5 Thermoplastic Polyurethane Elastomer
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
Structure—Thermal Response Relations C. S. S C H O L L E N B E R G E R B. F. Goodrich Co., Research and Development Center, 9921 Brecksville Rd., Brecksville, O H 44141
Thermoplastic
polyurethane
elastomers are high
perform-
ance materials that have found a variety of uses including solution applications as coatings and adhesives,
extrusion
applications as tubing and jacketing, film applications, and molding applications, particularly flexible injection-molded automotive parts such as front ends, sight shields, fascia, etc.
These polymers have a segmented structure
gives rise to heterophase morphology.
which
This morphology is
responsible for the fascinating and useful "virtually crosslinked" state of the polymers, and determines other important
polymer
properties.
This
chapter
describes
thermal analysis, namely differential scanning
how
calorimetry
(DSC), can be applied to detect and investigate the contribution of the separate phases in such polymers.
H P h e w i d e s p r e a d use of p l a s t i c a n d r u b b e r parts w i t h i n v e h i c l e passenger a n d e n g i n e c o m p a r t m e n t s has b e e n p r a c t i c e d f o r some t i m e n o w b y t h e a u t o m o t i v e i n d u s t r y a n d continues to g r o w . requiring
specific
front-
e x t e n d e d t h e use of b o t h structural members.
a n d rear-end flexible
vehicle
H o w e v e r , legislation i m p a c t resistance has
plastics a n d r u b b e r s t o b o d y - e x t e r i o r
F l e x i b l e p l a s t i c a n d r u b b e r f r o n t ends, sight shields,
a n d fascia have appeared o n p r o d u c t i o n m o d e l automobiles for approxim a t e l y 10 years a n d are n o w w e l l e s t a b l i s h e d . A n i m p o r t a n t r e q u i r e m e n t of the materials u s e d f o r these a p p l i c a t i o n s is
flexibility,
w h i c h enables
i m p a c t e d parts t o d i s t o r t w i t h o u t b r e a k i n g t h e n t o c o m p l e t e l y t h e i r o r i g i n a l shape u n d a m a g e d . 0-8412-0457-8/79/33-176-083$05.00/0 © 1979 American Chemical Society
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
recover
MULTIPHASE POLYMERS
84
N o w a n o t h e r f a c t o r has a p p e a r e d o n the scene. It is the w o r l d - w i d e e n e r g y shortage w h i c h r e c o m m e n d s the use of c o n s t r u c t i o n m a t e r i a l s less dense t h a n m e t a l w h e r e v e r p r a c t i c a l to p e r m i t the s u b s t a n t i a l r e d u c t i o n of o v e r a l l v e h i c l e w e i g h t i n the interest of i m p r o v e d f u e l e c o n o m y .
This
d e v e l o p m e n t c o m b i n e s w i t h i m p a c t r e q u i r e m e n t s to s t r e n g t h e n the case f o r m u c h b r o a d e r use of s y n t h e t i c p o l y m e r s i n a u t o m o b i l e s .
So, the t i m e
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
w o u l d seem to b e r i p e to c a p i t a l i z e m o r e f u l l y o n t h e use of l i g h t - w e i g h t , flexible
p o l y m e r i c materials i n m a k i n g exterior a u t o m o b i l e - b o d y
tural members.
struc-
I n d e e d , w e a l r e a d y h e a r of the " f r i e n d l y f e n d e r , "
the
n o n d e n t i n g d o o r p a n e l , etc. It w o u l d seem
that
such broadened
use of
flexible
plastics
and
r u b b e r s i n e x t e r i o r - b o d y s t r u c t u r a l m e m b e r s w i l l c o m p e l the c o n c l u s i o n that h i g h p e r f o r m a n c e m a t e r i a l s are n e e d e d . relatively light,
flexible,
fabricated
finished,
possible.
and
T h e y must not only
s e r v i c e a b l e at t e m p e r a t u r e extremes,
b u t t h e y m u s t b e as s t r o n g a n d as t o u g h
T h e p u b l i c w i l l d e m a n d this.
O n e t y p e of
be
a n d easily
flexible
as
synthetic
p o l y m e r w h i c h meets these r e q u i r e m e n t s v e r y w e l l i n d e e d is the t h e r m o plastic urethane flexible
elastomers
w h i c h h a v e a l r e a d y p r o v e d themselves
in
f r o n t ends, sight shields, a n d f a s c i a i n p r o d u c t i o n m o d e l auto-
mobiles. T h e r m o p l a s t i c p o l y u r e t h a n e elastomers w e r e i n v e n t e d a n d d e s c r i b e d a l m o s t 20 years ago (1,2).
T h e y w e r e first c o m m e r c i a l i z e d b y the B . F .
G o o d r i c h C h e m i c a l C o . as " E s t a n e " i n 1959.
I n this c h a p t e r I w i l l discuss
the u s e f u l b u t r a t h e r c o m p l e x T P U elastomers i n terms of t h e i r c h e m i c a l c o m p o s i t i o n , c h e m i c a l structure, a n d m o l e c u l a r w e i g h t , a n d h o w these factors affect t h e i r i n t e r n a l p h y s i c a l s t r u c t u r e (i.e., m o r p h o l o g y ) , n a t u r e , and properties. Specifically, I w i l l show h o w differential scanning calorim e t r y ( D S C ) , a m e t h o d of t h e r m a l analysis, c a n b e u s e d to l e a r n m u c h a b o u t a n d to p r e d i c t p r o c e s s i n g a n d p e r f o r m a n c e characteristics of T P U elastomers,
s u c h as are b e i n g u s e d c u r r e n t l y i n a u t o m o t i v e
injection-
m o l d i n g a p p l i c a t i o n s . T h e effects of changes i n T P U c h e m i c a l c o m p o s i t i o n a n d m o l e c u l a r w e i g h t o n t h e r m a l transitions also w i l l b e d i s c u s s e d .
