29 Metal Tetrathiolenes: Chemistry, Stereochemistry, Electrochemistry, and Semiconductivity
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
BOON-KENG TEO B e l l Telephone Laboratories, M u r r a y Hill, N J 07974
A class of organochalcogen two chalcogen-chalcogen
compounds containing one or
bonds was chosen as ligands for
organometallic synthesis. New discrete molecular complexes containing two, four, and six metal atoms were
prepared
and characterized. These cluster systems exhibit rich electro chemistry as established by cyclic voltammetry and unusual stereochemistry as revealed by x-ray crystallography. A new class of organometallic polymers based on these ligands was synthesized
and
characterized.
Temperature-dependent
electrical conductivity measurements revealed
semiconduc
tivity consistent with pseudo-one-dimensionality.
Electrical
conductivity can be correlated with the oxidation potential of the free ligands.
These new semiconducting
organo
metallic polymers can be used as reversible anode materials for a rechargeable battery system.
" O e c e n t l y there has b e e n c o n s i d e r a b l e interest i n t h e m o l e c u l a r d e s i g n of b i m e t a l l i c c o m p l e x e s b r i d g e d b y a q u a d r i d e n t a t e o r a b i s - b i d e n tate l i g a n d w i t h h i g h l y d e l o c a l i z e d TT system (1-28).
O n e incentive for
s u c h a n a t t e m p t is to synthesize n e w b i m e t a l l i c clusters that a r e p o t e n t i a l l y c a p a b l e of f o r m i n g m u l t i p a r a l l e l stacks of p s e u d o - o n e - d i m e n s i o n a l systems v i a i n t e r m o l e c u l a r m e t a l a n d / o r l i g a n d o r b i t a l o v e r l a p s 7_9,
(1—5,
24-28). W e h a v e c h o s e n a class of o r g a n o c h a l c o g e n c o m p o u n d s c o n t a i n i n g
one o r t w o c h a l c o g e n - c h a l c o g e n b o n d s as p o t e n t i a l l i g a n d s f o r o r g a n o m e t a l l i c synthesis (1,2,3,4,5).
T y p i c a l members are C i H X Y 0
6
0-8412-0429-2 / 79 / 33-173-364$05.75/ 0 © 1979 American Chemical Society King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(where
29.
TEO
Metal
365
Tetrathiolenes
X
Y
Figure 1. Dichalcolene ligands involving 1,8-substituted naphthalene systems
X Y = S S , SeSe,TeTe
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
SSe,STe,SeTe XY = one C
1 8
S , S e , T e , SSe, S T e , a n d S e T e ) (29,30,31,32) 2
2
H X 8
bond
(34,35), a n d C C 1 X
4
w h i c h contain
2
chalcogen-chalcogen 1 0
4
(cf. F i g u r e
1)
and Ci H X 0
4
4
(33),
(36) w h e r e X = S, Se, a n d T e ) w h i c h
4
contain t w o chalcogen-chalcogen bonds (cf. F i g u r e 2 ) . These organic m o l e c u l e s possess three f a v o r a b l e steric a n d e l e c t r o n i c features m a k e t h e m excellent l i g a n d s . extensive
electron
derealization
chalcogen bond(s)
which
First, they are structurally planar w i t h (29-36).
- Secondly,
the chalcogen-
i n e a c h of these m o l e c u l e s are w e l l s u i t e d f o r o x i -
d a t i v e a d d i t i o n reactions w i t h l o w - v a l e n t t r a n s i t i o n m e t a l c o m p l e x e s 2,3,4,5).
(1,
F o r t h e latter class of t e t r a c h a l c o g e n l i g a n d s , i t m a y constitute
a b r i d g e b e t w e e n t w o m e t a l atoms (1,2, 3, 4,5).
Finally, upon coordina-
t i o n t o o n e o r t w o m e t a l atoms, t h e d i - a n d t e t r a c h a l c o g e n l i g a n d s c a n a c c o m m o d a t e a f o r m a l c h a r g e of —2 a n d —4, r e s p e c t i v e l y (1,4).
The
i m p l i c a t i o n of s u c h a q u a l i t a t i v e c o n s i d e r a t i o n is that t h e r e s u l t i n g c o m plexes, w h i c h c a n a p p r o p r i a t e l y b e t e r m e d as m e t a l d i - a n d t e t r a c h a l c o lenes, w i l l e x h i b i t u n u s u a l l y r i c h e l e c t r o c h e m i s t r y (4).
I n this c h a p t e r ,
w e w i l l first g i v e a g e n e r a l v i e w o n t h e l i g a n d s a n d t h e n restrict ourselves to t h e m e t a l tetrathiolenes i n t h e s u b s e q u e n t discussions. Conceivably,
m e t a l tetrachalcolenes
of t h e types
exemplified i n
F i g u r e 3 f o r m e t a l tetrathiolenes c a n b e s y n t h e s i z e d . F o r discrete p o l y n u c l e a r m e t a l c o m p l e x e s , o n e c a n either b u i l d u p t h e o l i g o m e r i c clusters by f o r m i n g in-plane, m e t a l - l i g a n d a bonds w i t h tetrathiolene a n d other S—: S
S—S
S—S
S—S
S—S
S—S
TTT
TTN
TCTTN
Figure 2. Tetrathiolene ligands (a subclass of tetrachalcolenes) C H S,(TTT), C HtSJTTN), and C Cl S (TCTTN) 18
8
10
10
fy
h
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
366
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
MOLECULAR CLUSTERS
ORGANOMETALLIC POLYMERS
(b) Figure 3.
II
(d)
Examples of molecular and polymeric metal tetrathiolenes, subclass of metal tetrachalcolenes
a
b i d e n t a t e l i g a n d s ( F i g u r e 3 a ) o r f o r m s m a l l clusters b y o u t - o f - p l a n e 7r-orbital o v e r l a p s ( F i g u r e 3 b ) . F o r t h e p o l y m e r i c species, o n e c a n h a v e p s e u d o - o n e - d i m e n s i o n a l c h a i n s w i t h a l t e r n a t i n g units of m e t a l atoms ( o r c o m p l e x e s ) a n d t h e tetrathiolene l i g a n d s ( F i g u r e 3 c ) or m u l t i p l e c o l u m n a r stacks of m e t a l c o m p l e x e s a n d / o r t h e l i g a n d s ( F i g u r e 3 d ) . I t is o b v i o u s t h a t F i g u r e s 3c a n d 3 d c a n f o r m a l l y b e c o n s i d e r e d as extensions of F i g u r e s 3 a a n d 3 b . A f u r t h e r v a r i a t i o n of F i g u r e s 3 b a n d 3 d m a y i n v o l v e t h e c o r r e s p o n d i n g " s t a g g e r e d " structures, w i t h t h e m e t a l atoms i n t e r a c t i n g w i t h t h e sulfurs rather t h a n t h e metals of t h e a d j a c e n t u n i t ( s ) or c h a i n ( s )
( 3 7 ) . I t is also r e a d i l y a p p a r e n t that f o r s t r u c t u r a l types
s h o w n i n F i g u r e s 3 b a n d 3 d , i t is necessary t o m i n i m i z e t h e steric r e q u i r e ments of t h e t e r m i n a l l i g a n d s . A s u m m a r y of o u r recent attempts i n t h e synthesis, c h a r a c t e r i z a t i o n , structure, a n d b o n d i n g of n e w m e t a l t e t r a t h i o l e n e clusters a n d p o l y m e r s w i l l b e p r e s e n t e d . E m p h a s i s w i l l b e p l a c e d o n t h e i r n o v e l stereochemistry, t h e i r u n u s u a l l y r i c h e l e c t r o c h e m i s t r y , a n d t h e i r i n t e r e s t i n g p h y s i c a l p r o p e r t i e s (1,2,3,4,5),
w i t h t h e h o p e of g e n e r a t i n g a n d u n d e r s t a n d i n g
n e w m a t e r i a l s of t e c h n o l o g i c a l significance. Organocbalcogen
Ligands
A m a j o r i n c e n t i v e f o r t h e o r g a n i c synthesis of t h e l i g a n d s t o b e d i s c u s s e d i n this section comes f r o m t h e recent intense interest i n p s e u d o o n e - d i m e n s i o n a l " o r g a n i c m e t a l " (31, 33, 38-47). I n fact, t h e e l e c t r i c a l c o n d u c t i v i t y of t h e tetrathiotetracene ( T T T ) a n d its m o n o c a t i o n , first s y n t h e s i z e d b y M a r s c h a l k i n 1948 (34,35), has b e e n n o t e d f o r a l o n g
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
TEO
29. time.
Metal
367
Tetrathiolenes
I t is n o t u n t i l r e c e n t l y that its close analogs,
naphthalene
(TCTTN)
(36)
tetrachlorotetrathio-
a n d tetrathionaphthalene
w e r e m a d e i n 1972 a n d 1976, r e s p e c t i v e l y .
( T T N ) (33),
Similarly, while dithionaph-
t h a l e n e ( D T N ) ( 2 9 ) w a s m a d e i n 1911, t h e seleno a n d t e l l u r o ( a s w e l l as t h e m i x e d c o m b i n a t i o n s ) analogs w e r e r e p o r t e d o n l y r e c e n t l y ( 1 9 7 7 ) (31,32). T o get a n i d e a w h y these d i - o r t e t r a m e r c a p t o c o m p o u n d s are p r o n e to o x i d a t i o n a n d f o r m stable r a d i c a l m o n o c a t i o n s o r d i c a t i o n s , w e n e e d o n l y c o n s i d e r t h e c o n v e r s i o n of n a p h t h a l e n e lene
(DTN, C
1 0
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
three m o l e c u l e s
H S ) 6
2
( C i H ) to dithionaphtha0
to tetrathionaphthalene
8
(TTN,Ci H S ). All 0
4
are strictly planar w i t h h i g h l y delocalized
4
?r-systems.
