56 Multicomponent Adsorption Isotherms on Hydrogen-Mordenite
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
JAMES I. JOUBERT and IMRE ZWIEBEL Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, Mass. 01609
Adsorption isotherms of oxygen, nitrogen, carbon dioxide, and sulfur dioxide on hydrogen-mordenite were measured at several temperatures in the range of 0°-100°C. The SO and CO2 had considerably greater affinity for the adsorbent than the O and N . Using the pure-component data, multicomponent isotherms were predicted and compared with experimental results. The more strongly adsorbed species completely overwhelm the lesser adsorbed components ( e.g., SO vs. N ). Wherever 2 species of approximately equal affinity are adsorbed (e.g.,CO + SO ), the temperature sensitivity of the individual components influences the extent of the competition. 2
2
2
2
2
2
2
* ^ p h e literature contains a r e l a t i v e l y m e a g e r a m o u n t of m u l t i c o m p o n e n t •*· a d s o r p t i o n d a t a for i n o r g a n i c gases. T h e e a r l y literature was s u m marized by Young and Crowell (8),
a n d since t h e n , the b u l k of
the
p u b l i s h e d d a t a has dealt w i t h mixtures of o r g a n i c v a p o r s or i n o r g a n i c adsorbates at l i q u i d n i t r o g e n temperatures. M o t i v a t e d b y the a i r p o l l u t i o n c o m b a t , o u r r e s e a r c h w a s d i r e c t e d at the c o m p o n e n t s
m a k i n g u p a s i m u l a t e d exhaust gas, n a m e l y
nitrogen,
o x y g e n , c a r b o n d i o x i d e , a n d s u l f u r d i o x i d e . T h e experiments w e r e
re
s t r i c t e d to the 0 ° - 1 0 0 ° C r a n g e at 1 a t m absolute pressure. F i r s t , p u r e - c o m p o n e n t isotherms w e r e m e a s u r e d .
A s a consequence
of p r e l i m i n a r y screening i n w h i c h s u c h adsorbents as several c o m m e r c i a l grade 5 A sieves, 1 3 X sieve, H - m o r d e n i t e a n d a c t i v a t e d c a r b o n w e r e c o m p a r e d , the h y d r o g e n f o r m of m o r d e n i t e w a s selected as the a d s o r b e n t f o r the m u l t i c o m p o n e n t experiments.
This decision was based u p o n capacity,
selectivity, a n d d u r a b i l i t y c r i t e r i a , since p r a c t i c a l a p p l i c a t i o n u n d e r rather severe c o n d i t i o n s w a s one of the objectives. 209
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
210
M O L E C U L A R SIEVE ZEOLITES
II
Experimental
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
T h e a p p a r a t u s u s e d is a m o d i f i c a t i o n of t h e e q u i p m e n t e m p l o y e d b y L e w i s et al. (6). F o r p u r e c o m p o n e n t s , i t is a c o n s t a n t - v o l u m e u n i t ; f o r gas m i x t u r e s , i t operates at constant t o t a l pressure ( n e a r l y constant v o l u m e ). It u t i l i z e s a n i n t e r n a l r e c i r c u l a t i o n d e v i c e to expose t h e adsorbent c o n t i n u o u s l y t o a gas m i x t u r e of a p p r o x i m a t e l y k n o w n c o m p o s i t i o n , a n d thus a v o i d l o c a l i z e d c o n c e n t r a t i o n v a r i a t i o n s w h i c h c o u l d arise as a result of differences i n t h e d i f f u s i v i t i e s of t h e v a r i o u s species. T h e p u r e - c o m p o n e n t isotherms w e r e d e t e r m i n e d b y a d m i t t i n g suc cessive i n c r e m e n t s of adsorbate i n t o t h e c h a m b e r a n d m e a s u r i n g t h e pressures. F o r t h e m u l t i c o m p o n e n t measurements, t h e system pressure is m a i n t a i n e d constant b y a manostat. W h i l e e q u i l i b r a t i o n takes p l a c e , the gas is c i r c u l a t e d i n a l o o p c o n t a i n i n g t h e a d s o r p t i o n c h a m b e r a n d a large reservoir w h e r e t h e c o n c e n t r a t i o n is a p p r o x i m a t e l y constant. A