TPU
Elastomer
Composition
T P U elastomers are u s u a l l y m a d e f r o m three c h e m i c a l s : ( 1 ) cyanate, (2)
a diiso-
a high-molecular-weight macroglycol, a n d (3) a low-molec-
u l a r - w e i g h t c h a i n extender g l y c o l .
E x a m p l e s of these t h r e e c o m p o u n d s
a n d t h e i r structures are s h o w n i n F i g u r e 1. N o w , i t h a p p e n s that the r e l a t i v e a m o u n t s of the a b o v e r e a c t a n t types u s e d to m a k e the T P U elastomer a n d the o r d e r i n w h i c h t h e y c h e m i c a l l y r e a c t w i t h e a c h other is v e r y i m p o r t a n t , f o r this d e t e r m i n e s the s t r u c t u r e of T P U p o l y m e r c h a i n s , w h i c h m u s t b e
"segmented."
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
5.
SCHOLLENBERGER
Thermoplastic Polyurethane Typical Example
Component
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
Structure
DIISOCYANATE
MDI
OCN -O~ 2-"C)"~
MACROGLYCOL
PTAd
H0(CH ) +0C0(CH ) CO 0(CH > - OH
(HIGH
(LOW
NC0
CH
2
4
2 4
2
4
n
MW,-IOOO-2000)
CHAIN EXTENDER GLYCOL
1,4 BDO
HO(CH )
OH
2
MWÎ
4
Figure 1.
TPU
85
Elastomers
Elastomer
Chemical components of TPU elastomer
Structure
W h a t I mean b y segmented
structure i n T P U elastomer
a p p a r e n t - i n the s c h e m a t i c of F i g u r e 2.
chains
is
T h e structure i n F i g u r e 2 shows
t h e T P U elastomer to consist of l i n e a r p o l y m e r p r i m a r y c h a i n s .
These
p r i m a r y chains are s e g m e n t e d i n c o m p o s i t i o n . S p e c i f i c a l l y t h e y are m a d e u p of a l t e r n a t i n g h a r d a n d soft segments w h i c h are joined, e n d to e n d t h r o u g h strong, c o v a l e n t c h e m i c a l l i n k a g e s . Soft Segments. T h e soft segments are t h e l i n e a r r e a c t i o n of the d i i s o c y a n a t e c o m p o n e n t ,
products
e.g., M D I ( d i p h e n y l m e t h a n e - p , p ' - d i i s o -
c y a n a t e ) , a n d the m a c r o g l y c o l c o m p o n e n t , e.g., P T A d [ p o l y ( t e t r a m e t h y l ene a d i p a t e ) g l y c o l ] , as is seen i n F i g u r e 3. B e c a u s e of t h e d e l i b e r a t e l o w m e l t i n g o r l i q u i d n a t u r e of t h e m a c r o g l y c o l c o m p o n e n t , w h i c h has a m o l e c u l a r w e i g h t of a b o u t 1000-2000 a n d so c o m p r i s e s a p p r o x i m a t e l y 75-95% of t h e soft segments, t h e soft segments i n the d e r i v e d T P U chains t e n d to b e l o w m e l t i n g a n d l a r g e l y amorphous.
A t a n y a p p r e c i a b l e m o l e c u l a r w e i g h t , the soft s e g m e n t b y
itself tends to b e l i k e a g u m . W i t h this e x p l a n a t i o n w e m a y n o w e q u a t e the
exemplary
soft-segment c h e m i c a l
structure
of
Figure
3 with
s c h e m a t i c r e p r e s e n t a t i o n ( / ^ ^ ^ ) i n F i g u r e 2.
MDI +1,4 BD0
i
SOFT
HARD
SOFT
HARD
SOFT
HARD
SOFT
HARD
SOFT
MDI+PTAd Figure
2.
Schematic of TPU-elastomer chains
polymer primary
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
its
86
MULTIPHASE
POLYMERS
0 C N - ^ - C H - ^ - N C 0 + HO(CH ) |oCO(CH ) COO(CH )^OH-» 2
2
(MDI)
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
"*
c o
N H
"O"
4
2
4
2
(PTAd)
CH
2 "Ό"
NHC0
°(CH ) [OC0(CH ) COO(CH ) j - 0 - 2
4
2
4
2 4
(SOFT SEGMENT) Figure 3 .