H o w e v e r , t h e o r b i t a l characters of t h e h i g h e s t - o c c u p i e d m o l e c u l a r o r b i t a l s ( H O M O ) i n these m o l e c u l e s c h a n g e d r a m a t i c a l l y u p o n r e p l a c e m e n t of the h y d r o g e n s at 1,8 a n d 4,5 p o s i t i o n s , successively, b y t h e s u l f u r atoms. It goes f r o m a n a p h t h y l - r i n g - c e n t e r e d b o n d i n g TT o r b i t a l i n C i H 0
8
to a
d i t h i o - c e n t e r e d TT o r b i t a l w h i c h is a n t i b o n d i n g b e t w e e n t h e t w o s u l f u r atoms i n C i H S 0
6
2
to a tetrathio-centered
TT o r b i t a l w h i c h is a n t i b o n d i n g
b e t w e e n t h e t w o pairs of s u l f u r atoms i n C i H S , as p o r t r a y e d i n F i g u r e s 0
4a, 4 b , a n d 4c, r e s p e c t i v e l y .
4
4
A s e x p e c t e d , w i t h t h e i n c r e a s i n g degree of
a n t i b o n d i n g , t h e o r b i t a l energies rise d r a s t i c a l l y i n t h e same d i r e c t i o n : -12.79, -8.53, and - 6 . 1 7 eV in C
1 0
H , C 8
1 0
H S , and C 6
2
1 0
H S , 4
4
respec-
t i v e l y . T h e s e results w e r e b a s e d o n n o n p a r a m e t e r i z e d m o l e c u l a r o r b i t a l calculations performed using a n approximate
Hartree-Fock-Roothaan
S C F - L C A O m e t h o d d e v e l o p e d b y F e n s k e et a l . (48).
T h i s energetic
t r e n d t h e n p r e d i c t s that i t s h o u l d b e c o m e i n c r e a s i n g l y easy t o o x i d i z e t h e series d o H s - n S ^ w i t h i n c r e a s i n g n = 0,2,4 as d e p i c t e d i n F i g u r e 5 ( t h e potentials are c o n v e r t e d to v s . A g / O . O I M A g N 0 p l a t i n u m e l e c t r o d e ) (30,33).
3
i n acetonitrile
at a
I n fact, i t is p o s s i b l e t o p l o t t h e o r b i t a l
e n e r g y as a f u n c t i o n of t h e o n e - e l e c t r o n o x i d a t i o n p o t e n t i a l f o r t h e c o n -
Figure 4. Representations of highest occupied molecular orbital (HOMO) of naphthalene (a), dithionaphthalene (b), and tetrathionaphthalene (c). The shaded and empty circles represent the positive and negative lobes of the atomic iz orbitals (perpendicular to the molecular plane).
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
COMPOUNDS
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
INORGANIC
—
WITH
UNUSUAL PROPERTIES
if)
00
"d LU
fe Q_
®
o
Cvi
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
]
29.
Metal
TEO
369
Tetrathiolenes
v e r s i o n of t h e n e u t r a l C i H _ S „ t o its r a d i c a l cations [ C i H _ S ] 0
8
w
0
8
M
+
w
as
s h o w n i n F i g u r e 6. A g r a t i f y i n g l i n e a r r e l a t i o n s h i p is c l e a r l y o b s e r v e d . F u r t h e r m o r e , t h e f a c t that t h e e l e c t r o n ( s )
c o m e o u t of o r b i t a l s w h i c h
are h i g h l y a n t i b o n d i n g b e t w e e n t h e s u l f u r atoms f o r n = 2 a n d n = 4 i n Ci H . S 0
8
n
w
suggests t h a t t h e r e s u l t i n g cations s h o u l d b e q u i t e stable.
A n o b v i o u s v a r i a t i o n of these p r o t o t y p e s of o r g a n i c m o l e c u l e s is t h e r e p l a c e m e n t of o n e or b o t h of t h e s u l f u r atoms b y s e l e n i u m o r t e l l u r i u m . T h i s has b e e n d o n e w i t h C i H S . 0
6
I n fact, t h e c o m p l e t e series of c o m -
2
pounds w i t h the general f o r m u l a C i H X Y where X Y = 0
SS, SeSe, T e T e ,
6
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
SSe, S T e , a n d S e T e r e c e n t l y has b e e n s u c c e s s f u l l y s y n t h e s i z e d a n d c h a r a c t e r i z e d . T h e o x i d a t i o n p o t e n t i a l is b e l i e v e d t o decrease a l o n g t h e series Ci H S , 0
6
CioH Se , and CioH Te .
2
6
2
6
T h e room-temperature-compressed
2
p e l l e t e l e c t r i c a l r e s i s t i v i t y of t h e c o r r e s p o n d i n g m o n o c a t i o n s as T C N Q " salts also decreases d r a m a t i c a l l y f r o m 7.2 X 1 0 a l o n g t h e same series (30,31). e l e c t r i c a l r e s i s t i v i t y (R) a
t o 1 X 1 0 t o 50 o h m - c m 7
T h e t e m p e r a t u r e (T)
d e p e n d e n c e of t h e
f o l l o w the linear relationship InR vs. T "
r e a s o n a b l y l a r g e t e m p e r a t u r e range,
sionality.
1 1
1 / 2
over
suggesting pseudo-one-dimen-
S i m i l a r r e p l a c e m e n t of t h e s u l f u r atoms i n C10H4S4 b y its
h e a v i e r congeners t o f o r m C i o H X Y _ 4
n
4
n
(where X , Y =
0 < n < 4 ) or C H X j Y Z „ ( w h e r e X , Y , Z = 1 0
0.2
4
m
S, Se, o r T e a n d
S, Se, o r T e a n d I + m
0.4 0.6 0.8 1.0 1.2 OXIDATION POTENTIAL (VOLTS) (vs Ag/0.01M Ag N0 )
14
3
Figure 6. A linear correlation of the first one-electron oxidation potential of naphthalene (C H ), dithionaphthalene (C H S ), and tetrathionaphthalene (C^HfiJ with the calculated HOMO energies 10
8
10
6
2
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
+
370 n =
INORGANIC COMPOUNDS W I T H UNUSUAL
PROPERTIES
II
4 ) has not b e e n r e a l i z e d . S u c h a series of c l o s e l y r e l a t e d c o m p o u n d s
u n d o u b t e d l y w i l l g i v e rise to h i g h l y i n t e r e s t i n g trends of r e d o x p o t e n t i a l s , e l e c t r i c a l c o n d u c t i v i t i e s , as w e l l as other p h y s i c a l or t r a n s p o r t p r o p e r t i e s w h i c h w i l l s h e d l i g h t o n the c h e m i c a l b o n d i n g a n d solid-state p r o p e r t i e s ( e . g . c o l u m n a r s t a c k i n g interactions v i a o r b i t a l o v e r l a p s ) of these species. A
different v a r i a t i o n of these p l a n a r
organic
molecules
can
be
a c h i e v e d b y r i n g s u b s t i t u t i o n . F o r e x a m p l e , f o r m a l r e p l a c e m e n t s of the four hydrogens i n C i H S 0
yield C
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
2).
1 8
H S 8
4
4
(TTT)
4
( T T N ) b y t w o b e n z o r i n g s a n d f o u r chlorines
and C C 1 S 1 0
4
4
( T C T T N ) , r e s p e c t i v e l y (cf.
T h e s e c o m p o u n d s , h o w e v e r , w e r e m a d e b y different
Figure
procedures
u n d e r different c o n d i t i o n s . T h e r e d o x potentials are also d r a s t i c a l l y d i f ferent.
E a c h m o l e c u l e exhibits t w o r e v e r s i b l e o x i d a t i o n s a n d one
t w o ) irreversible reduction reaction(s).
(or
T h e first o x i d a t i o n step occurs
at —0.05, + 0 . 2 7 , a n d + 0 . 6 4 V w h e r e a s the s e c o n d o x i d a t i o n r e a c t i o n occurs at + 0 . 4 4 , + 0 . 6 5 , a n d + 0 . 9 7 V f o r T T T TCTTN
(4),
T T N (33),
and
i n F i g u r e 7.
The
(49),
r e s p e c t i v e l y , as s h o w n s c h e m a t i c a l l y
c o r r e s p o n d i n g i r r e v e r s i b l e r e d u c t i o n w a v e occurs at —1.30 ( a l s o —1.67), — 1.42,
a n d —1.26 V .
Ag/O.OIM A g N 0 . 3
0.07 to -
T h e s e values are s t a n d a r d i z e d w i t h respect
T h e e l e c t r i c a l c o n d u c t i v i t y of the m o n o c a t i o n s
1 a n d 40 ( o h m - c m ) "
1
for T T T
(38,39,40)
and T T N
to are
(33),
+
r e s p e c t i v e l y . It is clear that there seems to b e a c o r r e l a t i o n b e t w e e n the e l e c t r i c a l c o n d u c t i v i t y a n d the o x i d a t i o n p o t e n t i a l : v i z , as the ease of o x i d a t i o n declines a l o n g the series T T T , T T N , T C T T N , so does the c o n ductivity.
T h i s m a y b e r e l a t e d to the b a n d g a p of the
semiconducting
m o n o c a t i o n i c species w h i c h , q u a l i t a t i v e l y s p e a k i n g , increases w i t h
the
l o w e r i n g of the e n e r g y of the h i g h e s t o c c u p i e d m o l e c u l a r o r b i t a l w h i c h , i n t u r n , correlates w i t h the d e c l i n e of the ease of o x i d a t i o n . It occurs to us that these p l a n a r , h i g h l y 7r-delocalized, easily r e d o x e d o r g a n o c h a l c o g e n c o m p o u n d s c a n f u n c t i o n as excellent l i g a n d s i n o r g a n o m e t a l l i c synthesis. T h e c h a l c o g e n - c h a l c o g e n b o n d ( s ) i n these m o l e c u l e s c a n u n d e r g o f a c i l e o x i d a t i v e - a d d i t i o n reactions w i t h a v a r i e t y of i n o r g a n i c or o r g a n o m e t a l l i c c o m p o u n d s , e s p e c i a l l y those w i t h l o w o x i d a t i o n states, t h e r e b y p r o d u c i n g o l i g o m e r i c or p o l y m e r i c o r g a n o m e t a l l i c plexes c o m p r i s e d of chains of t r a n s i t i o n metals b r i d g e d b y the
comabove-
m e n t i o n e d t e t r a c h a l c o g e n l i g a n d s as w e l l as other b i d e n t a t e l i g a n d s . free ends of these clusters or chains c a n b e t e r m i n a t e d b y the
The
above-
m e n t i o n e d d i c h a l c o g e n l i g a n d s , other l i g a n d s , or other m e t a l c o m p l e x e s . W e expect these n e w m a t e r i a l s to e x h i b i t n o v e l stereochemistry, electrochemistry,
a n d u n u s u a l t r a n s p o r t or c a t a l y t i c p r o p e r t i e s .