t the t e r m i n a t i o n of t h e e x p e r i m e n t , t h e a d s o r p t i o n c h a m b e r is i s o l a t e d , a n d t h e final c o m p o s i t i o n i n t h e reservoir is m e a s u r e d b y w i t h d r a w i n g a s a m p l e a n d a n a l y z i n g i t w i t h a mass spectrometer. T h e n , b y d e s o r b i n g , m e a s u r i n g t h e t o t a l a m o u n t of desorbate, a n a l y z i n g i t , a n d c o r r e c t i n g f o r t h e v o i d space gas content, t h e d e s i r e d a d s o r b e d phase q u a n t i t i e s are o b t a i n e d . T h e adsorbents are a c t i v a t e d in vacuo b e l o w 10" t o r r at 3 5 0 ° - 4 0 0 ° C f o r 16 h o u r s . D e s o r p t i o n s are c a r r i e d o u t b y r e p e a t e d l y c o n n e c t i n g t h e a d s o r p t i o n c h a m b e r to a n e v a c u a t e d vessel f r o m w h i c h t h e desorbate is c o l l e c t e d i n a m i x i n g c h a m b e r . D e s o r p t i o n s u s u a l l y are c a r r i e d o u t at the a d s o r p t i o n t e m p e r a t u r e , a n d completeness of r e m o v a l is c h e c k e d b y m a t e r i a l b a l a n c e ; i t is u s u a l l y w i t h i n 2 % . O c c a s i o n a l l y , to s p e e d u p t h e p r o c e d u r e , desorptions m a y b e c a r r i e d o u t at e l e v a t e d temperatures. 5
The hydrogen-mordenite (unit cell; hydrated H A l S i o 0 6 · 2 4 H 0 ) u s e d i n this s t u d y w a s p r o v i d e d b y t h e N o r t o n C o . , W o r c e s t e r , M a s s . , i n the f o r m of 1 / 1 6 - i n c h pellets f a b r i c a t e d w i t h o u t a b i n d e r . T h i s m a t e r i a l is c h a r a c t e r i z e d b y p a r a l l e l 1 2 - m e m b e r e d rings of s i l i c a - a l u m i n a tetrah e d r a f o r m i n g pores w i t h effective diameters of 7 - 9 A ; smaller cavities o c c u r i n t h e w a l l s of t h e large channels. M o r d e n i t e has r e p o r t e d B . E . T . surface area of 400 to 500 m / g r a m ( 3 ) ; synthesis a n d other characteris tics of this m a t e r i a l are d e s c r i b e d w e l l elsewhere ( I , 5 ) . 8
8
4
2
9
2
Correlations W h i l e u l t i m a t e l y t h e o b j e c t i v e of o u r project w i l l b e t h e t h e o r e t i c a l analysis of t h e b e h a v i o r of c o m p l e x m i x t u r e s , at this p o i n t w e o n l y c a n correlate o u r results w i t h p r e v i o u s l y d e v e l o p e d m u l t i c o m p o n e n t m o d e l s . W i t h the o b j e c t i v e of p r e d i c t i n g t h e t o t a l a m o u n t a d s o r b e d a n d t h e a d s o r b e d phase c o m p o s i t i o n f r o m n o m o r e t h a n p u r e - c o m p o n e n t d a t a , o n l y a f e w s p e c i a l l y selected systems h a v e b e e n u s e d i n p r e v i o u s e x p e r i m e n t a l p r o g r a m s to v e r i f y the v a r i o u s m o d e l s . H e n c e , these r e l a t i o n s h i p s , w h i c h usually were
derived f r o m theoretical
considerations,
have
not been
tested sufficiently y e t . T h u s , t h e y a l l c a n b e classified as e m p i r i c a l m o d e l s ,
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
56.
J O U B E R T AND
Multicomponent
zwiEBEL
Adsorption
Isotherms
211
e s p e c i a l l y as t h e y h a v e b e e n m o d i f i e d to m a k e t h e m r e a d i l y a p p l i c a b l e (2, 4,
6,8).
C o r r e l a t i o n s w i t h the m o d e l b a s e d d e v e l o p e d b y M y e r s a n d P r a u s n i t z (7),
on thermodynamic principles
hereafter r e f e r r e d to as the i d e a l
s o l u t i o n m o d e l , are p r e s e n t e d i n this p a p e r .
T h e m o d e l is b a s e d u p o n
the a s s u m p t i o n that R a o u l t ' s l a w is a p p l i c a b l e to the a d s o r b e d phase, a n d the s p r e a d i n g pressure of the m i x t u r e a n d those of the p u r e c o m p o n e n t s are set e q u a l at the same surface coverage.