Typical TFU-elastomer soft-segment
structure
S e v e r a l types of m a c r o g l y c o l s f o r u s e i n f o r m i n g p o l y u r e t h a n e soft segments are possible a n d p r a c t i c a l . E x a m p l e s of some of these are l i s t e d i n F i g u r e 4. T h e p o l y m e r c h e m i s t makes his m a c r o g l y c o l selection b a s e d o n s u c h considerations as t h e d e s i r e d m e c h a n i c a l properties, l o w - t e m perature flexibility, e n v i r o n m e n t a l resistance, a n d economics o f t h e d e r i v e d T P U . E v e n b y h i s c h o i c e of m a c r o g l y c o l m o l e c u l a r w e i g h t , t h e p o l y m e r chemist c a n f u r t h e r regulate s u c h T P U elastomer properties as low-temperature flexibility. H a r d Segments. T h e h a r d segments a r e t h e l i n e a r r e a c t i o n p r o d u c t s of t h e diisocyanate c o m p o n e n t a n d t h e t h i r d m o n o m e r t y p e i n t h e T P U elastomer r e c i p e , t h e s m a l l g l y c o l - c h a i n - e x t e n d e r c o m p o n e n t . I n F i g u r e 5 w e see a t y p i c a l T P U hard-segment structure w h i c h is f o r m e d f r o m M D I a n d 1 , 4 - B D O ( 1,4-butanediol ). T h e p o l y m e r chemist selects h i s d i i s o c y a n a t e a n d chain-extenderg l y c o l c o m p o n e n t s to p r o d u c e h i g h - m e l t i n g h a r d segments i n t h e d e r i v e d T P U chains. H a r d segments d i s p l a y some b u t n o t a l l of t h e classical characteristics of t h e c r y s t a l l i n e state a n d f o r this reason h a v e b e e n c a l l e d " p a r a c r y s t a l l i n e . " A t a n y a p p r e c i a b l e m o l e c u l a r w e i g h t t h e h a r d segment b y itself w o u l d t e n d to b e h a r d a n d n y l o n l i k e i n character. W i t h this e x p l a n a t i o n w e m a y n o w equate t h e e x e m p l a r y h a r d - s e g m e n t structure of F i g u r e 5 w i t h its schematic representation ( l l ) i n F i g u r e 2. S e v e r a l types of diisocyanates ( a r o m a t i c , a l i p h a t i c , c y c l o a l i p h a t i c ) a n d m a n y different g l y c o l - c h a i n extenders ( o p e n - c h a i n a l i p h a t i c , c y c l o a l i p h a t i c , a r o m a t i c a l i p h a t i c ) c a n b e u s e d to p r o d u c e T P U - e l a s t o m e r h a r d segments. I n t h e m o r e c o n v e n t i o n a l a n d p r a c t i c a l f o r m u l a t i o n s o n l y a single diisocyanate c o m p o n e n t is u s e d to m a k e a T P U , so t h e d i i s o cyanate is c o m m o n to b o t h t h e h a r d a n d soft segments. T h e p o l y m e r c h e m i s t makes h i s diisocyanate a n d g l y c o l - c h a i n - e x t e n d e r c o m p o n e n t selections b a s e d o n s u c h considerations as d e s i r e d T P U m e c h a n i c a l properties, u p p e r service temperature, e n v i r o n m e n t a l resistance, s o l u b i l i t y characteristics, a n d e c o n o m i c s .
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979. 4
PQLYHYDRQCARBON GLYCOL
POLYETHER GLYCOL
Figure 4.
Some macroglycol types
(a) POLYBUTADIENE GLYCOL
2
n
2
2
CH II CH
-|-CH -ÇH
5
f CH -CH = CH~CH ^ L and
Γ.
CH*
2
f0CH-CH }
POLY( 1,2 ~OXYPROPYLENE)GLYCOL
(b)
2
fo(CH ) j -
6
(a) POLYfTETRAMETHYLENE OXIDE) GLYCOL
2
£(CH ) ~ O-CO-O^
5
(c) POLY(HEXAMETHYLENE CARBONATE)GLYCOL
2
t(CH ) -C00l
POLY(CAPROLACTONE)GLYCOL
2
(b)
4
(a) POLYfTETRAMETHYLENE ADIPATE)GLYCOL
POLYESTER GLYCOL 2
£oCO(CH ) -CO-0(CH ) --^
Example
M a c r o g l y c o l Type
Repeat Unit Structure
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
88
MULTIPHASE
0CN
"O~ 2^O" CH
NC0
POLYMERS
+ HO(CHg) OH
(1,4 BDO)
(MOD
+ CONH-0-CH -0^NHCOO(CH ) -o| L Jη (HARD SEGMENT) 2
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
Figure 5. Typical TPU-elastomer hard-segment structure
2
4
Just as the p o l y m e r c h e m i s t c a n s i g n i f i c a n t l y r e g u l a t e T P U elastomer, l o w - t e m p e r a t u r e flexibility b y h i s c h o i c e of m a c r o g l y c o l m o l e c u l a r w e i g h t a n d thus soft-segment l e n g t h ( m o l e c u l a r w e i g h t ) , h e also c a n regulate o t h e r i m p o r t a n t T P U - e l a s t o m e r properties b y r e g u l a t i n g h a r d - s e g m e n t l e n g t h ( m o l e c u l a r w e i g h t ) . S u c h r e g u l a t i o n is easily a c c o m p l i s h e d b y v a r y i n g t h e amounts of the d i i s o c y a n a t e a n d g l y c o l - c h a i n - e x t e n d e r c o m ponents ( r e l a t i v e to the m a c r o g l y c o l a m o u n t ) c h a r g e d i n the T P U elastomer f o r m u l a t i o n . I n c r e a s i n g m a t c h e d a m o u n t s of t h e d i i s o c y a n a t e a n d g l y c o l - c h a i n - e x t e n d e r c o m p o n e n t s , relative to the m a c r o g l y c o l a m o u n t , increase h a r d - s e g m e n t c h a i n l e n g t h ( m o l e c u l a r w e i g h t ) a n d T P U - u r e thane c o n c e n t r a t i o n . T h i s i n t u r n increases T P U m o d u l u s (hardness, stiffness, l o a d - b e a r i n g c a p a c i t y ) , p r o c e s s i n g temperature, u p p e r service temperature, etc., w h i l e r e d u c i n g T P U s o l u b i l i t y .