In
rich the
f o l l o w i n g sections, w e s u m m a r i z e p a r t of o u r recent attempts i n synthes i z i n g these n e w materials a n d i n s t u d y i n g t h e i r i n t r i g u i n g c h e m i c a l a n d p h y s i c a l properties. TTT,
W e w i l l focus o n the three tetrathiolene
ligands
T T N , a n d T C T T N . It s h o u l d b e e m p h a s i z e d , h o w e v e r , that a l a r g e
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
-0.8
If -6.2
©^=©
04 i t |
is
2
i 2
2
3 k
3
4
3
!
0.2 f
3
04
2
3 If
(VS Ag/0.01 M Ag N 0 )
TCTTNPt (PPh ) O^0
4
I TTNPt (PPh3) 0^©©^l@br©
3 4
(PPh ) 0^=©
-0.6
"Of© 0.6
3 k
~08
©
4
^
1.0
®
Oxidation potentials (vs. Ag/O.OIM AgN0 ) of tetrathiolene ligands TTT, TTN, and TCTTN (top) and tetrathiolene complexes Pt (PPh ) TTT, Pt (PPh ) TTN, and Pt,(PPh ) TCTTN (bottom,)
TTTPtg
Figure 7.
1.0
T
© f © ll
T C T T N Q ^ ©
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
diplatinum-
POTENTIAL "(VOLTS)
372
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
n u m b e r of d i f f e r e n t types of reactions a n d p r o p e r t i e s are c o n c e i v a b l e f o r these d i - a n d t e t r a c h a l c o g e n - o r g a n o m e t a l l i c
compounds.
T h e s e are c u r -
r e n t l y u n d e r i n v e s t i g a t i o n a n d w i l l b e subjects of f u t u r e p u b l i c a t i o n s . Molecular
Metal Tetrathiolene
Clusters
B i m e t a l l i c t e t r a t h i o l e n e c o m p l e x e s of t h e g e n e r a l t y p e L
2 n
M (TTL) 2
c a n b e o b t a i n e d b y r e a c t i n g t w o moles of l o w - v a l e n t t r a n s i t i o n m e t a l complex L
n
+
W
M
( h e r e L a n d M refers to t h e l i g a n d s a n d t h e
metal,
r e s p e c t i v e l y ; t h e m - f n l i g a n d s L n e e d n o t b e i d e n t i c a l ) w i t h one m o l e
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
of t h e T T L ( w h e r e T T L =
T T T , T T N , or T C T T N ) ligands v i a oxida-
t i v e a d d i t i o n of the t w o s u l f u r - s u l f u r b o n d s to t h e t w o m e t a l (Equation 1).
2L structure (3)
atoms
T h e r e s u l t i n g b i m e t a l l i c compleses c a n a d o p t a m o l e c u l a r
m
+ n
M +
T T L -> L
2 n
M (TTL) + 2
c o m p r i s e d of a tetrathiolene
(TTL)
2mL
(1)
ligand bridging two
m e t a l complexes ( L M ) v i a f o u r m e t a l - s u l f u r b o n d s , t w o o n e a c h side of n
the m o l e c u l e as e x e m p l i f i e d i n F i g u r e 3a. T h e s o l u b i l i t i e s of these c o m p l e x e s i n c o m m o n o r g a n i c solvents rather
limited,
being
somewhat
soluble
are
in N,N'-dimethylformamide,
methylene chloride, a n d chloroform, sparingly soluble i n benzene, insoluble i n acetonitrile, precludes measurements
acetone, hexane,
etc.
The
and
limited solubility
s u c h as m o l e c u l a r w e i g h t d e t e r m i n a t i o n s .
Nev-
ertheless, the p r o d u c t s g e n e r a l l y p r e c i p i t a t e o u t of solvents s u c h as b e n zene
as m i c r o c r y s t a l l i n e solids a n d c a n b e
solvents
recrystallized w i t h
mixed
(1,3,4).
T h e I R s p e c t r a of the r e s u l t i n g c o m p l e x e s r e v e a l c h a r a c t e r i s t i c b a n d s w h i c h are d i a g n o s t i c of t h e p r e s e n c e of t h e T T L l i g a n d s . T h e s e b a n d s , h o w e v e r , are s h i f t e d f r o m those of the free l i g a n d s w h i c h o c c u r as f o u r s t r o n g features at: (or 7 1 4 ( w ) ) cm" cm"
1
1
(a)
1616(m),
for T T T ;
for T T N ; and (c)
TCTTN.
(b)
1317(m),
1304(s), 9 6 8 ( w ) ,
742(s)
I540(s), 1362(s), 1185(vs), 797(vs)
1528(s), 1428(s), 1299(vs), 854(m) c m "
S i m i l a r l y , the U V - v i s i b l e s p e c t r a of these c o m p l e x e s
features c h a r a c t e r i s t i c of t h e T T L l i g a n d s .
for
1
exhibit
I n fact, the colors of these
c o m p l e x e s p a r a l l e l those of t h e free l i g a n d s : the T T T , T T N , a n d T C T T N c o m p l e x e s are g e n e r a l l y green, r e d , a n d orange, r e s p e c t i v e l y . T h i s c o r r e lates w i t h the v i s i b l e a b s o r p t i o n s of the f r e e l i g a n d s w h i c h o c c u r at ( A in n m and c in M
1
c m ' i n parentheses):
1 0 ) , 583 ( s h , 3.08 X 1 0 ) , 471 (4.85 3
694 (6.39
1
3
1 0 ) , 637 (4.85
X
3
X 1 0 ) , 428 ( s h , 2.86 3
X
10 ),
3
4
4
X
10 ) 3
f o r T T N ( r e d ) ; a n d 423
(2.07
X
X and
3
403 ( s h , 1.54 X 1 0 ) f o r T T T ( g r e e n ) ; 420 (1.84 X 1 0 ) , 397 ( s h , 1.49 1 0 ) , a n d 377 ( s h , 8.60
m a x
X
10 ), 4
397 (1.58 X 1 0 ) , a n d 372 ( s h , 7.23 X 1 0 ) f o r T C T T N ( g o l d e n y e l l o w ) . 4
3
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
29.
TEO
Metal
373
Tetrathiolenes
T h e reactions of Vaska's c o m p o u n d s , £ r a n s - I r ( P P h ) ( C O ) X ( X = 3
CI,
2
B r , I), w i t h T T N i n b e n z e n e u n d e r reflux f o r 3 - 5 h r i n a 2:1 m o l a r ratio gave rise to o r a n g e complexes w h i c h a n a l y z e as ( P h P ) 2 ( C O ) X 2 l r 2 ( T T N ) 3
( E q u a t i o n 2) (4).
2Ir(PPh ) (CO)X + 3
2
T h e I R spectra r e v e a l e d t h e presence of c o o r d i n a t e d TTN->
2
(Ph P) (CO) X Ir (TTN) + 2PPh 3
2
2
2
2
(2)
3
C O , T T N , a n d P h P l i g a n d s . T h e c a r b o n y l s t r e t c h i n g f r e q u e n c y occurs at 3
2019, 2017, a n d 2005 c m " for X =
C I , B r , a n d I, r e s p e c t i v e l y , w i t h
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
1
fine
structures d e v e l o p i n g u p o n r e f l u x i n g . T h e f o u r T T N b a n d s , w h i c h analogous
f o r the
series,
occur
at
1532(s),
1340(s),
are
1190(m),
and
8 1 3 ( b r , w ) c m " . T h e intensities of the T T N b a n d s are c o m p a r a b l e w i t h 1
those of the P h P b a n d s for these complexes w i t h the T T N : P h P ratio of 3
1:2.
3
T h e e l e c t r o n i c spectra of ( P h P ) ( C O ) X I r ( T T N ) complexes i n 3
CH C1 2
2
2
2
2
are d o m i n a t e d b y t w o m a j o r b a n d s i n the v i s i b l e r e g i o n .
2
l o w e s t - e n e r g y b a n d , w h i c h occurs at 446 (2.42 X d 0 ) , 452 ( 2.52 X a n d 438 n m (2.62 X 1 0 M " c m " ) for X = 4
1
1
The 10 ),
4
4
C I , B r , a n d I, r e s p e c t i v e l y , is
m o r e or less insensitive to the n a t u r e of the h a l o g e n . O n the other h a n d , the s h o u l d e r - l i k e b a n d at h i g h e r energy w h i c h occurs at ( A c in M
in n m and
m a x
c m " i n parentheses) 318 ( s h , 1.42 X 1 0 ) , 349 ( s h , 1.27 X
1
1
10 ),
4
a n d 380 (sh, 1.61 X
10 )
for X =
4
4
C I , B r , a n d I, r e s p e c t i v e l y , is h i g h l y
h a l o g e n sensitive, b e i n g s h i f t e d to l o w e r energy a l o n g the sequence X
=
C I , B r , I. T h e U V b a n d s o c c u r at 270 n m (sh, 2.56 X 10 , 2.70 X 10 , a n d 4
3.17 X 1.0 for X =
C I , B r , a n d I, r e s p e c t i v e l y ) .
