011, 50, 2990‐2994. 24. Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 12307‐12311. 25. Chen, Q.; Ilies, L.; Nakamura, E.‐I. J. Am. Chem. Soc. 2011, 133, 428‐429. 26. Yoshikai, N. Synlett 2011, 1047‐1051. 27. Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13, 3232‐3234. 28. Illustrative recent examples: (a) Vachhani, D. D.; Sharma, A.; van der Eycken, E. Angew. Chem. Int. Ed. 2013, 52, 2547–2550. (b) Xiao, B.; Liu, Z.‐J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616‐619. (c) Makida, Y.; Ohmiya, H.; Sawamura, M. Angew. Chem. Int. Ed. 2012, 51, 4122‐4127. (d) Ackermann, L.; Punji, B.; Song, W. Adv. Synth. Catal. 2011, 353, 3325‐3329. (e) Zhao, Y.; Chen, G. Org. Lett. 2011, 13, 4850‐ 4853. (f) Sahnoun, S.; Messaoudi, S.; Brion, J.‐D.; Alami, M. ChemCatChem 2011, 3, 893‐897. (g) Ackermann, L.; Barfüsser, S.; Pospech, J. Org. Lett. 2010, 12, 724‐726. (h) Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647‐650. (i) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160‐4163. 29. Ackermann, L.; Novák, P.; Vicente, R.; Hofmann, N. Angew. Chem. Int. Ed. 2009, 48, 6045‐6048. 30. Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875‐1877. 31. Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966‐ 4969. 32. For representative references, see: (a) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165‐ 2169. (b) Ye, M.; Gao, G.‐L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.‐Q. J. Am. Chem. Soc. 2011, 133, 19090‐19093. (c) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem. Int. Ed. 2011, 50, 2387‐
under the European Community’s Seventh Framework Pro‐ gram (FP7 2007–2013)/ERC Grant agreement no. 307535 is gratefully acknowledged. We furthermore thank Dr. Rubén Vicente and M.Sc. Jie Li (Georg‐August‐Universität) for pre‐ liminary experiments, Dipl.‐Chem. R. Machinek for detailed 2D‐NMR experiments (Georg‐August‐Universität) and Dr. D. S. Yufit (University of Durham) for two X‐ray diffraction analyses.
REFERENCES 1. Johansson Seechurn, C. C. C.; Kitching, M. O.; Cola‐ cot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062‐ 5085. 2. Ackermann, L., Modern Arylation Methods. Wiley‐ VCH: Weinheim, 2009. 3. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442‐4489. 4. Beller, M.; Bolm, C., Transition Metals for Organic Synthesis. 2nd ed.; Wiley‐VCH: Weinheim, 2004. 5. Selected recent examples: (a) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624‐627. (b) Binder, J. T.; Cor‐ dier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003‐17006. (c) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693‐ 10697. (d) Oelke, A. J.; Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966‐2969. (e) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154‐8157 and references cited therein. 6. For selected references: (a) Ren, P.; Stern, L.‐A.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 9110‐9113. (b) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X. Angew. Chem. Int. Ed. 2011, 50, 11777‐11781. (c) Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R.; Hu, X. J. Am. Chem. Soc. 2011, 133, 7084‐7095. (d) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756‐9766 and references cited therein. 7. Selected representative examples: (a) Shen, R.; Iwasa‐ ki, T.; Terao, J.; Kambe, N. Chem. Commun. 2012, 48, 9313‐ 9315. (b) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 2086‐2089 and references cited therein. 8. Steib, A. K.; Thaler, T.; Komeyama, K.; Mayer, P.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 3303‐3307. 9. Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem. Int. Ed. 2012, 51, 8834‐8837. 10. Recent illustrative reviews: (a) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937‐4947. (b) Taylor, B. L. H.; Jarvo, E. R. Synlett 2011, 2761‐2765. (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417‐1492. (d) Nakamu‐ ra, M.; Ito, S., In Modern Arylation Methods, Ackermann, L., Ed. Wiley‐VCH: Weinheim, 2009; pp 155‐181. (e) Terao, J.; Kambe, N. Acc. Chem. Soc. 2008, 41, 1545‐1554 and references cited therein. 