Polymer Chain Organization F i g u r e 2 d e p i c t e d the T P U - e l a s t o m e r p r i m a r y c h a i n s c h e m a t i c a l l y and, I believe, accurately. B u t i n the solid polymer, the p o l y m e r p r i m a r y chains d o n o t r e a l l y exist separately as s h o w n i n F i g u r e 2. R a t h e r , a l l e v i d e n c e points to t h e fact that the h a r d segments of the T P U chains strongly attract a n d t e n d to associate w i t h e a c h other t h r o u g h u r e t h a n e - u r e t h a n e h y d r o g e n b o n d i n g a n d a r o m a t i c ττ-electron attractions. A s a result, t h e h a r d segments i n t h e p o l y m e r p r i m a r y chains f o r m aggregates ( d o m a i n s ) i n t h e m o b i l e soft-segment m a t r i x a n d a t w o - p h a s e p o l y m e r system results. T h i s n e w o r g a n i z a t i o n of the p o l y m e r p r i m a r y chains is d e p i c t e d s c h e m a t i c a l l y i n F i g u r e 6. T h e separate hard-segment aggregates ( d o m a i n s ) are seen to tie the l i n e a r p o l y m e r p r i m a r y c h a i n s together i n l a t e r a l fashion, i n effect c r o s s l i n k i n g t h e m . It is also a p p a r e n t that the same p h e n o m e n o n extends t h e chains i n l i n e a r f a s h i o n . T h e c o m b i n e d l a t e r a l a n d l i n e a r effects p r o d u c e a g i a n t c r o s s l i n k e d n e t w o r k w h i c h accounts f o r t h e elastic character of T P U elastomers. H o w e v e r , these crosslinks w h i c h h o l d t h e T P U n e t w o r k together c a n b e o v e r c o m e b y heat or b y s o l v a t i o n b y processes w h i c h m o r e o r less regenerate the p o l y m e r p r i m a r y chains. T h i s is a r e a d i l y reversible p r o c ess, as F i g u r e 6 shows, a n d o n c o o l i n g o r o n d r y i n g free of solvent, t h e
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
5.
SCHOLLENBERGER
Thermoplastic Polyurethane Elastomers
89
VIRTUALLY CROSSLINKED/EXTENDED NETWORK of POLYMER PRIMARY CHAINS J J Δ or SOLVENT
POLYMER PRIMARY CHAINS
Figure 6.
Schematic of chain organization in solid TPU elastomer
p o l y m e r p r i m a r y chains r e f o r m t h e T P U - n e t w o r k s t r u c t u r e i n t h e i r n e w l y f a b r i c a t e d f o r m . T h e f o r e g o i n g l a b i l i t y o f T P U - e l a s t o m e r n e t w o r k s leads us to r e f e r to t h e m as b e i n g " v i r t u a l l y c r o s s l i n k e d " ( 2 ) . T h a t is, t h e y a r e c r o s s l i n k e d i n effect b u t n o t i n fact, a n d t h e h a r d - s e g m e n t d o m a i n s a r e the v i r t u a l crosslinks. Hard-Segment
Domain
Morphology
A s c a n b e seen, h a r d - s e g m e n t d o m a i n s a r e a necessary s t r u c t u r a l feature o f T P U elastomers since t h e y t i e t h e p o l y m e r p r i m a r y c h a i n s together.
W i t h o u t these d o m a i n s T P U w o u l d l a c k elastic c h a r a c t e r a n d
w o u l d b e g u m l i k e i n nature. M u c h s t u d y o f t h e n a t u r e o f T P U h a r d - s e g m e n t d o m a i n s has b e e n m a d e (3-11 ), p a r t i c u l a r l y since t h e y m i g h t b e e x p e c t e d t o b e c r y s t a l l i n e b u t d o n o t a p p e a r t o b e b y c o n v e n t i o n a l c r y s t a l l i n i t y tests s u c h as w i d e a n g l e x-ray d i f f r a c t i o n ( W A X D ).
I t a p p e a r s that t h e s t r o n g m u t u a l
a t t r a c t i o n o f t h e h a r d segments (e.g., u r e t h a n e - u r e t h a n e h y d r o g e n b o n d i n g ) restricts t h e i r m o b i l i t y a n d thus t h e i r a b i l i t y to o r g a n i z e themselves w e l l into a crystalline lattice.
P e r h a p s t h e s i t u a t i o n is s i m i l a r t o t h a t
e n c o u n t e r e d i n c o n c e n t r a t e d solutions o f t h e sugars w h i c h c r y s t a l l i z e r e l u c t a n t l y , a g a i n l i k e l y b e c a u s e o f t h e restrictions o f h y d r o g e n b o n d i n g . T h e u n o r i e n t e d p o l y a m i d e s w o u l d seem t o b e a s i m i l a r case. T h e p o s s i b i l i t y also exists that t h e h a r d - s e g m e n t d o m a i n s a r e r e a l l y c r y s t a l l i n e , b u t t h e crystals a r e so s m a l l that t h e y a r e n o t d e t e c t e d b y WAXD.
I n this r e g a r d , s m a l l angle
x-ray d i f f r a c t i o n ( S A X D )
does
d e t e c t t h e d o m a i n s , so w e k n o w t h a t t h e y exist, t h a t t h e y h a v e some o r d e r ,
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
90
MULTIPHASE POLYMERS
a n d w h a t t h e i r size a n d s e p a r a t i o n i n t h e soft-segment m a t r i x a r e . T h e s u b c r y s t a l l i n e state o f p o l y u r e t h a n e elastomer h a r d - s e g m e n t d o m a i n s has b e e n r e f e r r e d t o as t h e " p a r a c r y s t a l l i n e state"
Phase (Hard
Segment, Soft Segment)
(4).
Segregation
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
A final p o i n t o n T P U s t r u c t u r e . Studies h a v e s h o w n (11 ) that m e l t i n g a T P U elastomer, as d u r i n g p r o c e s s i n g , results i n t h e r e m i x i n g o f its h a r d a n d soft segments.
T h i s is f o l l o w e d b y t h e i r t e n d e n c y to d e - m i x ,
o r segregate, i n t h e c o o l e d s o l i d p o l y m e r . I t c a n b e a p p r e c i a t e d f r o m F i g u r e 6 that a T P U - e l a s t o m e r s a m p l e w h o s e h a r d segments
have not
a g g r e g a t e d f a i r l y w e l l has n o t d e v e l o p e d its u l t i m a t e p r o p e r t y p o t e n t i a l . O f t e n t h e segregation o f h a r d a n d soft segments increases w i t h t i m e . I n some T P U c o m p o s i t i o n s t h e i n t e r m o l e c u l a r forces f a v o r i n g t h e m i x e d o r the d e - m i x e d states seem to l a r g e l y b a l a n c e e a c h other, a n d d e - m i x i n g is a p p r e c i a b l y r e t a r d e d . I n a n y case, phase segregation i n T P U elastomers is a t i m e - d e p e n d e n t p h e n o m e n o n w h o s e consequences
c a n n o t b e over-
l o o k e d i n t h e s t u d y a n d u s e o f these p o l y m e r s . T h e r m a l analysis p r o v e s to b e a n excellent t o o l f o r i n v e s t i g a t i n g t h e p r o p e r t y - d e t e r m i n i n g m o r p h o l o g i c a l state a n d tendencies o f t h e T P U elastomers.