4
ammetry
studies r e v e a l e d t h a t
4
Preliminary cyclic volt-
these d i i r i d i u m clusters
undergo
one
irreversible oxidation and one irreversible reduction reaction. A series of d i p l a t i n u m t e t r a t h i o l e n e c o m p l e x e s c a n b e p r e p a r e d b y reacting P t ( P P h ) 3
i n b e n z e n e w i t h the c o r r e s p o n d i n g T T L l i g a n d i n a
4
m o l a r r a t i o of 2 : 1
( E q u a t i o n 3)
2Pt(PPh ) 3
+
4
The microcrystalline products,
(4).
T T L -> ( P h P ) P t ( T T L ) + 3
4
2
4PPh
w h i c h f o r m as green, r e d , a n d o r a n g e p r e c i p i t a t e f o r T T L = a n d T C T T N , r e s p e c t i v e l y , h a v e b e e n f o r m u l a t e d as b y e l e m e n t a l analysis.
(3)
3
TTT, T T N ,
(Ph P) Pt (TTL) 3
4
2
I R s p e c t r o s c o p y r e v e a l e d the presence
of b o t h
T T L a n d P h P l i g a n d s , w i t h the f o r m e r b e i n g m u c h w e a k e r i n b a n d 3
i n t e n s i t y t h a n the latter, a t t r i b u t a b l e to the 1:4 ratio of T T L : P h P . 3
f o u r s t r o n g T T L b a n d s o c c u r i n the c o m p l e x e s at 1 6 0 9 ( w ) , 954(vw),
and 740(m) cm"
1
f o r T T L — T T T ; at I 5 3 0 ( w ) ,
The
1276(s), 1346(m),
1 1 7 8 ( s ) , 8 1 8 ( w ) , a n d 8 0 8 ( s h ) c m " f o r T T L — T T N ; a n d at 1 4 6 5 ( w ) , 1
1392(w), 1239(s), a n d 8 3 6 ( w ) c m " for T T L — T C T T N . 1
The visible
spectra of the ( P h P ) P t T T L complexes h a v e t w o m a j o r b a n d s 3
4
2
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
with
374
INORGANIC COMPOUNDS W I T H UNUSUAL
v a r y i n g degrees of u n r e s o l v e d fine structure at ( A c m " i n parentheses):
PROPERTIES
II
in n m and e in M '
m a x
1
720 (1.80 X 1 0 ) , 652 ( s h , 1.03 X 1 0 ) , 440 w • s h ,
1
4
4
5.54 X 1 0 ) , a n d 387 ( s h , 1.05 X 1 0 ) f o r T T L = T T T ; 519 (1.44 X 1 0 ) , 3
4
4
490 (1.35 X 1 0 ) , 439 (1.43 X 1 0 ) , a n d 423 (1.43 X 1 0 ) f o r T T L — 4
4
4
T T N ; a n d 502 (1.24 X 1 0 ) , 447 (8.50 X 1 0 ) , a n d 409 (9.44 X 1 0 ) f o r 4
TTL =
TCTTN.
3
3
T h e s e v i s i b l e b a n d s are, i n general, s h i f t e d to l o w e r
energies i n c o m p a r i s o n w i t h t h e free l i g a n d s . I n o r d e r t o e s t a b l i s h u n a m b i g u o u s l y t h e stereochemistry
of these
m e t a l tetrathiolenes as w e l l as t h e m o d e of b i n d i n g of t h e t e t r a t h i o l e n e
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
ligands
to t r a n s i t i o n m e t a l
determinations
complexes,
of ( P h P ) P t ( T T N ) 3
4
single-crystal
and
2
x-ray
structural
(Ph P)2(CO) Br Ir (TTN) 3
2
2
2
were undertaken ( 3 ) . F i g u r e s 8 a n d 9 d e p i c t t h e structure of ( P h P ) P t ( T T N ) 3
ferent v i e w s . I t i n v o l v e s a t e t r a t h i o n a p h t h a l e n e
4
i n dif-
2
( T T N ) ligand bridging
t w o b i s - t r i p h e n y l p h o s p h i n e p l a t i n u m moieties w i t h e a c h p l a t i n u m a t o m being coordinated to t w o phosphorus ( f r o m t w o P P h
3
ligands) a n d t w o
s u l f u r ( f r o m t h e T T N l i g a n d ) atoms. T h e p l a t i n u m c o o r d i n a t i o n a n d t h e b r i d g i n g T T N l i g a n d (except, p e r h a p s , t h e s u l f u r a t o m s ) are close t o planarity.
T h e m o l e c u l e as a w h o l e , h o w e v e r , is b y n o means
planar.
T h e o v e r a l l distortions f r o m p l a n a r i t y c a n b e v i s u a l i z e d as a s m a l l r o t a t i o n of t h e s u l f u r atoms a b o u t t h e C ( 3 ) - C ( 3 ) ' b o n d , f o l l o w e d b y a l a r g e r o t a t i o n of e a c h
of t h e t w o p l a t i n u m c o o r d i n a t i o n planes
S • • • S edge, r e s u l t i n g i n t h e d i h e d r a l angles average planes f o r m e d b y n a p h t h a l e n e
about the
of 1 2 . 6 ° b e t w e e n t h e
group a n d
S(l)-C(l)-C(3)-
C ( 2 ) - S ( 2 ) a n d of 3 8 . 4 ° b e t w e e n t h e average planes f o r m e d b y S ( l ) C(l)-C(3)-C(2)-S(2) molecular geometry
a n d the P t S P 2
is c e n t r o s y m m e t r i c
2
coordination.
T h e resulting
w i t h t h e center of s y m m e t r y
l o c a t e d at t h e m i d p o i n t of C ( 3 ) a n d C ( 3 ) ' .
A n interesting observation
of t h e c r y s t a l structure of ( P h P ) P t ( T T N ) is that t h e i n t r a - a n d i n t e r 3
4
2
m o l e c u l a r F t • • • P t vectors f o r m p a r a l l e l arrays of z i g - z a g chains, w i t h the
former
(9.043(4) A ) being
substantially
longer
than
the
latter
(7.662(4) A ) . O n the other h a n d , t h e structure o f ( P h P ) ( C O ) B r I r ( T T N ) 3
2
2
2
2
is
a t o t a l surprise t o us ( 3 ) . O n c h e m i c a l as w e l l as s t e r e o c h e m i c a l g r o u n d s , one m i g h t expect t w o s q u a r e - p y r a m i d a l o r t r i g o n a l - b i p y r a m i d a l ( P h P ) 3
Br(CO)IrS (TTN)).
2
complexes
b r i d g e d b y the T T N l i g a n d (cf.
(Ph P) Pt 3
4
2
T h e d e t e r m i n e d structure of t h e f o r m e r c o m p o u n d , h o w e v e r ,
bears n o r e s e m b l a n c e t o t h e latter.
T h e t w o i r i d i u m s , i n s t e a d of o x i d a -
t i v e l y c l e a v i n g t h e t w o s u l f u r - s u l f u r b o n d s i n T T N , react w i t h o n l y o n e of t h e m , r e s u l t i n g i n a " b u t t e r f l y " a r r a n g e m e n t of the I r S 2
2
(from T T N )
f r a g m e n t . T h e m o l e c u l e is best d e s c r i b e d as t w o ( P h P ) ( C O ) B r l r m o i e 3
ties b r i d g e d b y t w o s u l f u r atoms ( S • • • S of 3.07 A ) f r o m T T N . T h i s u n u s u a l i r i d i u m d i m e r has a n I r - I r d i s t a n c e of 2.68 A w i t h t h e m e t a l -
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
29.
TEO
Metal
375
Tetrathiolenes
m e t a l b o n d c o n c e p t u a l l y o c c u p y i n g t h e s i x t h c o o r d i n a t i o n site of t h e highly distorted octahedral coordinations. T h e significance of t h e ( P h P ) P t ( T T L ) 3
r i c h e l e c t r o c h e m i s t r y (4). 9
+
complexes lies i n t h e i r
2
3
(n-C H )4N C104" in CH C1 4
4
C y c l i c voltammetry ( a 10~ M solution i n 0 . 1 M 2
2
u s i n g a s c a n rate of 200 m V / s e c , a p l a t i n u m
b e a d as w o r k i n g electrode, a p l a t i n u m w i r e as c o u n t e r electrode, a n d C(4)
C(5)
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
P(2)
P(l)' (b) Figure 8. The P Pt C S core of the [(C H ) P]t Pt (C H S ) molecule (ORTEP diagram, 50% probability thermal ellipsoids, infinity projection) with cry stalio graphic C I symmetry located at the midpoint between C(3) and C(3)'. (a) View along the normal of the naphthalene plane and (b) view similar to (a) but rotated 90° about the C(3)-C(3)' bond. k
2
10
h
6
5 3
f
2
10
Jt
If
r
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
376
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
II
29.
TEO
Metal
Ag/O.OIM A g N 0
3
377
Tetrathiolenes i n C H C N as reference 3
electrode)
r e v e a l e d t w o re-
v e r s i b l e one-electron oxidations at —0.51 a n d —0.28 V f o r (TTT)
(Ph P) Pt 3
4
2
(at ambient temperature) but four reversible one-electron oxida-
t i o n w a v e s at - 0 . 2 8 , ~ - 0 . 0 5 , ~ 0.01, a n d 0.31 V f o r ( P h P ) P t ( T T N ) 3
(at
ambient temperature).