11. Rudolph, A.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 2656‐2670. 12. Hu, X. Chem. Sci. 2011, 2, 1867‐1886. 13. Selected recent reviews: (a) Engle, K. M.; Mei, T.‐S.; Wasa, M.; Yu, J.‐Q. Acc. Chem. Res. 2012, 45, 788‐802. (b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651‐3678. (c) Wencel‐Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740‐4761. (d) Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022‐2038. (e) Ackermann, L.; Potu‐
8
ACS Paragon Plus Environment
Page 9 of 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of the American Chemical Society
2391. (d) Ye, M.; Gao, G.‐L.; Yu, J.‐Q. J. Am. Chem. Soc. 2011, 133, 6964‐6967. (e) Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. Angew. Chem. Int. Ed. 2010, 49, 8946‐8949. (f) Na‐ kao, Y. Synthesis 2011, 3209‐3219. (g) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666‐ 13668 and references cited therein. 33. Selected reviews: (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Soc. 2012, 45, 936‐946. (b) Kuhl, N.; Hopkinson, M. N.; Wencel‐Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236‐10254. (c) Colby, D. A.; Bergman, R. G.; Ell‐ man, J. A. Chem. Rev. 2010, 110, 624‐655. (d) Satoh, T.; Miura, M. Top. Organomet. Chem. 2007, 24, 61‐84. (e) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174‐238. (f) Ackermann, L. Top. Organomet. Chem. 2007, 24, 35‐60. (g) Omae, I. Coord. Chem. Rev. 2004, 248, 995‐1023. 34. For an example of highly para‐selective C–H bond functionalization, see: Wang, X.; Leow, D.; Yu, J.‐Q. J. Am. Chem. Soc. 2011, 133, 13864‐13867 and references cited there‐ in. 35. A recent highlight article: Truong, T.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 11677‐11679. 36. For a meta‐selective hydroarylation, see: Nakazono S.; Imazaki Y.; Yoo H.; Yang J.; Sasamori T.; Tokitoh N.; Cédric T.; Kageyama H.; Kim D.; Shinokubo H.; Osuka A. Chem. Eur. J. 2009, 15, 7530‐7533. 37. See also: Yue, W.; Li, Y.; Jiang, W.; Zhen, Y.; Wang, Z. Org. Lett. 2009, 11, 5430‐5433. 38. Leow, D.; Li, G.; Mei, T.‐S.; Yu, J.‐Q. Nature 2012, 486, 518‐522. 39. Zhang, S.; Shi, L.; Ding, Y. J. Am. Chem. Soc. 2011, 133, 20218‐20229. 40. Zhang, Y.‐H.; Shi, B.‐F.; Yu, J.‐Q. J. Am. Chem. Soc. 2009, 131, 5072‐5074. 41. Robbins, D. W.; Hartwig, J. F. Angew. Chem. Int. Ed. 2013, 52, 933‐937. 42. Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem. Int. Ed. 2011, 50, 463‐466. 43. Phipps, R. J.; Gaunt, M. J. Science 2009, 329, 1593‐1597. 44. Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.; Mahon, M. F.; Kociok‐Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298‐19301. 45. Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299–2302. 46. For selected subsequent reports on carboxylate‐ assisted ruthenium‐catalyzed direct arylations: (a) Acker‐ mann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043‐5036. (b) Ack‐ ermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922‐4925. (c) Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.; Dix‐ neuf, P. H. Green Chem. 2009, 11, 1871‐1875. (d) Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.; Novák, P.; Büttner, L. Org. Lett. 2010, 12, 2056‐2059. (e) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032‐5035. (f) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629‐6632. (g) Ouellet, S. G.; Roy, A.; Molinaro, C.; Angelaud, R.; Marcoux, J.‐F.; O'Shea, P. D.; Davies, I. W. J. Org. Chem. 2011, 76, 1436‐1439. (h) Flegeau, E. F.; Bruneau, C.; Dixneuf, P. H.; Jutand, A. J. Am. Chem. Soc. 2011, 133, 10161‐10170. (i) Ackermann, L.; Pos‐ pech, J.; Potukuchi, H. K. Org. Lett. 2012, 14, 2146‐2149 and references cited therein. 47. Ackermann, L. Chem. Rev. 2011, 111, 1315‐1345.
48. Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879‐5918. 49. Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886‐896. 50. Ackermann, L. Acc. Chem. Soc. 2013, 46, DOI:10.1021/ar3002798. 51. Selected recent examples of carboxylate assistance in oxidative ruthenium‐catalyzed C–H bond functionalizations: (a) Ma, W.; Graczyk, K.; Ackermann, L. Org. Lett. 2012, 14, 6318‐6321. (b) Singh, K. S.; Dixneuf, P. H. Organometallics 2012, 31, 7320‐7323. (c) Zhao, P.; Wang, F.; Han, K.; Li, X. Org. Lett. 2012, 14, 5506‐5509. (d) Parthasarathy, K.; Senthilkumar, N.; Jayakumar, J.; Cheng, C.‐H. Org. Lett. 2012, 14, 3478‐3481. (e) Li, J.; Kornhaaß, C.; Ackermann, L. Chem. Commun. 2012, 48, 11343‐11345. (f) Kornhaaß, C.; Li, J.; Ackermann, L. J. Org. Chem. 2012, 77, 9190‐9198. (g) Li, B.; Devaraj, K.; Darcel, C.; Dixneuf, P. H. Green Chem. 2012, 14, 2706‐2709. (h) Thiruna‐ vukkarasu, V. S.; Donati, M.; Ackermann, L. Org. Lett. 2012, 14, 3416‐3419. (i) Kishor, P.; Jeganmohan, M. Org. Lett. 2012, 14, 1134‐1137. (j) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736‐739. (k) Hashimoto, Y.; Ortloff, T.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. Chem. Lett. 2012, 41, 151‐153. (l) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030‐2032. (m) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930‐ 933. (n) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764‐ 767. (o) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177‐180. (p) Hashimoto, Y.; Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 1165‐ 1166. (q) Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278‐3281. (r) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706‐708. (s) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379‐6382. (t) Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010, 2245‐2253. (u) Oxidative oxygenations: Thirunavukkarasu, V. S.; Ackermann, L. Org. Lett. 2012, 14, 6206‐6209. (v) Thiruna‐ vukkarasu, V. S.; Hubrich, J.; Ackermann, L. Org. Lett. 2012, 14, 4210‐4213. (w) Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874‐2877. 52. Recent reviews: (a) Ackermann, L. Pure Appl. Chem. 2010, 82, 1403‐1413. (b) Ackermann, L. Isr. J. Chem. 2010, 50, 652‐663. 53. In selected reactions, the formation of minor amounts of the corresponding ortho‐substituted products was ob‐ served. 54. The connectivity of the alkylated products 3 was unambiguously verified by detailed 2D‐NMR spectroscopy as well as through X‐ray diffraction analysis of products 3aa, and 3ha. 55. For pertinent examples of palladium‐catalyzed C–H bond functionalizations in or on water, see (a) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett. 2010, 12, 224‐226. (b) Nishikata, T.; Lipshutz, B. H. Org. Lett. 2010, 12, 1972‐ 1975. (c) Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2010, 49, 781‐784. (d) Ohnmacht, S. A.; Ma‐ mone, P.; Culshaw, A. J.; Greaney, M. F. Chem. Commun. 2008, 1241‐1243. (e) Turner, G.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996‐8000 and references cited therein. For examples of ruthenium‐catalyzed C–H
9
ACS Paragon Plus Environment
Journal of the American Chemical Society
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
bond functionalizations, see: (f) Ackermann, L. Org. Lett. 2005, 7, 3123‐3125, and references [30] and [46f]. 56. For recent reviews on transition‐metal‐catalyzed coupling reactions in or on water, see: (a) Li, C.‐J. Handbook Of Green Chemistry: Reactions In Water; Wiley‐VCH: Wein‐ heim, 2010; Vol. 5. (b) Li, C.‐J. Acc. Chem. Res. 2010, 43, 581‐ 590. (c) Lipshutz, B. H.; Abela, A. R.; Boskovic, Z. V.; Nishika‐ ta, T.; Duplais, C.; Krasovskiy, A. Top. Catal. 2010, 53, 985‐ 990. (d) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302‐6337. (e) Herrerias, C. I.; Yao, X.; Li, Z.; Li, C.‐J. Chem. Rev. 2007, 107, 2546‐2562 and references cited therein. 57. Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66‐77. 58. Denton, R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. J. Org. Chem 2011, 76, 6749‐6767. 59. (a) Clark, A. M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Organometallics 1999, 18, 2813‐2820. See also: (b) Clark, A. M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Organometallics 1998, 17, 4535‐4537. 60. Clark, G. R.; Headford, C. E. L.; Roper, W. R.; Wright, L. J.; Yap, V. P. D. Inorg. Chim. Acta 1994, 220, 261‐272. 61. For a review on the activation effect and the site‐ 2 selectivity exerted by metal–carbon(sp ) σ‐bond bonds, see: Gagliardo, M.; Snelders, D. J. M.; Chase, P. A.; Gebbink, R. J. M. K.; van Klink, G. P. M.; van Koten, G. Angew. Chem., Int. Ed. 2007, 46, 8558‐8573. 62. Ruthenium‐catalyzed direct meta‐alkylations in the presence of catalytic amounts (10 mol %) of TEMPO deli‐ vered product 3aa under otherwise identical reaction condi‐ tions in 48% yield, while no conversion was observed when using stoichiometric amounts of TEMPO.
Table of Contents graphic:
10
ACS Paragon Plus Environment
Page 10 of 10