I n t h e b a l a n c e of
this c h a p t e r , I w i l l d e m o n s t r a t e t h e t h e r m a l responses c o m m o n l y seen i n T P U b y D S C , w h a t they m e a n , a n d h o w t h e y c a n a i d i n u n d e r s t a n d i n g and improving polymer performance.
Thermal
Analysis
of TPU
Differential Scanning Calorimetry
(DSC).
T h e D S C instrument
heats o r cools a s m a l l ( 1 0 - 1 5 m g ) s a m p l e u n d e r v e r y c a r e f u l l y c o n t r o l l e d and reproducible conditions.
W h i l e this is g o i n g o n a v e r y sensitive
t h e r m o c o u p l e c o n t i n u o u s l y m o n i t o r s changes i n t h e heat c a p a c i t y of t h e s a m p l e , w h i c h are r e c o r d e d as a t h e r m o g r a m . changes
whenever the temperature
S a m p l e heat
capacity
reaches a p o i n t w h e r e i t causes a
c h a n g e i n t h e o r g a n i z a t i o n o f t h e m o l e c u l e s i n t h e s a m p l e . S u c h detecta b l e changes a r e c a l l e d t h e r m a l responses o r t h e r m a l transitions. D S C curves are p l o t t e d as i n F i g u r e 7. I n F i g u r e 7, t h e v e r t i c l e axis is t h e d i f f e r e n t i a l heat scale w h i c h is p r o p o r t i o n a l to t h e heat
flow
(mcal/sec/in. ) into or out of the T P U
s a m p l e i n a s m a l l a l u m i n u m p a n ( s a m p l e system ) w i t h respect t o a n i d e n t i c a l b u t e m p t y p a n ( r e f e r e n c e s y s t e m ) , as t h e t o t a l system ( reference system, s a m p l e system ) t e m p e r a t u r e is r a i s e d o r l o w e r e d u n i f o r m l y . T h e h o r i z o n t a l axis is t h e t e m p e r a t u r e scale ( ° C ) f o r t h e a c t u a l t e m p e r a t u r e at t h e s a m p l e .
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
5.
SCHOLLENBERGER
Thermoplastic
Polyurethane
SAMPLE TEMPERATURE, C — e
Figure
7.
91
Elastomers
DSC thermogram of an injection-molding urethane elastomer
-
thermoplastic
poly-
T h e T P U s a m p l e tested i n F i g u r e 7 w a s i n j e c t i o n m o l d e d f r o m a tough, strong, high-urethane-content contains p o l y ( t e t r a m e t h y l e n e
injection-molding polymer w h i c h
a d i p a t e ) - M D I soft segments
a n d 1 , 4 - b u t a n e d i o l - M D I h a r d segments
( Figure 3)
( F i g u r e 5 ) . O u r test p r o c e d u r e
w a s t o : ( 1 ) r a p i d l y c o o l the s a m p l e to — 1 2 0 ° C i n o u r D S C i n s t r u m e n t (duPont, M o d e l 990);
( 2 ) heat i t f r o m -
120°C to + 2 5 0 ° C at 1 0 ° C /
m i n u n d e r n i t r o g e n ; ( 3 ) i m m e d i a t e l y c o o l i t to 2 5 ° C at t h e same rate. GLASS-TRANSITION TEMPERATURE ( T ) . g
A s w e s l o w l y heat t h e T P U
s a m p l e ( t o p c u r v e ) , a n increase i n its rate o f heat a b s o r p t i o n is n o t e d a t A w h e r e t h e s l o p e o f t h e u p p e r D S C c u r v e increases. persists u n t i l B , w h e r e i t reverts t o its o r i g i n a l rate.
T h i s n e w rate
T h e A - B region is
t h e t e m p e r a t u r e r a n g e i n w h i c h the T P U soft segments g o f r o m a r i g i d " g l a s s y " c o n d i t i o n t o a flexible " r u b b e r y " c o n d i t i o n . T h i s i s c a l l e d t h e g l a s s - t r a n s i t i o n r e g i o n o f t h e T P U soft segments, a n d t h e c h a n g e o c c u r s w h e n the a p p l i e d thermal energy
is a d e q u a t e
to overcome
a set o f
r e l a t i v e l y w e a k , i n t e r c h a i n a t t r a c t i v e forces w h i c h i m m o b i l i z e t h e T P U c h a i n segments, C
allowing them to move.
B y convention, t h e midpoint
( — 3 0 . 5 ° C ) o f A - B is c a l l e d t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e , T . g
T has p r a c t i c a l s i g n i f i c a n c e i n T P U elastomers since i t i n d i c a t e s t h e g
t e m p e r a t u r e at w h i c h the p o l y m e r w i l l lose a p p r e c i a b l e
flexibility
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
as i t
92
MULTIPHASE POLYMERS
cools.
I n T P U elastomer, soft segments that p r o d u c e l o w T
g
desirable, for they indicate g o o d low-temperature MELTING TEMPERATURE ( T ) M
values
are
flexibility. As uni-
AND H E A T OF FUSION (àH ). t
f o r m h e a t i n g of the T P U samples continues b e y o n d B , n o f u r t h e r i n t e r p r é t a b l e t h e r m a l events are n o t e d u n t i l D ( 1 0 6 . 0 ° C ) , w h e r e a n i n c r e a s e d rate of heat a b s o r p t i o n a g a i n c o m m e n c e s .