4
T h e c y c l i c v o l t a m m o g r a m of
2
(Ph P) Pt 3
4
2
( T C T T N ) at a m b i e n t t e m p e r a t u r e turns o u t to b e m o r e c o m p l i c a t e d . H o w e v e r , at d r y ice/acetone t e m p e r a t u r e , i t exhibits t w o r e v e r s i b l e onee l e c t r o n o x i d a t i o n s at —0.02 a n d + 0 . 2 1 V a n d t w o q u a s i - r e v e r s i b l e o x i d a tions at + 0 . 5 8 a n d + 0 . 9 4 V . T h e s e o x i d a t i o n p o t e n t i a l s are s h i f t e d d r a m a t i c a l l y i n the n e g a t i v e d i r e c t i o n ( m o r e easily o x i d i z e d ) w i t h
respect
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
to the free l i g a n d s ( v i d e s u p r a ) as d e p i c t e d i n F i g u r e 7. T h i s is t a k e n as a n i n d i c a t i o n of a b u i l d u p of n e g a t i v e charge i n t h e T T L l i g a n d u p o n c o o r d i n a t i o n . T h e E P R s p e c t r a of the p a r a m a g n e t i c m o n o - a n d t r i c a t i o n s of ( P h P ) P t ( T T N ) i n d i c a t e d t h a t i n the m o n o c a t i o n t h e s p i n densities 3
4
2
are s u b s t a n t i a l l y l o c a l i z e d o n the T T N l i g a n d w i t h n o o b s e r v a b l e h y p e r fine i n t e r a c t i o n ( s ) w i t h the p l a t i n u m atoms, w h e r e a s i n the t r i c a t i o n there is a significant a m o u n t of s p i n densities " l o c a l i z e d " o n one p l a t i n u m a t o m ( n o n e q u i v a l e n t h y p e r f i n e i n t e r a c t i o n s ) e v e n t h o u g h the u n p a i r e d e l e c t r o n also resides m a i n l y o n the b r i d g i n g l i g a n d ( I ) . T h e s t e r e o c h e m i c a l n o v e l t y a n d the e l e c t r o c h e m i c a l richness of t h e b i m e t a l l i c tetrathiolene complexes p r o m p t e d us to synthesize a n d s t u d y l o n g e r chains of o l i g o m e t a l l i c t e t r a t h i o l e n e clusters. clusters ( D P P A ) P t ( T T L ) 4
4
3
(where D P P A =
The tetraplatinum
Ph C =
CPh ; T T L
2
2
—
T T T , T T N ) c a n b e p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c e q u i v a l e n t s of the D P P A - b r i d g e d p l a t i n u m d i m e r P t ( D P P A ) ( P P h ) 2
2
3
s p o n d i n g t e t r a t h i o l e n e as s h o w n i n E q u a t i o n 4 ( 5 0 ) . 2Pt (DPPA) (PPh ) 2
2
spectroscopies
3
4
4
+ 3 T T L -> ( D P P A ) P t ( T T L ) 4
suggest the presence
4
w i t h the corre-
IR and UV-visible
3
of the t e t r a t h i o l e n e
+ 8PPh
3
(4)
a n d the bis-
p h o s p h i n e l i g a n d s . T h e s e c o m p o u n d s are i n g e n e r a l m o r e d e e p l y c o l o r e d a n d less s o l u b l e t h a n the d i p l a t i n u m c o m p l e x e s . s t r u c t u r e w i t h b r i d g i n g tetradentate
A zig-zag chain-like
T T L a n d bidentate D P P A ligands
d e p i c t e d i n 1 is e x p e c t e d f o r these t e t r a p l a t i n u m clusters. C y c l i c v o l t a m m o g r a m s of these t e t r a p l a t i n u m - t e t r a t h i o l e n e clusters i n d i c a t e d a c o m p l e x m a n i f o l d of o v e r l a p p i n g r e v e r s i b l e a n d q u a s i - r e v e r s i b l e o x i d a t i o n w a v e s l I I I I I I I i I I I (TTL) Pt (DPPA) Pt (TTL) Pt (DPPA) Pt (TTL) I I I I I I I I l I I l 2
2
1
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
378
INORGANIC COMPOUNDS W I T H UNUSUAL
PROPERTIES
II
( w h i c h a m o u n t to a t o t a l of a p p r o x i m a t e l y 12 e l e c t r o n transfers i n t h e case of ( D P P A ) P t ( T T N ) ) 4
4
(50).
3
L o n g e r h o m o - or h e t e r o n u c l e a r c h a i n - l i k e clusters s u c h as the h e x a m e t a l c o m p l e x 2 c a n b e p r e p a r e d b y r e a c t i n g the c o r r e s p o n d i n g m e t a l clusters w i t h a c o m b i n a t i o n of the tetrathiolenes m u l t i d e n t a t e l i g a n d s as b r i d g e s .
a n d other a p p r o p r i a t e
T h e m e t a l atoms M , M ' , a n d M " , t h e
t e t r a t h i o l e n e l i g a n d s , T T L , T T L ' , a n d the 1 b i d e n t a t e L L a n d 1' t e r m i n a l L
ligands need not be identical w i t h i n each group.
W e are
actively
p u r s u i n g the synthesis, structure, a n d e l e c t r o c h e m i s t r y of these u n u s u a l
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
cluster compounds. I I I I L i ' M " (TTL) ' M ' (LL) I I I l I I
I I
I l I I I I M (TTL) M (LL) , M ' (TTL) ' M " ^ * I i I i l i I I l i I I 2
Semiconducting
Organometallic
Polymers
I n a n a t t e m p t to synthesize n e w p l a n a r o r g a n o m e t a l l i c
complexes
w h i c h w i l l f o r m m u l t i p a r a l l e l c o l u m n a r stacks of s q u a r e - p l a n a r t r a n s i t i o n m e t a l c o m p l e x e s b r i d g e d b y a h i g h l y d e l o c a l i z e d o r g a n i c IT system, tetrathiotetracene
( T T T ) , tetrathionaphthalene
thionaphthalene
( T T N ) , a n d tetrachlorotetra-
( T C T T N ) were reacted
w i t h a v a r i e t y of t r a n s i t i o n
m e t a l c o m p l e x e s w i t h v a r y i n g degree of steric r e q u i r e m e n t s .
S i n c e car-
b o n y l s are c a p a b l e of s t a b i l i z i n g metals i n l o w f o r m a l o x i d a t i o n states and
are also s t e r i c a l l y q u i t e i n n o c e n t , m e t a l c a r b o n y l s w e r e c h o s e n
s t a r t i n g reactants f o r s u c h investigations ( 2 , 5 ) .
as
O u r initial goal was to
p r e p a r e b i m e t a l l i c c o m p o u n d s s u c h as N i ( C O ) ( T T L ) (cf. F i g u r e 3a) 2
4
w h i c h w i l l c o n c e i v a b l y f o r m c o l u m n a r s t a c k i n g v i a o v e r l a p s of the IT o r b i t a l s of the b r i d g i n g l i g a n d a n d / o r the m e t a l o r b i t a l s ( e i t h e r w i t h or w i t h o u t the i n v o l v e m e n t of the t e r m i n a l c a r b o n y l l i g a n d s ) .
Instead,
m u c h to o u r i n i t i a l surprise, w e o b t a i n a n e w class of p o l y m e r i c m e t a l tetrathiolene
c o m p o u n d s f o r m u l a t e d as
[Ni(TTL)]a. and
[Co (CO) 2
2
( T T L ) ] * f r o m the r e a c t i o n of the tetrathiolenes w i t h the c o r r e s p o n d i n g metal c a r b o n y l (phosphine) complexes.
These new organometallic poly-
mers e x h i b i t i n t e r e s t i n g s e m i c o n d u c t i n g p r o p e r t i e s (2,5).
T h e s e mate-
rials are d i s t i n c t l y different f r o m either the o r g a n i c c o n d u c t o r s s u c h as T T F - T C N Q ( 5 1 , 5 2 ) or the i n o r g a n i c c o n d u c t o r s s u c h as K P t ( C N ) • 2
X . 3 (53, 54, 55) 0
(where X =
4
C I , B r ) i n that the c h a i n d i r e c t i o n lies, p r e -
s u m a b l y , i n the m o l e c u l a r p l a n e ( a l o n g the l o n g m o l e c u l a r a x i s ) t h a n p e r p e n d i c u l a r to it.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
rather
29.
TEO
Metal
379
Tetrathiolenes
Ni(CO)
4
+ TTN-» ^ [Ni(TTN)] + 4C0
(5)
x
T h e compound [ N i ( T T N ) ] # can be prepared b y reacting T T N w i t h excess n i c k e l t e t r a c a r b o n y l i n b e n z e n e ( E q u a t i o n 5 ) .
T h e dark b r o w n -
r e d a m o r p h o u s m a t e r i a l , i n s o l u b l e i n c o m m o n o r g a n i c solvents, exhibits n o c a r b o n y l s t r e t c h i n g f r e q u e n c i e s b u t f o u r s t r o n g T T N b a n d s at 1 5 2 8 ( s ) , 1338(s), (1320(sh)), 1185(m), and 800(m) c m ' A n e w b a n d also is o b s e r v e d at 965 c m "
1
1
i n the I R s p e c t r u m .
w h i c h can be attributed to
C • • • S b o n d s . T h e p o l y m e r i c c h a i n - l i k e structure 3 w a s p r o p o s e d f o r Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
[Ni(TTN)]«. . . . Ni (TTN) Ni (TTN)
. . .
3 S i m i l a r l y , r e a c t i o n of T T N w i t h a s t o i c h i o m e t r i c a m o u n t of C o ( C O ) i n 2
b e n z e n e gave the p o l y m e r [ C o ( C O ) ( T T N ) ] 2
Co, (CO)
8
2
1
+ T T N ->
a ?
(Equation 6).
8
I R spec-
[Co (CO) ( T T N ) ] + 6 C O 2
2
(6)
x
t r o s c o p y i n d i c a t e d the presence of: ( 1 ) t e r m i n a l c a r b o n y l s ( b r o a d b a n d at 2 0 1 0 ( s ) ) ;
(2)
the c o o r d i n a t e d T T N l i g a n d at I 5 2 5 ( m ) ,
1339(m),
1 3 2 0 ( s h ) , 1 1 9 0 ( m ) , a n d 8 1 0 ( b r , w ) c m " ; a n d ( 3 ) a n e w b a n d at 970 c m " 1
w h i c h is p r o b a b l y a t t r i b u t a b l e to C • - • S s t r e t c h i n g f r e q u e n c i e s .