U n l i k e some of the
other
m o d e l s , this one does not r e q u i r e that the p u r e c o m p o n e n t s a d h e r e to Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
a n y specific p u r e - c o m p o n e n t b e h a v i o r .
H e n c e , for e x a m p l e , the
S0 , 2
w h i c h w a s c o r r e l a t e d b y the L a n g m u i r e q u a t i o n , a n d C 0 , w h i c h best 2
fitted
the F r e u n d l i c h e q u a t i o n , c o u l d be c o m b i n e d r e a d i l y i n p r e d i c t i n g
m i x t u r e characteristics.
T h i s m o d e l c o u l d b e e x t e n d e d to h i g h e r cover
ages t h a n a n y of the other r e l a t i o n s h i p s ; h o w e v e r , the present w o r k is r e s t r i c t e d to the l o w coverage range. t i o n d a t a o n i n o r g a n i c adsorbates
F i n a l l y , this w o r k presents a d s o r p
w i t h w i d e l y different
characteristics
i n complex mixtures.
Results Pure Components. P u r e - c o m p o n e n t isotherms w e r e m e a s u r e d f o r 4 gases, o x y g e n , n i t r o g e n , c a r b o n d i o x i d e , a n d s u l f u r d i o x i d e . T h e first 3 e x h i b i t e d r e v e r s i b l e s o r p t i o n , w h i l e the
S0
2
s h o w e d a rather
broad
hysteresis l o o p . R e l a t i v e l y s p e a k i n g , the affinity of the h y d r o g e n - m o r d e n i t e is great est f o r the S 0 , t h e n i n d e c r e a s i n g o r d e r the C 0 , N , a n d 0 2
2
2
2
follow.
T h i s c a n b e e x p l a i n e d b y differences i n the electronic configurations of these adsorbates; n o " s i e v i n g " w o u l d be e x p e c t e d i n a n y of these systems since the m o l e c u l a r d i a m e t e r of these gas m o l e c u l e s is w e l l b e l o w the p u b l i s h e d p o r e diameters.
T h e s o r p t i o n of a l l the species is l i k e l y to b e
p h y s i c a l , since the c a l c u l a t e d isosteric heats are a l l b e l o w 5 k c a l / m o l e . T h e o x y g e n a n d n i t r o g e n e x h i b i t e d s i m i l a r characteristics; t h e y w e r e b o t h c o r r e l a t e d w e l l b y the F r e u n d l i c h i s o t h e r m . T h e i r s i m i l a r m o l e c u l a r structure m i g h t a c c o u n t for this, w i t h differences i n t h e i r p o l a r i z a b i l i t y b e i n g the major reason f o r t h e i r r e l a t i v e a d s o r b a b i l i t y . The C 0 respectively
2
a n d S 0 , h a v i n g c r i t i c a l temperatures of 3 1 . 1 ° a n d 1 5 7 . 2 ° C , 2
(vs.
—118.8°C
for 0
2
a n d —147.1 ° C f o r N ) , are 2
more
l i k e l y to adsorb b y the s o - c a l l e d m u l t i l a y e r m e c h a n i s m , a n d hence, i n the r e g i o n of the c u r r e n t experiments e x h i b i t c o n s i d e r a b l y h i g h e r capacities t h a n the 0
2
a n d N — a s m u c h as 15 times h i g h e r .
r e g i o n , the C 0
2
2
I n the e x p e r i m e n t a l
isotherms c o u l d b e c o r r e l a t e d b y the F r e u n d l i c h e q u a -
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
212
MOLECULAR
Table I.
SIEVE Z E O L I T E S
Correlation of Pure-Component Isotherms Ρ in torr, W in
mmol/gram
£5°
36°
56°
78°
100°
KP 7.44 0.909
3.31 0.943
2.62 0.946
1.52 0.970
1.42 0.924
0.824 0.950
Nitrogen; W = KP Κ Χ 10 17.4 m 0.841
7.56 0.870
5.28 0.891
2.55 0.936
1.78 0.919
0.836 0.977
KP 3.70 0.277
2.17 0.341
1.13 0.405
0.491 0.492
0.220 0.565
bP) 8.28 3.78
7.02 3.48
6.80 3.00
5.80 2.66
Temp., °C Oxygen; W = Κ Χ 10 m 4
II
0° m
m
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
4
C a r b o n D i o x i d e ; W == Κ X 10' 5.51 m 0.257
m
S u l f u r D i o x i d e ; W = WmbP/(l b Χ 10 11.95 9.13 Wm 4.18 3.90
+
3
S0
2
Figure 1.