T h i s d i p ( e n d o t h e r m ) is q u i t e
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
p r o n o u n c e d a n d contains a series of m i n i m a at Ε ( 1 7 5 . 5 ° C ) , F ( 1 8 5 . 5 ° C ) , a n d G ( 1 9 8 . 0 ° C ) , e n d i n g at H ( 2 0 4 . 5 ° C ) .
T h e D - H endotherm repre
sents the m e l t i n g / d i s r u p t i o n of the t o t a l 1 , 4 - b u t a n e d i o l - M D I m e n t d o m a i n s i n the T P U elastomer.
hard-seg
T h e m u l t i p l e m i n i m u m values, E ,
F , a n d G , are c a l l e d m e l t i n g temperatures
(T ) m
a n d are b e l i e v e d
to
reflect the s e q u e n t i a l m e l t i n g / d i s r u p t i o n of h a r d - s e g m e n t d o m a i n s h a v i n g different degrees of o r g a n i z a t i o n w h i c h w e r e d e v e l o p e d d u r i n g p r i o r T P U thermal a n d processing history. B y m e a s u r i n g the area of the entire m e l t i n g e n d o t h e r m , w h i c h is b o u n d e d b y D , E , a n d H , one c a n c a l c u l a t e the heat of f u s i o n (àH )
of
the s a m p l e a n d express i t as m i l l i c a l o r i e s p e r m i l l i g r a m
of
f
sample.
AH
t
(mcal/mg)
t h e n is a measure of the " s t r e n g t h " of the p o l y m e r v i r t u a l
crosslinks, or i n o t h e r w o r d s , of the degree of m o l e c u l a r o r g a n i z a t i o n i n the h a r d - s e g m e n t d o m a i n s . I n F i g u r e 7, ΔΗ
{
O n e likes to see h i g h T
m
indicates
is 3.20 m c a l / m g .
values f o r T P U h a r d segments,
f o r this
s t r o n g v i r t u a l crosslinks w h i c h w i l l a l l o w t h e m o l d e d T P U
parts to pass t h r o u g h p a i n t - d r y i n g ovens a n d to s t a n d i n the h o t s u n w i t h o u t sag o r d i s t o r t i o n . O f course if T
m
is too h i g h , m o l d i n g p r o b l e m s
c o u l d be encountered. F u r t h e r h e a t i n g of the s a m p l e to I i n t e r p r é t a b l e t h e r m a l response.
( 2 5 0 ° C ) produces no
further
A n d since another test, t h e r m o g r a v i m e t r i c
analysis ( T G A ), w h i c h I w i l l not discuss i n this c h a p t e r , shows that t h e p o l y m e r s a m p l e loses a l i t t l e w e i g h t ( suggestive of d e c o m p o s i t i o n )
at
a p p r o x i m a t e l y 250 ° C , w e h e a t t h e s a m p l e n o f u r t h e r b u t n o w i m m e d i a t e l y b e g i n to c o o l it at 1 0 ° C / m i n . CRYSTALLIZATION TEMPERATURE ( T ) AND H E A T OF CRYSTALLIZATION c
A t t e n t i o n is n o w d i r e c t e d to the l o w e r ( c o o l i n g )
(AH ). C
c u r v e i n the
F i g u r e 7 t h e r m o g r a m . N o t h e r m a l response is n o t e d i n t h e c o o l i n g s a m p l e until J
( 1 4 5 . 0 ° C ) , w h i c h is r e a c h e d after a b o u t 10 m i n u t e s of c o o l i n g .
H e r e h e a t s u d d e n l y evolves f r o m the s a m p l e i n a s h a r p e x o t h e r m , p e a k i n g at Κ ( T , 1 3 1 . 5 ° C ) a n d e n d i n g at L ( 1 0 5 . 5 ° C ) . T h i s response c
represents
c r y s t a l l i z a t i o n i n the s a m p l e a n d is a s c r i b e d to the r e f o r m a t i o n of hard-segment
domains.
H o w e v e r , the
accepted
methods
of
the
detecting
c r y s t a l l i n i t y d o not s h o w c r y s t a l l i n i t y i n s u c h T P U , as m e n t i o n e d earlier. B y m e a s u r i n g the area of the entire " c r y s t a l l i z a t i o n " e x o t h e r m w h i c h is b o u n d e d b y J , K , a n d L , one c a n c a l c u l a t e the h e a t of c r y s t a l l i z a t i o n (Δ/ίο mcal/mg)
of t h e s a m p l e , as w a s d o n e to get AH . t
I n F i g u r e 7,
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
5. AH
SCHOLLENBERGER
C
93
Thermophstic Polyurethane Elastomers
is 3.11 m c a l / m g .
I d e a l l y , t h e heat a b s o r b e d t o m e l t t h e s a m p l e
s h o u l d e q u a l t h e heat e v o l v e d w h e n t h e m e l t e d s a m p l e c r y s t a l l i z e s , so that AHf = AH . B u t as F i g u r e 7 shows, AH is n o t q u i t e as large as AH , C
C
f
s h o w i n g that t h e d e g r e e of c r y s t a l l i n i t y / o r d e r present
i n the sample
b e f o r e m e l t i n g w a s n o t r e e s t a b l i s h e d c o m p l e t e l y d u r i n g its f o u r - m i n u t e crystallization exotherm.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
soft-segment =
H o w e v e r , after s t a n d i n g a w h i l e , h a r d - s e g m e n t -
phase s e g r e g a t i o n
tends t o increase
(11 ) a n d o f t e n
AH
C
ΔΗ{. N o t i c e also that the c o o l e d s a m p l e started to c r y s t a l l i z e at J ( 1 4 5 . 0 ° C ) ,
w h i c h is u n d e r n e a t h the m e l t i n g e n d o t h e r m b u t b e y o n d its center a n d w e l l b e l o w H ( 2 0 4 . 5 ° C ) , t h e p o i n t at w h i c h m e l t i n g w a s c o m p l e t e o n h e a t u p . T h i s c r y s t a l l i z a t i o n l a g is r e c o g n i z e d as s u p e r c o o l i n g . T o o m u c h of i t means l o n g m o l d i n g cycles, d i s t o r t e d parts, etc. F o r i n j e c t i o n m o l d i n g T P U , one likes to have the crystallization exotherm
( J - K - L ) sharp
a n d of a b o u t e q u a l area a n d c e n t e r e d f a i r l y w e l l u n d e r a large, r e a s o n a b l y high-temperature melting exotherm
(D-E-H).