1
Again,
a p o l y m e r i c c h a i n - l i k e structure 4 w a s p r o p o s e d f o r [ C o ( C O ) ( T T N ) ] . . 2
. . . (TTN) Co (CO) (TTN) 2
2
2
a
. . .
4 T h e most i n t r i g u i n g p h y s i c a l p r o p e r t y of these p o l y m e r i c m a t e r i a l s is t h e i r e l e c t r i c a l c o n d u c t i v i t y . T h e t e m p e r a t u r e ( T ) d e p e n d e n c e of t h e p o w d e r resistance ( R )
c a n b e c h a r a c t e r i z e d b y the r e l a t i o n
w h e r e T is the square of the slope of the In R vs. T " 0
1 / 2
p l o t a n d is i n v e r s e l y
p r o p o r t i o n a l to the d e n s i t y of l o c a l i z e d states ( E q u a t i o n 8)
4a
T 0
(56,57,58).
=
=
kAN(e ) F
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(8)
380
INORGANIC
Here a
COMPOUNDS W I T H UNUSUAL
PROPERTIES
is the r a d i u s o f the l o c a l i z e d state w a v e f u n c t i o n , N(e )
1
F
II
is t h e
d e n s i t y o f l o c a l i z e d states, A is the a r e a o f the c o m p r e s s e d p e l l e t , a n d k is B o l t z m a n n constant. P l o t s o f this t y p e h a v e b e e n o b s e r v e d f o r a n u m b e r o f k n o w n o n e - d i m e n s i o n a l systems a n d t a k e n as e v i d e n c e f o r oned i m e n s i o n a l h o p p i n g c o n d u c t i v i t y b e t w e e n l o c a l i z e d states (38-47,56F o r comparison, the hopping conductivity f o r a two-dimensional
64).
system c a n b e c h a r a c t e r i z e d b y the r e l a t i o n In R/R = ( T / T ) ~ 0
0
T
= 8a /(kDN(e )) 2
0
1 / 3
where
( h e r e D is t h e t h i c k n e s s ) , whereas t h e h o p p i n g
F
c o n d u c t i v i t y f o r a t h r e e - d i m e n s i o n a l system f o l l o w s the r e l a t i o n I n R/R
0
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
=
where T =
(T/T )~
1/4
0
0
T h i s t h e o r y has b e e n
!6a /(kN(e )). 3
F
ques-
t i o n e d r e c e n t l y b y M o t t (64). N e v e r t h e l e s s , this t y p e o f p l o t c a n b e u s e d to c h a r a c t e r i z e the c o n d u c t i v i t y of these materials.
T h e T values o f 1.7 0
X 10 K o b s e r v e d f o r b o t h c o m p o u n d s are, h o w e v e r , s i g n i f i c a n t l y h i g h e r 5
than that generally observed f o r one-dimensional conductors
or semi-
c o n d u c t o r s ( r a n g e : 0.5 - 5 X 1 0 K ) (24-26, 38-47, 56-64). 4
A m o r e c o n v e n i e n t p r e p a r a t i o n of the series of p o l y m e r s
[Ni(TTL)]#
( w h e r e T T L = T T T , T T N , o r T C T T N ) starts w i t h a 2 : 1 r a t i o o f N i (CO) (PPh ) 2
3
2
and T T L i n refluxing benzene ( E q u a t i o n 9) ( 5 ) . Simireflux
Ni(CO) (PPh ) 2
3
2
+ TTL
-j > - [ N i ( T T L ) ] , + 2CO + 2PPh
benzene
3
X
(9) l a r l y , the series o f c o b a l t tetrathiolene p o l y m e r s [ C o ( C O ) ( T T L ) ] a . 2
b e e n p r e p a r e d f r o m t h e r e a c t i o n of C o ( C O ) 2
benzene ( E q u a t i o n 10).
2
has
w i t h T T L i n refluxing
8
A l l of these materials e x h i b i t I R b a n d s i n d i c a -
t i v e o f the c o o r d i n a t e d l i g a n d s .
Co (CO) 2
8
+ TTL
reflux
-j > - [ C o ( C O ) ( T T L ) ] , + 6CO 2
benzene
2
(10)
X
T h e e l e c t r i c a l c o n d u c t i v i t y of a l l these n e u t r a l o r g a n o m e t a l l i c p o l y mers f o l l o w s the same t e m p e r a t u r e d e p e n d e n c e as the T T N c o m p o u n d s ( E q u a t i o n 7 ) . T h e T values a n d the r o o m t e m p e r a t u r e r e s i s t i v i t y p , 0
s00
h o w e v e r , are s i g n i f i c a n t l y different for different tetrathiolene l i g a n d s . F o r the same T T L l i g a n d , the T a n d the p oo values are v e r y s i m i l a r d e s p i t e 0
the f a c t t h a t different metals
3
of v a r y i n g l o c a l geometries
(nickel vs.
d i c o b a l t d i c a r b o n y l m o i e t i e s ) are i n v o l v e d . I n g o i n g f r o m T T T t o T T N to T C T T N , t h e s l o p e - r e l a t e d
quantity T
0
=
1.1-5.6 X 10 K increases 5
o n l y s l i g h t l y (less t h a n or e q u a l to a f a c t o r of t w o ) whereas the r e s i s t i v i t y p oo increases b y one o r d e r of m a g n i t u d e i n e a c h step, g o i n g f r o m 1 0 t o 5
3
1 0 t o 1 0 o h m - c m (5). W e b e l i e v e t h a t this t r e n d is r e l a t e d to the o x i d a 6
7
t i o n p o t e n t i a l o f the T T L l i g a n d . T h a t is, since the o x i d a t i o n p o t e n t i a l s of the free l i g a n d s increase a l o n g t h e series T T T
< TTN
T T N - » T C T T N ) , the n e g a t i v e charges l o c a l i z e d o n the l i g a n d increase p r o g r e s s i v e l y . T h i s i m p l i e s that the n u m b e r of effective c h a r g e carriers ( o r the d e n s i t y of the d i s o r d e r e d l o c a l i z e d states) decreases as one goes f r o m T T T to T T N to T C T T N . T h i s t h e n causes a s l i g h t increase of a p p r o x i m a t e l y less t h a n or e q u a l to a factor of t w o i n T b u t a n e x p o n e n t i a l increase i n p o a l o n g the series T T T < T T N < T C T T N . 30
0
Both [ N ^ T T L ) ] ^ and [ C o ( C O ) ( T T L ) ] react w i t h o x i d i z i n g agents s u c h as i o d i n e either i n s o l u t i o n - s u s p e n s i o n or i n s o l i d - g a s phases, a c c o r d i n g to E q u a t i o n s 11 a n d 12, r e s p e c t i v e l y ( 5 ) . A suspension of the
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
2
2
~ [ N i ( T T L ) ] . . + 11 ±
| [Ni(TTL)I,],
2?
\ [Co (CO) (TTL)]. 2
i
2
2
a ?
?
(11)
± i [Co (CO) (TTL)I L 2
2
(12)
! /
complexes i n a b e n z e n e ( o r other o r g a n i c solvents) s o l u t i o n of i o d i n e w i l l a b s o r b m o l e c u l a r i o d i n e to f o r m [ N i ( T T L ) I ] a . a n d [ C o ( C O ) (TTL)I ] ( w h e r e y is the m o l a r ratio of i o d i n e to [ N i ( T T L ) ] « c a n d [ C o ( C O ) ( T T L ) ] . , r e s p e c t i v e l y ) . T h e r e s u l t i n g complexes are also i n s o l u b l e i n most o r g a n i c solvents. T h e same r e a c t i o n c a n b e c a r r i e d out i n s o l i d - g a s phase. T h e s o l i d [ N i ( T T L ) ] * or [ C o ( C O ) ( T T L ) ] * c o m plexes a b s o r b i o d i n e v a p o r s l o w l y at r o o m t e m p e r a t u r e t o f o r m [ N i ( T T L J I J a . or [ C o ( C O ) ( T T L ) I ] . T h e rate of these s o l i d - g a s reactions c a n be a c c e l e r a t e d b y i n c r e a s i n g t e m p e r a t u r e . F u r t h e r m o r e , these reactions are t o t a l l y r e v e r s i b l e i n the sense that the a b s o r b e d i o d i n e c a n be removed by p u m p i n g [ N i ( T T L ) I J * and [ C o ( C O ) ( T T L ) I ] under v a c u u m at e l e v a t e d temperatures. T h e k i n e t i c s of these s o l i d - g a s reactions c a n be m o n i t o r e d b y m e a s u r i n g the w e i g h t g a i n ( f o r w a r d reactions, E q u a t i o n s 11 a n d 12) a n d w e i g h t loss ( r e v e r s e d reactions, E q u a t i o n s 11 a n d 12) of the s o l i d complexes i n a n a t m o s p h e r e saturated w i t h i o d i n e vapor a n d i n vacuo, respectively ( 5 ) . y
y
2
2
2
x
2
a
2
2
2
2 /
2
; r
2
2
2 /
a ;
T h e I R spectra of these o x i d i z e d p o l y m e r s are v e r y s i m i l a r to those of the n e u t r a l p o l y m e r s except f o r a n e w b a n d at 1050 c m " w h i c h c a n reas o n a b l y be assigned to the f o r m a t i o n of n e w C = S b o n d s i n the o x i d i z e d p o l y m e r chains. 1
T h e r e v e r s i b i l i t y of these reactions suggests that t h e y are t o p o t a c t i c or i n t e r c a l a t i o n reactions.