PRESSURE S0
2
( torr)
adsorption isotherms
t i o n , a l t h o u g h there w e r e some d e v i a t i o n s
at l o w pressures.
d a t a s e e m e d to b e fitted best b y t h e L a n g m u i r e q u a t i o n .
The S 0
2
A t t e m p t s to fit
the o t h e r p u r e c o m p o n e n t s to t h e L a n g m u i r e q u a t i o n o r t h e B . E . T . e q u a t i o n w e r e n o t successful; h e n c e , the m i x e d L a n g m u i r m o d e l o r t h e B . E . T .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
56.
JOUBERT AND zwiEBEL
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
0.51
ι
Multicomponent
\
1
ι
N Figure 2.
1
1
PRESSURE
2
N
adsorption
2
Adsorption
Isotherms
1
I
213
I
(torr) isotherms
m i x t u r e m o d e l w a s n o t u s e d i n this w o r k . T h e results of these p u r e c o m p o n e n t correlations are s u m m a r i z e d i n T a b l e I. M u l t i - C o m p o n e n t . O n l y a representative selection o f t h e m a n y pos sible c o m b i n a t i o n s of m u l t i c o m p o n e n t e q u i l i b r i a i n v o l v i n g t h e 4 gases u s e d i n t h e c u r r e n t p r o g r a m is p r e s e n t e d i n this p a p e r . F i r s t , t h e effects o f t h e l i g h t l y a d s o r b e d c o m p o n e n t o n t h e m o r e s t r o n g l y a d s o r b e d species are v i e w e d . N o significant effect w a s p r e d i c t e d , a n d this w a s c o n f i r m e d e x p e r i m e n t a l l y . F i g u r e 1 illustrates t h e a m o u n t of S 0
2
adsorbed.
pure S 0
The S 0 - N 2
2
b i n a r y system h a r d l y deviates f r o m t h e
i s o t h e r m . O n t h e other h a n d , a v e r y strong reverse effect w a s
2
p r e d i c t e d . A s s h o w n i n F i g u r e 2, t h e presence o f S 0 s i g n i f i c a n t l y r e d u c e s 2
the a m o u n t o f n i t r o g e n a d s o r b e d . T h i s is q u i t e p r o n o u n c e d e v e n at t h e v e r y l o w S 0 p a r t i a l pressures w h e r e t h e a m o u n t s a d s o r b e d of t h e 2 p u r e 2
c o m p o n e n t s is a p p r o x i m a t e l y e q u a l . S i m i l a r b e h a v i o r has b e e n o b s e r v e d in the C 0 - N 2
2
and C 0 - 0
The S 0 - C 0 2
2
2
2
b i n a r y systems.
system is a b i t m o r e interesting ( F i g u r e 1 ) ; h e r e t h e
c o m p e t i t i o n f o r a d s o r p t i o n sites is m o r e intense, a n d d e v i a t i o n s f r o m t h e p u r e - c o m p o n e n t curves is f a r m o r e significant. W i t h a n increase o f t e m perature, the selectivity f o r S 0
2
is greatly i n c r e a s e d , so m u c h so that
a r o u n d 30 ° C a r e v e r s a l occurs a n d S 0
2
b e c o m e s t h e p r e f e r r e d species.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
214
M O L E C U L A R
0.51
1
1
1
1
1
1
SIEVE
1
ZEOLITES
II
r
900
N Figure 4.
PRESSURE
2
(torr)
N adsorption isotherms 2
atO°C
T h i s is a p p a r e n t l y because of t h e t e m p e r a t u r e d e p e n d e n c e of t h e v a r i o u s c o m p o n e n t s ; the C 0
2
is m u c h m o r e affected t h a n a n y of t h e other c o m
ponents tested.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
56.