T h e p o l y m e r of F i g u r e
7 is seen to a p p r o x i m a t e these r e q u i r e m e n t s f a i r l y w e l l . Effects of Composition and Molecular
Weight
T h e p o l y m e r of F i g u r e 7 is, as n o t e d earlier, a h i g h - u r e t h a n e - c o n t e n t p o l y m e r w h o s e p r o p e r t i e s , i n c l u d i n g t h e r m a l responses, suited
for injection-molding applications.
representative
of t h e t h e r m o g r a m s
t h e r m a l differences differences. macroglycol,
are a t t r i b u t a b l e
make
However, Figure
encountered
it well
7 is n o t
for a l l T P U , whose
primarily to polymer composition
T h i s e v e n i n c l u d e s p o l y m e r s b a s e d o n t h e same d i i s o c y a n a t e , a n d chain-extender
h a r d - s e g m e n t con c e nt ra t i ons.
components
b u t containing
different
T h i s is i l l u s t r a t e d i n F i g u r e 8.
F i g u r e 8 is t h e t h e r m o g r a m of a g e n e r a l - p u r p o s e T P U m o r e s u i t a b l e for extrusion, calendering, a n d solution applications than f o r injection molding.
L i k e t h e p o l y m e r of F i g u r e 7, i t w a s m a d e b y m e l t p o l y m e r i z
ing M D I , P T A d , and 1,4-BDO.
B u t its h a r d - s e g m e n t
content
1 ι 1 ι 1 1 1 ι 1 ι I ι 1 ι I ι -100 - 6 0 - 2 0 0 20 6 0 100 140 180
TEMPERATURE,^
Figure 8. General-purpose thermoplas tic, polyurethane elastomer thermogram
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
is o n l y
94
MULTIPHASE POLYMERS
a b o u t one-half, a n d its m a c r o g l y c o l m o l e c u l a r w e i g h t o n l y a b o u t
one-
t h i r d those of the F i g u r e 7 p o l y m e r values, m a k i n g i t a less-segmented p o l y m e r . T h e F i g u r e 8 t h e r m o g r a m w a s ran i n the same w a y as t h a t of Figure
7,
but
the
c o o l d o w n is
not
shown
since
it
was
essentially
featureless. Inspection
of F i g u r e 8 s h o w s :
to b e
T
g
— 35°C
(lower than i n
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
F i g u r e 7 ) ; a d i s t i n c t m e l t i n g e n d o t h e r m at a p p r o x i m a t e l y 6 7 ° C i n F i g u r e 7 ) ; a n d a b r o a d , s h a l l o w e n d o t h e r m at 8 0 ° - 1 8 0 ° C
(absent
(at
106°-
2 0 5 ° C , a n d m u c h m o r e p r o n o u n c e d i n F i g u r e 7 ) w h i c h contains a s m a l l , s h a r p e n d o t h e r m at 1 6 5 ° C (at 1 7 8 ° , 1 8 6 ° , a n d 1 9 8 ° C i n F i g u r e 7 ) . The lower T
v a l u e of the F i g u r e 8 vs. the F i g u r e 7 p o l y m e r p r o b a b l y
g
reflects : a l o w e r p o l y m e r m o l e c u l a r w e i g h t ( M f r e e - v o l u m e effect; its l o w e r h a r d - s e g m e n t
w
48,000) a n d
concentration
attendant
( reduced hard-
s e g m e n t - s o f t - s e g m e n t p h a s e m i x i n g ) ; a n d its u n u s u a l l y l o n g ( a p p r o x i m a t e l y 500 days) e q u i l i b r a t i o n p e r i o d d u r i n g 2 5 ° C shelf storage (increased hard-segment-soft-segment
p h a s e segregation ).
T h e 6 7 ° C e n d o t h e r m i n F i g u r e 8 is s u s p e c t e d of r e p r e s e n t i n g m e l t i n g of
soft segment
( macroglycol
lengthened
to
high
w e i g h t v i a d i i s o c y a n a t e c o u p l i n g ) at a t e m p e r a t u r e
appreciably
t h a t of t h e
macroglycol
relatively low-molecular-weight parent
the
molecular above itself
(~46°C). T h e b r o a d , shallow, 8 0 ° - 1 8 0 ° C endotherm i n F i g u r e 8 a n d the small s h a r p e n d o t h e r m w i t h i n it at 1 6 5 ° C are b e l i e v e d to c o r r e s p o n d to
the
106°-205°C
the
D - E - H e n d o t h e r m of F i g u r e 7 a n d also to represent
t h e r m a l d i s r u p t i o n of the (less extensive) h a r d segments of t h e
Figure
8 polymer. I n a d d i t i o n to p o l y m e r c o m p o s i t i o n , p o l y m e r m o l e c u l a r w e i g h t also c a n exert a significant effect o n the t h e r m a l response of p o l y m e r s i n c l u d i n g those h a v i n g i d e n t i c a l c h e m i c a l m a k e u p a n d c o m p o s i t i o n .