We
b e l i e v e that these reactions
o x i d a t i o n of the p o l y m e r i c [ N i ( T T L ) ] * or
represent
[Co (CO) ,TTL]«, 2
2
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
chains
382
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
w i t h m o l e c u l a r i o d i n e w h i c h is c o n c o m i t a n t l y r e d u c e d to i o d i d e or p o l y i o d i d e anions w h i c h t h e n " i n t e r c a l a t e " i n t o the s o l i d m a t r i x . T o investigate the o x i d a t i o n states of [ N i ( T T L ) I ] a . a n d [ C o ( C O ) y
2
( T T L ) ^ ] ^ w e m e a s u r e d the resonant R a m a n spectra of where y =
2
[Ni(TTT)I ] 1 /
1,2,3. F o r [ N i ( T T T ) I ] , intense r e s o n a n c e - e n h a n c e d 3
s y m m e t r i c I—I—I s t r e t c h i n g f r e q u e n c y of I ~ was o b s e r v e d at 107
cm'
3
a l o n g w i t h the e x p e c t e d
overtone progressions
(65, 66).
a ?
totally
; r
1
T h i s is c o n -
sistent w i t h the f o r m u l a t i o n of [ N i ( T T T ) I " ] . F o r [ N i ( T T T ) I ] * o n the +
3
a ?
other h a n d , n o I ~ f r e q u e n c y w a s o b s e r v e d . T h o u g h the f a i l u r e to observe 3
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
the e x p e c t e d f r e q u e n c i e s
i n R a m a n spectroscopy does n o t constitute
a
p r o o f of the absence of the species, it is o u r b e l i e f t h a t the result is c o n sistent w i t h the f o r m u l a t i o n [ N i ( T T T )
y +
• y\~] f o r y < 1 since w e expect x
the [ N i ( T T T ) ] ^ c h a i n c h r o m o p h o r e to b e r e l a t i v e l y l i t t l e affected b y t h e o x i d a t i o n , a n d h e n c e the presence of y/3 h a v e b e e n easily detectable.
m o l e e q u i v a l e n t s of I ~ w o u l d 3
F o r [ N i ( T T T ) I ] ^ the resonance R a m a n 2
s p e c t r u m shows not o n l y the intense f u n d a m e n t a l a n d overtone p r o g r e s s i o n of I " b u t also the " a n t i s y m m e t r i c " stretch at 143 c m " , s u g g e s t i n g 1
3
either some d i s t o r t i o n of the t r i i o d i d e i o n f r o m the i d e a l i z e d D
x
h
sym-
m e t r y a n d / o r the presence of b o t h s y m m e t r i c a n d a s y m m e t r i c t r i i o d i d e ions
We
(65,66).
p r o p o s e that
[Ni(TTT)I ]* 2
can be formulated
as
( N i T T P • ( 1 / 2 ) 1 " • ( 1 / 2 ) I - ) * i n w h i c h the coexistence of I" a n d I " i n 3
3
the channels p r o v i d e d b y the o x i d i z e d [ N i ( T T T ) ]
; r
chains causes some
or a l l of the t r i i o d i d e ions to b e d i s t o r t e d . P r e l i m i n a r y e x t e n d e d x-ray a b s o r p t i o n fine structure
( E X A F S ) spectroscopic measurements
of t h e
o x i d i z e d p o l y m e r i c species also r e v e a l e d n o d i s t i n c t N i - I a n d Co—I b o n d s i n [ N i ( T T L ) I J , (nickel K edge) and [ C o ( C O ) ( T T L ) I ] , 2
edge),
r e s p e c t i v e l y , w h i c h is consistent
2
y
i o d i d e s or p o l y i o d i d e s are not d i r e c t l y b o n d e d to the m e t a l p o l y m e r chains
(cobalt
w i t h the f o r m u l a t i o n that
K the
tetrathiolene
(67).
T h e e l e c t r i c a l c o n d u c t i v i t y d a t a of the o x i d i z e d species [ N i ( T T T ) I ] 1 /
(where y =
1,2,3) f o l l o w the same t e m p e r a t u r e d e p e n d e n c e
7 ) as the n e u t r a l species w i t h , h o w e v e r , a significant decrease i n T
0
f a c t o r of t w o to three a n d a d r a m a t i c decrease i n r o o m
a r
(Equation by a
temperature
r e s i s t i v i t y p o b y three orders of m a g n i t u d e i n g o i n g f r o m the n e u t r a l to 30
the o x i d i z e d p o l y m e r s . T h i s is consistent w i t h the increase i n the n u m b e r of effective charge carriers o n the o r g a n o m e t a l l i c c h a i n u p o n o x i d a t i o n . An
initially p u z z l i n g observation
[Ni(TTT)Iy]
that the
electrical conductivities
of
are v i r t u a l l y i n v a r i a n t to the d e g r e e of o x i d a t i o n w i t h y
=
1, 2, a n d 3 c a n n o w b e e x p l a i n e d b y t h e a b o v e f o r m u l a t i o n that f o r y >
1,
the extra i o d i n e s go i n as n e u t r a l i o d i n e m o l e c u l e s , c o n v e r t i n g p a r t (y
=
t 2 7
2 ) or a l l (y =
3) of the i o d i d e (I") i n t o the t r i i o d i d e ( I " ) 3
ions s u c h that
t h e o x i d a t i o n states of the n i c k e l tetrathiolene chains r e m a i n essentially the same for y > 1.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
29.
TEO
Metal
383
Tetrathiolenes
Applications T h e r e are several p l a u s i b l e t e c h n o l o g i c a l a p p l i c a t i o n s of these n e w m e t a l tetrathiolene p o l y m e r s . A p r i m e e x a m p l e is the use of these o r g a n o m e t a l l i c p o l y m e r s as r e v e r s i b l e a n o d e m a t e r i a l s i n r e c h a r g e a b l e
(sec-
o n d a r y ) batteries.
these
W e take a d v a n t a g e of the f o l l o w i n g facts:
(1)
p o l y m e r s c a n b e o x i d i z e d w i t h oxidants s u c h as m o l e c u l a r i o d i n e reversibly;
(2)
b o t h the n e u t r a l a n d the o x i d i z e d species
are i n s o l u b l e i n
c o m m o n solvents; a n d ( 3 ) b o t h the n e u t r a l a n d the o x i d i z e d species t h e r m a l l y , air, a n d m o i s t u r e stable. Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
process
of a b a t t e r y
are
W e reason that, i n t h e d i s c h a r g i n g
w i t h m e t a l tetrathiolene
p o l y m e r s as
reversible
anodes, electrons flow t h r o u g h the outer l o a d c i r c u i t ; the o x i d i z e d p o l y mers t h e n p i c k u p a n e q u i v a l e n t a m o u n t of i o d i d e or p o l y i o d i d e ions f r o m the electrolyte s o l u t i o n . I n the r e c h a r g i n g process, a n o p p o s i t e p o t e n t i a l is a p p l i e d w h i c h reduces t h e o x i d i z e d species to the n e u t r a l p o l y m e r s w i t h the c o n c o m i t a n t ejection of a n e q u i v a l e n t a m o u n t of the i o d i d e or p o l y i o d i d e ions b a c k to the electrolyte. A t y p i c a l rechargeable structed.
b a t t e r y b a s e d o n this i d e a has b e e n
con-
I t uses the [ N i ( T T L ) ] . p o l y m e r as the a n o d e , p o l y - 2 - v i n y l r
pyridine-iodine
(P2VP • (x/2)I ) 2
(68)
c o m p l e x as the c a t h o d e ,
aqueous K I s o l u t i o n as the electrolyte s o l u t i o n ( E q u a t i o n 1 3 ) .
and
I n the
d i s c h a r g i n g process, electrons flow f r o m the a n o d e [ N i ( T T L ) ] ^ to t h e c a t h o d e P 2 V P • (x/2)l
2
t h r o u g h the l o a d c i r c u i t ; the i o d i d e ( o r p o l y -
i o d i d e ) ions f o r m e d at the c a t h o d e t h e n enter the e l e c t r o l y t e w h i l e a n e q u i v a l e n t a m o u n t of i o d i d e ions f r o m the electrolyte s o l u t i o n i n t e r c a l a t e i n t o the o x i d i z e d m e t a l tetrathiolene p o l y m e r ( a n o d e ) .
The
electrolyte
c o n c e n t r a t i o n is therefore c o n s e r v e d . U p o n r e c h a r g i n g w i t h a n o p p o s i t e [Ni(TTL)],/KI(H 0)/P2VP •J I 2
p o t e n t i a l , these processes are r e v e r s e d .
2
(13)
Since b o t h the a n o d e a n d t h e
c a t h o d e are i n s o l u b l e i n the electrolyte, t h e o v e r a l l process amounts to t r a n s p o r t i n g i o d i n e f r o m P 2 V P p o l y m e r to m e t a l tetrathiolene p o l y m e r ( a r e d o x r e a c t i o n ) i n the d i s c h a r g i n g process a n d v i c e v e r s a i n the rec h a r g i n g process.
T h e m e a s u r e d v o l t a g e f o r s u c h a b a t t e r y ranges f r o m
0.5 to 0.8 V , d e p e n d i n g u p o n the t y p e of m e t a l t e t r a t h i o l e n e p o l y m e r chosen. It is c o n c e i v a b l e that h i g h e r voltages c a n b e a c h i e v e d b y c h a n g i n g the m e t a l a n d / o r the l i g a n d ( s )
of the a n o d e or b y r e p l a c i n g t h e
cathode w i t h more p o w e r f u l oxidizing materials. Conclusions I n c o n c l u s i o n , w e h a v e d e m o n s t r a t e d that the o r g a n o c h a l c o g e n c o m p o u n d s d i s c u s s e d i n the section o n " O r g a n o c h a l c o g e n L i g a n d s " are excel-
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
384
INORGANIC
COMPOUNDS
l e n t l i g a n d s f o r o r g a n o m e t a l l i c syntheses.
WITH UNUSUAL PROPERTIES
II
T h e resulting metal complexes,
e i t h e r as d i s c r e t e o l i g o m e r i c clusters o r i n f i n i t e - c h a i n p o l y m e r s , e x h i b i t novel stereochemistry a n d r i c h electrochemistry. T h e pseudo-one-dimens i o n a l s e m i c o n d u c t i v i t i e s a n d t h e r e v e r s i b l e t o p o t a c t i c o x i d a t i o n reactions of t h e i n s o l u b l e m e t a l t e t r a t h i o l e n e p o l y m e r s o p e n u p a n e w d i m e n s i o n of p o t e n t i a l t e c h n o l o g i c a l a p p l i c a t i o n s .