JOUBERT AND z w i E B E L
Multicomponent
Adsorption
Isotherms
215
It c a n b e n o t e d f r o m Y - X d i a g r a m s ( F i g u r e 3 ) that w i t h i n c r e a s e d temperatures t h e n i t r o g e n a d s o r p t i o n s e l e c t i v i t y is d e c r e a s e d w i t h respect to S 0 . S i m i l a r decrease i n s e l e c t i v i t y w a s n o t e d f o r t h e C 0 w i t h respect 2
2
to t h e S 0 . T h i s is e n c o u r a g i n g w i t h r e g a r d to a i r p o l l u t i o n c o m b a t , since 2
exhaust gases c o n t a i n l a r g e q u a n t i t i e s of C 0
2
and N
2
i n addition to the
undesirable S 0 . 2
F i n a l l y , F i g u r e 4 shows a n e x a m p l e of t h e 0 - N - C 0 2
2
t e r n a r y iso
2
therms at 0 ° C . T h e s o l i d c u r v e is p u r e N , t h e d a s h e d c u r v e is t h e b i n a r y 2
0 -N Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
2
2
system, w h i l e t h e r e m a i n i n g curves are t h e t e r n a r y cases w i t h t h e
amount of C 0
i n d i c a t e d . N o t e that t h e C 0
2
2
effect, e v e n at v e r y l o w
concentrations, is f a r m o r e significant t h a n t h e 0 tion. T h e 0 - N - S 0 2
2
C0 —S0 -0 , 2
2
2
2
2
effect o n t h e N
2
sorp
system behaves s i m i l a r l y ; t h e C 0 - S 0 - N , o r t h e 2
2
2
a n d t h e q u a t e r n a r y systems are n o t m u c h different f r o m
the S O ^ C O ^ b i n a r y system. T h i s is p r o b a b l y o w i n g t o t h e o v e r b e a r i n g effect of t h e 2 " a c t i v e " c o m p o n e n t s w i t h respect to 0
and N .
2
2
Conclusions E x p e r i m e n t a l l y m e a s u r e d p u r e - c o m p o n e n t a d s o r p t i o n characteristics of 0 , N , C 0 , a n d S 0 2
2
2
2
o n H - m o r d e n i t e w e r e c o r r e l a t e d to p r e d i c t t h e
b e h a v i o r of m u l t i c o m p o n e n t m i x t u r e of these gases. T h e s e correlations, based u p o n the relationships developed b y M y e r s a n d Prausnitz, were successfully s u b s t a n t i a t e d e x p e r i m e n t a l l y . T h e C 0
2
a n d S 0 , w h i c h are 2
the p r e d o m i n a n t l y a d s o r b e d c o m p o n e n t s , c o n t r o l l e d t h e fate of t h e m u l t i component
sorption.
T h i s p r e v a i l e d e v e n at the c o n c e n t r a t i o n
levels
w h e r e t h e p u r e - c o m p o n e n t d a t a i n d i c a t e c o m p a r a b l e affinity f o r b o t h the " s t r o n g l y " a n d t h e " w e a k l y " a d s o r b e d species.
H e n c e , i n d i c a t i o n s are
that a d s o r p t i o n m a y b e effectively u s e f u l i n exhaust gas c l e a n u p processes. T h e t e m p e r a t u r e sensitivity o f t h e p u r e c o m p o n e n t s c o n t r i b u t e s signifi c a n t l y to t h e s e l e c t i v i t y of t h e sieve f o r t h e v a r i o u s c o m p o n e n t s , a n d t h e d a t a o b t a i n e d i n d i c a t e that this also tends to f a v o r t h e d e s i r e d a p p l i c a tions i n p o l l u t i o n c o m b a t .
Nomenclature Ρ
Pressure, torr
W
A m o u n t adsorbed, m m o l e s / g r a m
X
M o l e f r a c t i o n o f a d s o r b e d phase
Y
M o l e f r a c t i o n of gas phase S u b s c r i p t s denote c o m p o n e n t s
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
216
MOLECULAR SIEVE ZEOLITES II
Literature Cited Barrer, R. M., Peterson, D. L., Troc. Roy. Soc. 1964, 280, 466. Danner, R. P., Wenzel, L. Α., A.I.Ch.E. 1969, 15, 515. Eberly, P. E.,J.Phys. Chem. 1963, 67, 2404. Hill, T. L., 7. Chem. Phys. 1946, 14, 268. Keough, A. H., Sand, L. B., J. Am. Chem. Soc. 1961, 83, 3526. Lewis, W. K., Gilliland, E. R., Chertow, B., Cadogan, W. P., Ind. Eng. Chem. 1950, 42, 1319. (7) Myers, A. L., Prausnitz, J. M., A.I.Ch.E.J.1965, 11, 121. (8) Young, D. M., Crowell, A. D., "Physical Adsorption of Gases," Butterworths, London, 1962.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch056
(1) (2) (3) (4) (5) (6)
RECEIVED February 26, 1970.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.