This can
b e seen i n F i g u r e s 9 A a n d 9 B . T h e 10 p o l y m e r s i n these figures w e r e a l l of
the
same composition,
materials,
and
preparation
method
F i g u r e 8 p o l y m e r , w h i c h reappears at t h e h e a d of F i g u r e 9 A . molecular-weight 48,000-367,000.
levels
of this series w e r e
T h e thermograms
v a r i e d i n the
as
the
But
the
range,
M
w
w e r e a l l m e a s u r e d as i n the case of
the F i g u r e 7 p o l y m e r . C o m p a r i s o n of F i g u r e 9 A a n d 9 B t h e r m o g r a m s shows several interesti n g changes w i t h i n c r e a s i n g M
w
t h a t J F values i n c r e a s e w i t h M
from -
g
at M M
w
w
w
i n this p o l y m e r series. 3 5 ° C at M
w
It c a n b e seen
of 48,000 to -
27°C
of 183,000, w h e r e t h e y h o l d t h r o u g h the final m e m b e r of the series,
of 367,000.
We
polymer free-volume
interpret
this p a t t e r n
(chain end)
mobility w i t h increasing polymer M
to reflect
the
influence
of
reduction on polymer-chain segment w
. It appears that p o l y m e r f r e e - v o l u m e
decreases w i t h i n c r e a s i n g p o l y m e r m o l e c u l a r w e i g h t u p to M
w
of a p p r o x i -
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
5.
SCHOLLENBERGER
Thermoplastic
Polyurethane
TEMPERATURE, °C
Figure 9.
95
Elastomers
TEMPERATURE,°C
(a, left; b, right) Effects of M on general purpose TPU elastomer thermograms w
m a t e l y 160,000, t h e r e a f t e r c e a s i n g to c h a n g e s i g n i f i c a n t l y o r to f u r t h e r influence polymer T
g
with additional M
w
increase.
N o t i c e that t h e 67 ° C e n d o t h e r m shows n o M b e c a u s e t h e smallest T P U of t h e series ( M
w
w
dependency, possibly
of 48,000) a l r e a d y consists
of soft segments ( d i i s o c y a n a t e - c o u p l e d p o l y e s t e r chains ) l o n g e n o u g h to d i s p l a y t h e m a x i m u m t e m p e r a t u r e f o r this t r a n s i t i o n i n this system. T h e b r o a d , s h a l l o w , 8 0 ° - 1 8 0 ° C e n d o t h e r m of t h e 4 8 , 0 0 0 - M
w
polymer
( F i g u r e s 8, 9 A ) n a r r o w s , d r a w i n g t o w a r d t h e l o w e r t e m p e r a t u r e , a n d also thins as p o l y m e r m o l e c u l a r w e i g h t increases, e n d o t h e r m at M M
w
w
w h i l e the distinct
165°C
of 48,000 g r a d u a l l y s h r i n k s , essentially d i s a p p e a r i n g at
of 117,000. H a r d - s e g m e n t d o m a i n d e v e l o p m e n t w o u l d a p p e a r to b e
p r o g r e s s i v e l y i m p e d e d i n t h e T P U as M
w
increases.
A g a i n , w e suggest
that this is a t t r i b u t a b l e to a decrease of p o l y m e r free v o l u m e a n d thus
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
96
MULTIPHASE POLYMERS
c h a i n - s e g m e n t m o b i l i t y . C o n s e q u e n t l y , less p r o n o u n c e d e v i d e n c e o f h a r d segment t h e r m a l response is a p p a r e n t i n t h e t h e r m o g r a m s o f t h e h i g h e r M
w
p o l y m e r s o f this T P U series. O t h e r i n f o r m a t i o n c a n b e o b t a i n e d f r o m t h e r m a l studies o f T P U
elastomers w h i c h is also h e l p f u l i n u n d e r s t a n d i n g a n d i m p r o v i n g these h i g h p e r f o r m a n c e , easily p r o c e s s e d p o l y m e r s . B u t i t w a s t h e i n t e n t i o n to l i m i t this c h a p t e r t o t h e b a s i c D S C t h e r m a l responses w h i c h
forecast
Downloaded by UNIV MASSACHUSETTS AMHERST on September 9, 2012 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch005
strengths a n d weaknesses i n T P U p r o c e s s i n g a n d p e r f o r m a n c e c h a r a c t e r istics a n d t o i n d i c a t e the parts o f t h e T P U s t r u c t u r e that a r e r e s p o n s i b l e f o r these t h e r m a l responses. Literature
H o p e f u l l y , this has b e e n a c c o m p l i s h e d .
Cited
1. Schollenberger, C . S., assignor to the B. F. Goodrich Company, U.S. Patent 2,871,218, "Simulated Vulcanizates of Polyurethane Elastomers," (Appl. Dec. 1, 1955, Issued Jan. 27, 1959). 2. Schollenberger, C . S., Scott, H., Moore, G . R., "Polyurethane V C , a Vir tually Crosslinked Elastomer," Rubber World (1958) 137(4), 549. 3. Cooper, S. L., Tobolsky, Α. V., J. Appl. Polym. Sci. (1966) 10, 1837. 4. Bonart, R., J. Macromol. Sci., Phys. (1968) B 2 ( 1 ), 115. 5. Clough, S. B., Schneider, N . S., J .Macromol. Sci., Phys. (1968) B2(4), 553. 6. Miller, G. W., Saunders, J. H., J. Appl. Polym.Sci.(1969) 13, 1277. 7. Harrell, L . L., Jr., Macromolecules (1969) 2(6), 607. 8. Rausch, K. W . , Farrissey, W . J., Jr., J. Elastoplastics (1970) 2, 114. 9. Morbitzer, L., Hespe, H . , J. Appl. Polym. Sci. (1972) 16, 2697. 10. Wilkes, C. E., Yusek, C. S., J. Macromol. Sci., Phys. (1973) B 7 (1), 157. 11. Wilkes, G . L., Bagrodia, S., Humphries, W., Wildnauer, R., J. Polym. Sci., Polym. Lett. Ed. (1975) 13, 321. RECEIVED April 14, 1978.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.