W e continue to develop the
c h e m i s t r y , s t e r e o c h e m i s t r y , a n d e l e c t r o c h e m i s t r y of these ( a n d r e l a t e d ) materials.
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
Acknowledgment I thank J. J . H a u s e r a n d P . K . G a l l a g h e r at B e l l Laboratories ( M u r r a y H i l l ) for permission to quote the conductivity a n d thermogravimetric results ( R e f . 5 ) , r e s p e c t i v e l y .
I a m also g r a t e f u l to J . S a n F i l i p p o at
R u t g e r s U n i v e r s i t y ( N e w B r u n s w i c k ) f o r laser R a m a n m e a s u r e m e n t s . S p e c i a l t h a n k s g o t o P . A . S n y d e r f o r h e r s k i l l f u l t e c h n i c a l assistance. I also e n j o y e d h e l p f u l discussions w i t h D . W . M u r p h y a n d J . N . C a r i d e s . O t h e r c o n t r i b u t o r s are a c k n o w l e d g e d i n R e f . 1,2,3, 4, a n d 5.
Literature Cited 1. Teo, B. K., Wudl, F., Marshall, J. H., Kruger, A., J. Am. Chem. Soc. (1977) 99, 2349. 2. Teo, B. K., Wudl, F., Hauser, J. J., Kruger, A., J. Am. Chem. Soc. (1977) 99, 4862. 3. Teo, B. K., Snyder-Robinson, P. A., J. Chem.Soc.,Chem. Commun., submitted for publication. 4. Teo, B. K., Snyder-Robinson, P. A., Inorg. Chem., accepted for publication. 5. Teo, B. K., Snyder-Robinson, P. A., Hauser, J. J., Gallagher, P. K., Inorg. Chem., submitted for publication. 6. Girgis, A. Y , Sohn, Y. S., Balch, A. L., Inorg. Chem. (1975) 14, 2327. 7. Kaiser, S. W., Saillant, R. B., Butler, W. M., Rasmussen, P.G.,Inorg. Chem. (1976) 15, 2681, 2688. 8. Mueller-Westerhoff, U. T., Heinrich, F., "Extended Interactions Between Metal Ions," L. V. Interrante, Ed., ACS Symp. Ser. (1974) 5, 396. 9. Mueller-Westerhoff, U. T., "Inorganic Compounds with Unusual Properties," R. B. King, Ed., ADV. C H E M . SER. (1976) 150, 31-45.
10. Leitherser, M., Coucouvanis, D., Inorg. Chem. (1977) 16, 1611. 11. Hollander, F. J., Leitheiser, M., Coucouvanis, D., Inorg. Chem. (1977) 16, 1615. 12. Hollander, F. J., Coucouvanis, D., Inorg. Chem. (1974) 13, 2381. 13. Coucouvanis, D., Baenziger, N. C., Johnson, S. M., J. Am. Chem. Soc. (1973) 95, 3875. 14. Coucouvanis, D., Piltingsrud, D., J. Am. Chem. Soc. (1973) 95, 5556. 15. Hollander, F. J., Coucouvanis, D., J. Am. Chem. Soc. (1977) 99, 6268. 16. Callahan, R. W., Keene, F. R., Meyer, T. J., Salmon, D. J., J. Am. Chem. Soc. (1977) 99, 1064. 17. Taube, H., Surv. Prog. Chem. (1974) 6, 1. 18. Krentzien, H., Taube, H., J. Am. Chem. Soc. (1976) 98, 6379. 19. Meyer, T. J., Prog. Inorg. Chem. (1975) 19, 1.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
29.
TEO
Metal
Tetrathiolenes
385
20. 21. 22. 23.
Hunziker, M., Ludi, A., J. Am. Chem. Soc. (1977) 99, 7370. Trofimenko, S. J., J. Org. Chem. (1964) 29, 3046. Cunningham, J. A., Sievers, R. E.,J.Am. Chem. Soc. (1973) 95, 7183. Cetinkaya, B., Hitchcock, P. B., Lappert, M. F., Pye, P. L., J. Chem. Soc., Chem. Commun. (1975) 683. 24. Interrante, L. V., "Inorganic Compounds with Unusual Properties," R. B.
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
King, Ed., ADV. C H E M . SER. (1976) 150, 1-17.
25. Interrante, L. V., Ed., "Extended Interactions Between Metal Ions," ACS Symp. Ser. (1974) 5. 26. Miller, J. S., Epstein, A. J., Prog. Inorg. Chem. (1976) 20, 1. 27. Schrauzer, G. N., Prakash, H., Inorg. Chem. (1975) 14, 1200. 28. Rosa, E. J., Schrauzer, G. N.,J.Phys. Chem. (1969) 73, 3132. 29. Laufrey, M., Compt. Rend. (1911) 152, 92. 30. Zweig, A., Hoffmann, A. K., J. Org. Chem. (1965) 30, 3997. 31. Meinwald, J., Dauplaise, D., Wudl, F., Hauser, J. J., J. Am. Chem Soc.. (1977) 99, 255. 32. Meinwald, J., Dauplaise, D., Clardy, J., J. Am. Chem. Soc (1977) 99, 7743. 33. Wudl, F., Schafer, D. E., Miller, B.,J.Am. Chem. Soc. (1976) 98, 252. 34. Marschalk, C., Stumm,C.,Bull. Soc. Chim. Fr. (1948) 15, 418. 35. Marschalk, C., Bull. Soc. Chim. Fr. (1952) 19, 800. 36. Klingsberg, E., Tetrahedron (1972) 28, 963. 37. Bonamico, M., Dessy,G.,Fares, V., Chem. Commun. (1969) 324. 38. Inokuchi, H., Kochi, M., Harada, Y., Bull. Chem. Soc. Jpn. (1967) 40, 2695. 39. Perez-Albuerne, E. A., Johnson, H., Jr., Trevoy, D. J., J. Chem. Phys. (1971) 55, 1547, and references cited therein. 40. Bray, J. W., Hart, H. R., Jr., Interrante, L. V., Jacobs, I. S., Kasper, J. S., Piacente, P. A., Watkins, G. D., Phys. Rev. B (1977) 16, 1359. 41. Wudl, F., Wobschall, D., Hufnagel, E. J., J. Am. Chem. Soc. (1972) 94, 670. 42. Ferraris, J. P., Cowan, D. O., Walatka, V., Perlstein, J. A., J. Am. Chem. Soc. (1973) 95, 948. 43. Schafer, D. E., Wudl, F., Thomas, G. A., Ferraris, J. P., Cowan, D. O., Solid State Commun. (1974) 14, 347. 44. Wudl, F.,J.Am. Chem. Soc. (1975) 97, 1962. 45. Bloch, A. N., Weisman, R. B., Varma, C. M., Phys. Rev. Lett. (1972) 28, 753. 46. Melby, L. R., Can. J. Chem. (1965) 43, 1448. 47. Masuda, K., Silver, M., Eds., "Energy and Charge Transfer in Organic Semiconductors," Plenum, New York, 1974. 48. Fenske, R. F., Pure Appl. Chem. (1971) 27, 61. 49. Geiger, W. E., Jr., J. Phys. Chem. (1973) 77, 1862. 50. Teo, B. K., Snyder-Robinson, P. A., submitted for publication. 51. Phillips, T. E., Kistenmacher, T. J., Ferraris, J. P., Cowan, D. O.,J.Chem. Soc., Chem. Commun. (1973) 471. 52. Kistenmacher, T. J., Phillips, T. E., Cowan, D. O., Acta Crystallogr. Sect. B (1974) 30, 763. 53. Peters,C.,Eagen, C. F., Inorg. Chem. (1976) 15, 782. 54. Williams, J. M., Ross, F. K., Iwata, M., Petersen, J. L., Peterson, S. W., Lin, S.C.,Keefer, K., Solid State Commun. (1975) 17, 45. 55. Williams, J. M., Iwata, M., Peterson, S. W., Leslie, K. A., Guggenheim, H. J., Phys. Rev. Lett. (1975) 34, 1653. 56. Shante, V. K. S., Varma, C. M., Bloch, A. N., Phys. Rev. B (1973) 8, 4885. 57. Bloch, A. N., Varma, C. M., J. Phys. C (1973) 6, 1849. 58. Hamilton, E. M., Philos. Mag. (1972) 26, 1043.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by CORNELL UNIV on August 30, 2016 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch029
386
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
59. Keller, H. J., Ed., "Low-Dimensional Cooperative Phenomena," Plenum, New York, 1975. 60. Thomas, T. W., Underhill, A. E., Chem. Soc. Rev. (1972) 1, 99. 61. Zeller, H. R., Beck, A.,J.Phys. Chem. Solids (1974) 35, 77. 62. Thomas, T. W., Hsu, C. H., Labes, M. M., Gomm, P. S., Underhill, A. E., Watkins, D. M., J. Chem. Soc. (1972) 2050. 63. Ginsberg, A. P., Koepke, J. W., Hauser, J. J., West, K. W., Di Salvo, F. J., Sprinkle, C. R., Cohen, R. L., Inorg. Chem. (1976) 15, 514. 64. Mott, N., "Metal-Insulator Transitions," Chaps. 4, 6, Taylor and Francis, London, 1974. 65. Kiefer, W., Bernstein, H. J., Chem. Phys. Lett. (1972) 16, 5. 66. Kaya, K., Mikami, N., Udagawa, Y., Ito, M., Chem. Phys. Lett. (1972) 16, 151. 67. Teo, B. K., unpublished data. 68. Schneider, A. A., Greatbatch, W., Mead, R., "Power Sources 5," D. H . Collins, Ed., p. 651, Academic, London, 1975. RECEIVED April 10, 1978.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.